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Abstract

Tumor-infiltrating B cells are an important component in the microenvironment with unclear anti-

tumor impacts. We enhanced our previous computational algorithm TRUST to extract the B cell 

immunoglobulin (Ig) hypervariable regions from bulk tumor RNA-seq data. TRUST assembled 

over 30 million complementarity-determining region 3 (CDR3s) of the B cell heavy chain (IgH) 

from The Cancer Genome Atlas (TCGA). Widespread B cell clonal expansions and Ig subclass 

switch events were observed in diverse human cancers. Prevalent somatic copy number alterations 

in MICA and MICB genes related to antibody-dependent cell mediated cytotoxicity (ADCC) were 

identified in tumors with elevated B cell activity. IgG3-1 subclass switch interacts with the B cell 

receptor affinity maturation and defects in the ADCC pathway. Comprehensive pan-cancer 

analyses of tumor-infiltrating B cell receptor repertoires identified novel tumor immune evasion 

mechanisms through genetic alterations. The IgH sequences identified here are potentially useful 

resources for future development of immunotherapies.

Editorial summary:

This comprehensive pan-cancer analysis of RNA sequencing data from bulk tumors defines the 

landscape of tumor-infiltrating B cell receptor repertoires and highlights new mechanisms of 

tumor immune evasion through genetic alterations.

B cells are a key component of adaptive immunity, with diverse functions including antibody 

production1,2, antigen presentation3, and cellular cytotoxicity4. Infiltrating B cells have been 

frequently observed in multiple tumor tissues5-7, yet their reported effects on patient 

outcome have been inconsistent5,8-11. It remains unclear what roles B cells play in the anti-

tumor humoral response, and how cancer cells interact with infiltrating B cells.

The B cell immunoglobulin (Ig) heavy chain (IgH) consists of a hypervariable 

complementarity-determining region 3 (CDR3), which is critical in antigen recognition12. 

Upon binding to a foreign antigen, B cells undergo proliferation, class switch recombination 

(CSR), and somatic hypermutations (SHM) to produce high affinity antibodies to eliminate 

the antigen13,14. Therefore, characterization of the tumor-infiltrating B cell Ig repertoire is 

critical to understanding B cell immunity in tumors. Efforts have been made to study the B 

cell repertoire using either targeted deep sequencing (BCR-seq)15-17 or unselected RNA-seq 

data18,19 in both human and mouse models to understand the etiology of autoimmune 

diseases20 or cancers21,22. However, a systematic investigation on tumor-infiltrating B cell 

repertoires using large cohorts of diverse cancer types is still lacking to elucidate the 

functional impact of tumor B cell immunity and identify potential therapeutic opportunities.
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Previously, we developed an ultrasensitive de novo assembler, TRUST, to call the T cell 

receptor hypervariable CDR3 sequences using bulk tumor RNA-seq data23,24. In this work, 

we enhanced TRUST to assemble the B cell IgH CDR3 sequences from bulk RNA-seq data, 

and applied it to study the infiltrating B cell IgH repertoire in the TCGA cohorts. A subset of 

B cells with a defined signature of CSR emerged in our analysis, with promising anti-tumor 

effects. We observed potential mechanisms of anti-tumor B cell responses and tumor evasion 

to B cell attack. These results help elucidate the functional impact of antibody-mediated cell 

cytotoxicity in anti-tumor immune responses and reveal promising opportunities in 

developing future immunotherapies.

Results

De novo assembly of immunoglobulin heavy chain hypervariable sequence.

We modified TRUST, a computational algorithm we previously developed to detect T cell 

receptor hypervariable CDR3 sequences, to assemble the CDR3 regions of tumor-infiltrating 

B cell immunoglobulin heavy chain (IgH) from unselected tissue or tumor RNA-seq data 

(Methods). To systematically evaluate the performance of TRUST, we applied in silico 

simulations to produce artificially recombined and hypermutated Ig transcripts. The 

enhanced TRUST achieved high sensitivity and perfect precision at very low sequence 

coverage (0.1×) (Supplementary Fig. 1a), suggesting that it is suitable to detect IgH 

hypervariable sequences from tumor RNA-seq data. In addition, we performed BCR-seq on 

six tumors to further evaluate the BCR clones TRUST assembled from RNA-seq on the 

same tumors. We found that TRUST can robustly recover expanded B cells through highly 

sensitive and precise calling of abundant BCR clones (Fig. 1a), with consistent clonal 

frequency estimations (Supplementary Fig. 1b) and high specificity in calling individual-

specific clones (Supplementary Fig. 1c). Moreover, TRUST and BCR-seq agreed on most of 

the Ig isotype annotations (Fig. 1b), allowing us to investigate class switch recombination 

(CSR) events in expanded B cells using TCGA data. Although some of the TRUST 

assemblies are partial CDR3 sequences, they still contain sufficient information to 

reconstruct B cell clusters (Fig. 1c).

Isotypes and somatic hypermutations of B cells in TCGA samples.

TRUST assembled a total of 30.8 million CDR3 sequences from 9,025 TCGA RNA-seq 

samples across 32 cancer types with variable sequencing depths and read lengths 

(Supplementary Table 1). The number of assemblies is the highest in lung squamous cell 

carcinoma (median 5,799 CDR3s per sample), which is consistent with the estimated 

leukocyte fractions1. 20.6 million assemblies can be assigned to known Ig classes using 

paired-end reads or assembled constant region (Methods). Of these, IgG is the most 

abundant (60%) class, followed by IgA (35%) and IgM (4%). The average length of IgH 

hypervariable sequences is 14.7 amino acids (aa), and different Ig classes have similar length 

distribution and sequence motifs (Supplementary Fig. 2a). These results agree with those25 

from Ig sequences in the IMGT database26. Ig class abundance varies across different cancer 

types (Fig. 2a), with IgG being the dominant class in thyroid, testicular, and skin cancers. In 

contrast, IgA is the largest fraction in kidney, pancreatic, and colorectal cancers, consistent 

with the high secretion levels of IgA in mucous membrane and glands27.
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We called somatic hypermutations (SHMs) if two CDR3 sequences differ by only one 

nucleotide. The resulting SHMs are enriched on the 3rd codon position of CDR3s across 

different lengths, suggesting that our SHM calls are unlikely to arise from sequencing errors 

(Fig. 2b). Indeed, 85% of the 5.2 million SHM calls in the CDR3s are synonymous, 

indicating strong selection pressures during affinity maturation (Supplementary Fig. 2b). 

Nearly half of the SHMs are transitions within pyrimidines or purines (Fig. 2c), like what 

was observed on the whole BCR heavy chain28. We next performed 96-triplet mutation 

context analysis (Fig. 2e) on cases we can infer the mutation directions (Methods). The 

strongest mutation signature is the ACT to ATT triplet, which is consistent with the 

(W)RCY motif of activation-induced cytidine deaminase (AICDA or AID)29. The second 

highest signature is a GC-rich motif, which is not specific to mutation types and might arise 

from different DNA repair pathways and BCR affinity selection30. Furthermore, we 

observed the highest SHM in IgG antibodies (Fig. 2d), consistent with what has been 

reported in healthy individuals31,32. Finally, SHM rate (Methods) is positively correlated 

with the expression of AID across TCGA samples (ρ = 0.2, P < 10−40, Supplementary Fig. 

2c), supporting the role of AID in introducing SHMs in tumor-infiltrating B cells33.

Detection of tumor-infiltrating B cell clonal expansion.

Somatic hypermutation (SHM) and class-switch recombination (CSR) are signatures of B 

cell clonal expansion upon antigenic recognition34. To detect B cell clonal expansion, we 

developed a multiple local sequence alignment approach and optimized the parameters 

(Methods) by controlling the false discovery rate (FDR) and maximizing the number of 

clusters (Supplementary Fig. 3a-c). For example, in the experimental validation sample 

FZ-97, we obtained 7 highly similar CDR3s from BCR-seq, of which 4 were detected by 

TRUST with one partial CDR3 sequences (#6 in Fig. 1c). Using this alignment approach, we 

detected a total of 434,106 B cell lineage clusters across 5,866 TCGA tumors. A majority 

(54.5%) of the clusters with unique Ig annotation is assigned IgG, which might be related to 

a previous observation that tumor-infiltrating B cells generally express IgG with evidence of 

antigen-driven expansion5. In addition, complete CDR3 sequences from expanded B cell 

clones are significantly longer than the non-expanded clones (Supplementary Fig. 3d), 

suggesting potentially higher structural complexity of the expanded BCRs.

In a subset of 311,173 B cell clusters distributed among 5,328 samples, we identified co-

existence of more than one Ig subclasses (Methods), an evidence of CSR during B cell 

clonal expansion. The normalized number of B cell clusters has much higher positive 

correlation with B cell and T cell activation markers than with oncogene expressions in most 

tumor types, suggesting that the expanded B cell clusters might recognize tumor antigens 

(Fig. 3a). We observed the co-existence of multiple Ig classes or subclasses in 296,820 

clusters, suggesting subsequent CSRs following the initial CSR event. This finding is 

consistent with a previous report that B cells may undergo a programmed order of IgG 

subclass switch recombination (sCSR) in an immune response35. We examined the potential 

sCSR events for the IgA and IgG isotypes (Fig. 3b), and observed a total of 153,476 IgG3 to 

IgG1 (IgG3-1) sCSR events where the same CDR3 cluster contain both IgG1 and IgG3 

isotypes. IgG3-1 sCSR was the most abundant and enriched sCSR type in multiple cancers, 

especially in breast, kidney, endometrial, and colorectal cancers. The TRUST BCR results 
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for TCGA, including the number of BCRs and IgG3-1 sCSR events, are summarized in 

Supplementary Table 2.

We next compared signatures of B cell repertoires between tumor and adjacent normal 

tissues to evaluate whether clonal expansion and sCSR event are enriched in tumors. B cell 

infiltration levels, as estimated from TIMER36, do not show consistent difference between 

tumors and adjacent normal tissues across different cancer types. However, B cell diversity, 

as defined by the number of CDR3s per kilo BCR reads (CPK)23, is significantly lower in 

tumor samples for most cancer types, indicating that B cells were more clonal in tumors than 

in adjacent normal tissues (Fig. 4). We observed <10% overlap of shared B cell clonotypes 

between matched tumor and normal tissue samples (Supplementary Fig. 3e). Additionally, in 

most cancer types, tumor samples are enriched for more B cell clusters with IgG CSRs or 

IgG3-1 sCSRs rather than with IgA CSRs. Furthermore, individuals with higher levels of B 

cell IgG3-1 switches had significantly better clinical outcome in melanoma, ovarian cancer, 

and thyroid cancer (Supplementary Fig. 4). In contrast, kidney tumors with high IgG3-1 

switches have worse clinical outcome, which is consistent with the intriguing finding of poor 

prognosis of kidney renal cell carcinoma patients with high lymphocyte infiltration37. These 

results suggest that the level of clonally expanded B cells with IgG3-1 sCSRs, instead of 

total B cell infiltration level, is related to B cell mediated anti-tumor humoral response.

Interaction between somatic hypermutations and IgG3-1 switch.

As SHM is an important marker of B cell clonal evolution and affinity maturation38, we 

studied the relationship between SHM and IgG3-1 switch. B cell SHM rates are high in 

lung, head neck, and skin cancers, and low in leukemia and brain cancers (Fig. 5a), which 

might be due to the Ig isotype composition in different cancer types (Fig. 2a). Since both 

SHM and sCSR depend on AID39, we expect to see positive relationship between the steps 

of Ig switches and SHM rate. Indeed, we observed progressively higher SHM rate in 

samples with later rounds of sCSR events (Fig. 5b), suggesting that B cells undergo multiple 

rounds of sCSR events and gain additional SHMs during the process.

We next investigated the clinical relevance of interactions between SHM rate and CSR 

events. Splitting TCGA samples based on the median SHM rate (5.7%), we observed 

significant benefit of high IgG3-1 switches on survival in patients with high SHM rates, 

while IgG3-1 level is not associated with survival in low SHM samples (Fig. 5c). The same 

trend, although less significant due to the smaller sample sizes, was also observed in liver 

cancer and melanoma (Supplementary Fig. 5). The survival benefit of patients with high 

SHM rate and IgG3-1 sCSR suggest the role of SHM in generating a BCR repertoire with 

high binding affinity to the exposed tumor antigens28.

Immune evasion of ADCC through MIC shedding.

Tumors need to evade immune attacks in order to survive and progress40. It is well 

understood that tumors evade T cell attack by expressing checkpoint ligands such as PD-

L1/L2, or acquiring defects in antigen-presentation41 or interferon-gamma signaling 

pathways42. In contrast, how tumors evade B cell immunity remains largely uncharacterized. 

B cell IgG antibody is able to trigger downstream signaling to eliminate the affected cells, 
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one of the most important through the antibody-dependent cell-mediated cytotoxicity 

(ADCC) pathway43. ADCC involves the recruitment of additional effector cells expressing 

receptors that bind to the antibody Fc ligand44. In tumors, ADCC pathway commonly 

activates the natural killer (NK) cells in the microenvironment45 to carry out cell-mediated 

cytotoxicity. NK cells express a potent Fcγ receptor, CD16a (FcγRIIIA), which upon 

binding to IgG Fc ligand triggers the release of cytolytic enzymes, such as granzyme B 

(GZMB)46. We observed significantly higher expression levels of GZMB and FCGR3A 
(which encodes CD16a) in tumors with more CSR events (Fig. 6a), suggesting elevated NK 

cytotoxicity in tumors with B cell response. Among the four subclasses of IgG antibodies, 

the strongest binding to CD16a are IgG1 and IgG347. Consistently, we observed positive 

correlations between the IgG3-1 switch level and FCGR3A expression across almost all 

tumor types (Fig. 6b). One possible explanation to these associations and the prevalent IgG3 

to IgG1 sCSR events is that tumor-infiltrating B cells and NK cells work synergistically in 

the microenvironment to exert anti-tumor response.

Tumors under ADCC may develop evasive mechanisms against NK cell attack. An 

established evasion pathway is through the shedding of endogenous MHC class I-related 

chain molecules (MIC) A and B48. Metalloproteinase catalyzes the shedding of the MIC 

ectodomain to produce soluble MIC (sMIC), which binds to the activation receptor NKG2D 

on NK cells49 to internalize NKG2D and reduce NK cell activities50. Therefore, MIC 

shedding has been established as a mechanism to evade NK cell immunosurveillance50 (Fig. 

6c). Interestingly, MICA and MICB are in the same loci and 20% of TCGA tumors have 

MICA and MICB amplification (Fig. 6c), a frequency significantly higher than in the 

germline variances (Supplementary Fig. 6a). MICA amplified tumors have significantly 

higher expression of ADAM17 and MMP14 (Supplementary Fig. 6b), two 

metalloproteinases known to catalyze MIC shedding48,51, as well as higher IgG1/3 B cell 

level (Supplementary Fig. 6c). Furthermore, while MICA amplification is generally 

associated with worse outcome in cancer patients (Supplementary Fig. 6d-f), its clinical 

relevance further depends on the level of IgG1/3 B cells. Specifically, in tumors with MICA 
amplification, the presence of high level IgG1/3 B cells is associated with significant better 

survival in breast cancer and melanoma (FDR < 0.1, Fig. 6d). In contrast, IgG1/3 level does 

not influence survival for tumors without MICA amplification. These results suggest 

complex interactions between B cell-mediated immune response and tumor ADCC pathway 

defects52.

Discussion

High levels of tumor-infiltrating B cells have been observed in many human cancers6. 

However, the functional impact of infiltrating B cells was inconsistent in previous studies5. 

Future development of B cell-based therapies relies on improved understanding of tumor 

interactions with infiltrating B cells. In this study, we analyzed large cohorts of TCGA tumor 

RNA-seq data across 32 cancer types and generated a large dataset of tumor-infiltrating B 

cell IgH hypervariable sequences. Using somatic hypermutations as lineage markers, we 

identified widespread B cell clonal expansions and Ig subclass switches. The prevalent IgG3 

to IgG1 sCSR may reflect the selective pressure of B cells involved in ADCC.
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Spontaneous antibody dependent cell-mediated cytotoxicity in tumors is poorly 

characterized due to the challenge in detecting ADCC in vivo. In this study, we observed 

frequent MICA and MICB amplifications coupled with increased expression of 

metalloproteinases, suggesting the existence of soluble MIC in the tumor microenvironment. 

Together with MICA amplification’s negative clinical impact and its significant co-

occurrence with IgG1 and IgG3 B cells, we made orthogonal observations that NK cell 

mediated ADCC might be functional in anti-tumor response. Complex interactions were 

observed between MICA amplification and IgG subclass switch (Fig. 6d). It is possible that 

the presence of IgG subclass switch in MICA amplified tumors is an indicator of effective B 

cell mediated immune attack. Tumors with high B cell activity but intact ADCC pathway 

might have compromised B cell function or have developed other evasive mechanisms. An 

alternative explanation is that MICA amplification and MIC shedding in tumors induced the 

clonal expansion of B cells producing the anti-MICA IgG autoantibodies53. In this scenario, 

the anti-MICA IgG autoantibodies might prevent NKG2D internalization caused by MIC 

shedding, thus allowing anti-tumor ADCC and leading to survival benefits. Autoantibodies 

with similar functions have recently been reported in specific tumor types. Some breast 

cancer patients can produce autoantibodies against overexpressed oncogene, HER2, and gain 

survival benefits54. In gastric cancer, tumor infiltrating B cells produce antibodies to target 

sulfated glycosaminoglycans on the cellular surface22. Therefore, it is possible that 

overexpression of some of the membrane proteins, abnormal glycosylation or lipoproteins 

are potential autoantibody targets. Future work is needed to elucidate the role of tumor-

infiltrating IgG1-G3 expressing B cells in the context of immunotherapy.

In summary, we performed comprehensive pan-cancer analyses on tumor-infiltrating B cell 

repertoires. Our study gained statistical power by using large human cancer cohorts, but is 

still limited by the heterogeneous treatments that different cancer patients received. The 

observation that we made for somatic hypermutation rate might indicate B cell receptor 

affinity maturation during tumor development, but this result awaits future experimental 

validation. Another limitation of this work is that, due to the use of bulk tissue data, it is 

impossible to distinguish different subtypes of infiltrating B cells, although this does not 

impact our detection of B cell clonal expansions and subclass switches. The immune evasive 

mechanisms reported in our study may advance understanding of the complex interactions 

between tumor and infiltrating B cells. As the cost of tumor RNA-seq continues to decrease, 

our approach could be adopted to examine the ever-growing volume of tumor RNA-seq data 

to discover and refine hypotheses on tumor humoral immunity. The findings from this work 

have potential clinical utilities in B cell-related cancer immunotherapies.

Methods

TRUST method modification and performance evaluation.

The TCR CDR3 de novo assembly workflow using single- or paired-end unselected RNA-

seq data has been previously described24. In that work, we used a pre-defined list of motifs 

to search for the TCR variable or joining gene conserved regions. In order to allow TRUST 

to analyze B cell immunoglobulin heavy chain CDR3 region, we made the following 

modifications: (i) we downloaded IgH variable and joining DNA and amino acid reference 
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sequences in fasta format from the International Immunogenetics Information System26; (ii) 

we included genomics locations (hg19) of 124 IGHV genes, 9 IGHJ genes and 9 IGH 

constant genes in the TRUST search space to extract the mapped reads from these loci; (iii) 

we included an annotation step for the possible V, J and C gene segments in the assembled 

CDR3 sequences; (iv) we added -B option in the source code to instruct TRUST to analyze 

BCR CDR3 regions.

We systematically evaluated the performance of modified TRUST using in silico 

simulations. Specifically, 5,000 random full-length IgH sequences were generated following 

the biological processes of VDJ recombination as previously described24. Throughout the 

IgH DNA sequence, we randomly add single nucleotide changes at rate of 0.05 per base to 

mimic somatic hypermutations. We then applied simNGS to construct in silico DNA 

fragment libraries and sample paired-end short reads with statistical error models matching 

the Illumina sequencers. We fixed read length to be 50 nt (from 200 nt fragments) and 

simulated libraries at different coverages, including 0.1×, 0.5×, and 1×. According to our 

previous estimation23, 0.1× coverage corresponds to RNA-seq data library size of 500 

million reads, with 1% B cell infiltration in the tumor tissue. Therefore, library size higher 

than 1× is unrealistically high at the current sequencing cost.

For each parameter setting, we repeated 20 simulations and aligned the fastq reads to hg19 

reference genome using Tophat255, merging aligned reads and unmapped reads into one 

BAM file. Modified TRUST was then applied to each BAM file to assemble CDR3 

sequences. The results were then compared with the original 5,000 reference sequences to 

estimate precision and sensitivity. Partial CDR3 sequences shorter than 15 nt were excluded 

from downstream analysis. Since simNGS introduces sequencing errors, for each CDR3 

assembly, we allowed 1 mismatch in its DNA sequence to the simulated truth.

We also performed RNA-seq and BCR-seq on tumor samples from 6 early lung cancer 

patients to validate TRUST performance. Tumor samples were collected from Shanghai 

Pulmonary Hospital approved by the Ethics Committee of Shanghai Pulmonary Hospital for 

this study. All patients provided written informed consent for sample collection and data 

analyses. For paired RNA-seq and BCR-seq data, we allowed 1 mismatch in CDR3s to 

validate TRUST assembled clones. In both in silico simulation and experimental validation, 

precision was defined as the fraction of TRUST called CDR3s validated by BCR-seq, and 

sensitivity was defined as the fraction of BCR-seq CDR3s called by TRUST. The above 

criteria have also been applied in our previous analysis to evaluate the performance of 

TRUST on calling T cell receptor CDR3 regions24. We also evaluated the TRUST reported 

immunoglobulin (Ig) isotypes using BCR-seq for matched CDR3s. To evaluate Ig isotype 

inference, we focused on the CDR3s called by both BCR-seq and TRUST from RNA-seq, 

then defined precision as the fraction of TRUST called isotypes validated by BCR-seq, and 

sensitivity as the fraction of BCR-seq isotypes called by TRUST.

Data preparation and preprocessing.

RNA-seq data of 10,818 samples in BAM format were downloaded from Cancer Genomics 

Hub in May 2016. RNA-seq reads have been previously aligned to hg19 human reference 

genome using MapSplice56. RSEM gene expression data, GISTIC annotations of copy 
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number alterations, level-3 somatic mutation profiles and clinical annotations were 

downloaded from GDAC Firehose. The GISTIC2.057 annotation of CNAs had been 

previously binned into −2, −1, 0, 1 and 2, representing total copy loss, hemizygous deletion, 

euploidy, copy number gain and high fold amplification. In the analysis of SCNAs, we 

grouped −2 and −1 segments together and referred them as deletions, 1 and 2 together and 

referred to as amplifications. Tumor purity of 9,849 samples was obtained from our previous 

work36.

Modified TRUST was applied to all the RNA-seq samples using the following command: 

python TRUST.py -f sample_name.bam -a -B. Samples with zero assemblies were excluded 

from downstream analysis, and 9,025 samples remained. For each sample, we parsed the 

fasta file information lines reported from TRUST analysis, keeping the following field: 

TCGA identifier, disease abbreviation, tissue type, CDR3 amino acid sequence, estimated 

sample library size, CDR3 DNA sequence, assigned Ig constant genes. Disease abbreviation 

follows TCGA naming conventions. Tissue type includes primary tumor (TP), adjacent 

normal (NT), metastatic tumor (TM), and recurrent tumor (TR). The IgH CDR3 region is 

defined as the region within the last cysteine (C) in the variable gene sequence and the 

tryptophan (W) in the joining gene motif WGXG, both C and W excluded. TRUST reports 

variable, joining, and constant genes based on mapped reads linked to the CDR3 assembly 

and the similarity to the germline genes24, but only CDR3 DNA sequences were used to 

uniquely define a B cell clone to avoid the complication of mapping to unknown variable or 

joining gene alleles.

Identification of B cell clusters and class-switch recombination.

In this work, we developed a computationally efficient approach to identify B cell CDR3 

clusters based on local sequence alignment. For each sample, we first extracted all the 

unique complete CDR3 sequences based on co-occurrence of the variable gene motif YYC 

and joining gene motif WGXG. For samples do not contain any complete sequence, no 

cluster will be reported. For each complete CDR3 sequence, we extracted an 8-mer starting 

from the 1st position in the CDR3 as a motif. For each unique motif, we collected all the 

CDR3 amino acid sequences, both partial and complete, which contain the motif. When 

searching for matches, we allowed one letter mismatch. For example, motif RDMWRVGW 

is considered the same as RDMWIVGW. This approach provides the flexibility of detecting 

amino acid changes incurred from non-silent mutations, yet maintained low computational 

complexity. The motif-containing sequences constitute a B cell cluster. Clusters with fewer 

than 3 sequences are discarded.

We chose 8-mer and starting position 1 based on a systematic search of a wide range of 

parameters. The goal of the clustering optimization is to identify more clusters while 

minimizing the number of wrongly clustered pairs. To estimate these two metrics, we 

randomly selected two samples from different patients for 500 times, and in each run, we 

clustered all the CDR3s and computed false discovery rate (FDR) and the number of 

clusters. FDR is the fraction of clustered CDR3 pairs from two different patients over all the 

pairs in clusters, since the possibility of having the same CDR3 in unrelated individuals is 

extremely low (10−3-10−5)58. Cluster ratio is the number of clusters normalized by the 
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median value of tested cases. After testing k-mer sizes from 6 to 15 and start position from 1 

to 9, we visualized the median value of FDR and the clusters ratio in heatmaps 

(Supplementary Fig. 3a,b). To balance the contribution of FDR and the number of clusters, 

we computed the harmonic average of 1-FDR and cluster ratio as the final score for selecting 

the parameters (Supplementary Fig. 3c). The best solution is clustering 8-mers starting from 

the 1st position in the CDR3 region, which gives FDR of 0.007.

For each cluster, we perform multiple local sequence alignment using ClustalW59, which is 

implemented using R package msa60. Aligned sequences have the same length, with gaps 

filled by character ‘-’. In order to study the relationship between different sequences in a 

cluster, we calculated the number of mismatches between each pair of sequences and used 

this number as a distance measure. A mismatch is counted when neither sequence is ‘-’ and 

the two sequences differ at this base. The pairwise distance matrix was then used to plot the 

neighbor-joining tree in Figure 1c, which was implemented using R package ape61.

In the isotype analysis, we took advantage of paired-end sequencing data and assigned 

different IgH isotypes based on the mapping locations. For example, if one mate from a read 

pair is unmapped and contains CDR3 sequence, while the other mate is properly mapped to 

IgM region, then the CDR3 assembly is assigned with IgM isotype. If the mate read was not 

mapped to a known constant region, we tried to infer the isotype from the sequence after the 

CDR3 region. If still we could not recover the isotype, the CDR3 assembly was assigned to 

be unknown isotype and excluded from the class-switch analysis. Sequence assembly errors 

can sometimes join reads from different transcripts into one CDR3 assembly, and result in 

more than one Ig isotype assignment for a single CDR3 call. We excluded these sequences 

in our evaluation of class-switch events to reduce false positive calls. Each CSR event 

identified in this work is supported by at least two CDR3 assemblies unambiguously 

assigned to different Ig isotypes. We normalized the number of CSR events by dividing the 

number of unique CDR3s, and samples with less than 10 unique CDR3s were excluded from 

the analyses.

Analysis of somatic hypermutations.

Somatic hypermutations (SHM) are defined as mismatches in B cell clusters. We used the 

BayesNMF function in the SignatureAnalyzer package to decompose the mutation count 

matrix62. We considered each mutation triplet, for example ACT to ATT, corresponding to 

one type of SHM where the middle base is mutated from C to T. In order to infer the 

mutation direction, we only used CDR3 pairs with different Ig isotypes, where we 

considered the CDR3 with a closer constant region on the genome as the original sequence. 

Although this assumption will be violated if both CDR3s were mutated from a common 

ancestor along different paths, we do observe an enrichment on the correct direction after 

aggregating the SHMs. We counted the number of SHMs for each 96-triplet and for each Ig 

isotype of the original CDR3 to construct the mutation count matrix. We decomposed the 

matrix into two dimensions and selected the mutation signature matrix with the highest 

likelihood out of 1,000 times of separate optimizations.

To avoid overestimation of SHM rate due the aggregated mutations during B cell clonal 

expansion, we only counted mutations for two sequences with only one nucleotide 
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mismatch. SHM rate per sample is the SHM count divided by the total number of assembled 

CDR3 bases, which avoids the bias of unknown mutations outside partial CDR3 assembles. 

High SHM group is defined as samples with SHM rate greater than or equal to the median 

SHM rate, while the remaining samples are assigned to the low SHM group.

The effect of sequencing errors to the SHM estimation should be low. About 96% of the 

TCGA RNA-seq BAM files in this study have an average quality score larger than 30. 

According to the manufacturer’s definition, a quality score of 30 corresponds to 0.1% error 

rate which is a magnitude lower than the ~5% SHM rate we observed in B cell CDR3s.

Statistical analysis.

Partial Spearman’s rank correlation was used to check the association of gene expressions 

with B cell features, including SHM rate and the number of B cell clusters normalized by the 

total number of unique CDR3s. Correlation coefficient and FDR adjusted P-values of 

compared values, controlling for the tumor purity, were shown in heatmaps for tumor types 

with at least 100 samples (Figs. 3a and 6b). The fold changes between tumor and adjacent 

normal tissues (Fig. 4) were calculated by the average values in two groups and tested by 

Student’s t-test. We excluded the tumor types with <100 tumor samples or <10 normal 

samples. Survival analyses were visualized using Kaplan-Meier curves and the statistical 

significance was estimated using Cox proportional hazard regression corrected for patient 

age and tumor purity. Survival analyses, including Figures 5c and 6c, were conducted using 

all the samples with both BCR sequences, tumor purity, and clinical annotation data 

available. Per cancer type survival analyses were only for cancer types with at least 10 

patients in all compared groups. Key findings of interactions between immune evasive 

SCNAs and B cell sCSRs were confirmed using Cox regression, corrected for age at 

diagnosis and tumor purity on samples. All survival analyses were truncated at 5,000 days, 

to exclude potential non-relevant long-term survival or death incidence. Other sample 

comparisons, including metalloproteinase expression between MICA amplified and 

unamplified tumors, IgG1/3 levels between tumors with evasive SCNAs and those without, 

were performed using Wilcoxon rank sum test. We reported two-sided P-values for Student’s 

t-test and Wilcoxon rank-sum test. Multiple hypothesis correction was presented in the form 

of adjusted P values through the Benjamini-Hochberg procedure. All the statistical tests and 

survival curves were implemented using the R statistical programming language63.

Reporting Summary.

Further information on research design is available in the Life Sciences Reporting Summary.

Code and data availability.

Modified TRUST applicable to BCR IgH CDR3 assemblies and supporting files are 

available at https://bitbucket.org/liulab/trust/. The datasets generated during the study are 

available from the corresponding author on request and with permission of The Cancer 

Genome Atlas (TCGA) access. The RNA-seq dataset generated for validating TRUST 

performance are available in the SRA repository (PRJNA492301), and source codes are 

deposited to https://bitbucket.org/liulab/ng-bcr-validate.
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Figure 1 ∣. TRUST performance on tumor samples with matched BCR-seq data.
a, Evaluation of the TRUST reported CDR3s under different cutoffs on the minimum clonal 

frequency. Precision is the fraction of TRUST called CDR3s validated by BCR-seq, and 

sensitivity is the fraction of BCR-seq CDR3s called by TRUST. b, Evaluation of the TRUST 

reported immunoglobulin (Ig) isotypes with the same CDR3 in BCR-seq. Precision is the 

fraction of TRUST called isotypes validated by BCR-seq, and sensitivity is the fraction of 

BCR-seq isotypes called by TRUST. c, An example of B cell cluster where three sequences 

(#1, 3, 7) were identified by TRUST with the same Ig isotype as in BCR-seq and TRUST 

recovered a partial CDR3 for sequence #6. Bases in BCR-seq clones but missed by TRUST 

are highlighted in violet.
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Figure 2 ∣. Immunoglobulin (Ig) isotypes and somatic hypermutations of tumor-infiltrating B cell 
Ig heavy chain repertoire.
a, Distribution of 9 Ig isotypes across cancer types. Fractions of each Ig isotype were 

calculated as described in Methods. Top 20 cancer types with most IgH CDR3 assemblies 

were displayed. Circle size is proportional to the total number of CDR3 assemblies in each 

cancer type. b, Distribution of somatic hypermutations in the CDR3 region were grouped by 

CDR3 length as indicated by the number of amino acids (aa). The number of mutation 

events is shown by the size of horizontal bars, where CDR3 with 14 aa had the largest 

number of mutations (~0.5 million). c, Proportion of nucleotide pairs (n = 3,808,402) before 
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and after somatic hypermutations. The most likely mutations were within the pyrimidine 

(C/T) and purine (A/G) groups. d, Distributions of somatic hypermutation rates within each 

Ig isotypes. The somatic hypermutation rates were calculated from CDR3 pairs with the 

same Ig isotype in each patient sample. Statistic significances were evaluated using 

Wilcoxon rank-sum test (two-sided P < 1 × 10−4 labeled with **** and < 0.01 labeled with 

**). The boxes in violin plots show the lower, median, and upper quartile of values, and the 

curves show the density of values (see Supplementary Table 3 for sample sizes and P-

values). e, The spectrum of base changes identified in the CDR3 region with the mutation 

type displayed in the title. The x-axis is the adjacent 3’ and 5’ bases of the mutation, and the 

y-axis shows the contribution of the mutation context. The (W)RCY motif of AID (R = A/G, 

Y = T/C) is highlighted as dark red.
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Figure 3 ∣. Immunoglobulin (Ig) isotypes subclass switches are associated with B cell and T cell 
activations.
a, Correlations of Ig switch levels and highly expressed genes in immune cells and 

malignant cells with corrections on the tumor purity (Methods). The partial Spearman’s 

correlations and two-sided P-values were from 6,430 samples (see Supplementary Table 3 

for sample sizes). Ig switch levels are the number of B cell clusters with any type of 

switches divided by the total number of unique CDR3s in a patient sample. b, Visualization 

of Ig isotype co-occurrence within B cell clusters by cancer types. Circle size represents the 

number of clusters carrying a given Ig isotype. Lines connecting two circles indicate the 

enrichment level of observing switches in the two corresponding Ig subclasses. The 

enrichment level is the ratio of observed and expected switches if assuming Ig isotypes are 

independently distributed among B cell clusters. Cancer types were sorted by the total 

number of CDR3s.
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Figure 4 ∣. Features of tumor-infiltrating B cell repertoire compared between tumor and adjacent 
normal tissues.
Multiple aspects of infiltrating B cells are displayed on the heatmap, including B cell 

infiltration levels, B cell diversity, and levels of different Ig switches. B cell Ig switch levels 

were calculated as the number of B cell clusters with the Ig switch divided by the total 

number of unique CDR3s (Methods). Cancer types with over 100 samples for tumor and 

over 10 samples for adjacent normal tissues were presented (see Supplementary Table 3 for 

the numbers). Log fold change (log FC) was calculated as the log2 ratio of the average 

values between tumor and adjacent normal tissues. Statistical significance was evaluated 

using Student’s t-test and two-sided P-values. FDR correction was performed using 

Benjamini-Hochberg procedure for testing on multiple cancer types.
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Figure 5 ∣. Interaction between IgG3-1 switch and somatic hypermutations.
a, Violin plots showing the distribution of somatic hypermutation (SHM) rates across cancer 

types. The points show the median values, lines extend to 1.5 times of the interquartile 

range, and the curves show the density of values (see Supplementary Table 3 for samples 

sizes). b, Violin plot showing the SHM rates for samples with different immunoglobulin 

subclass switches. From left to right, the order of switches follows the germline gene 

positions and so BCRs with a subclass switch on the right might arise from other subclass-

switch events on the left. Statistical significance was evaluated using Wilcoxon rank sum test 

(two-sided P < 1 × 10−4 labeled with ****, < 0.01 labeled with **). The boxes in violin 

plots show the lower, median, and upper quartile of values, and the curves show the density 

of values (see Supplementary Table 3 for sample sizes and P-values). c, Kaplan-Meier 

curves showing the interaction between SHM rate groups and IgG3-1 switch groups. SHM 
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high (n = 2,338) or low (n = 2,341) were split by the median SHM rate in all patient 

samples. IgG3-1 switch high or low were split by the median IgG3-1 switch level in each 

SHM rate group. Statistical significance comparing different groups was evaluated using 

multivariate Cox regression corrected for tumor purity and patient age at diagnosis.
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Figure 6 ∣. Potential immune evasion of ADCC through MIC shedding.
a, NK cell activity visualized by box plots of granzyme B and CD16a. Both genes were 

expressed at higher levels in tumors with high level of isotype switches (CSR). Statistical 

significance was evaluated using Wilcoxon rank sum test on 4,273 low CSR samples and 

4,270 high CSR samples. Two-sided P-values are 6 × 10−295 and 5 × 10−156 for GZMB and 

FCGR3A respectively labeled with ****. b, Heatmap showing the associations between the 

fractions of IgG isotypes and NK cell Fc receptor FCGR3A (CD16a) expression across 

multiple cancers. Cancer type was selected based on at least 100 patient samples with no 

missing values (see Supplementary Table 3 for sample sizes). Each entry in the heatmap 

represents the partial Spearman’s correlation corrected for tumor purity (Methods). FDR 

correction was performed on two-sided P-values using Benjamini-Hochberg procedure for 

testing on multiple cancer types. c, NK cell inactivation through MIC shedding. Interaction 

between IgG1/3 Fc ligand and CD16a triggers NK response. MICA amplification is 

observed in 20% of tumors, and metalloproteinase overexpression may lead to the 

production of soluble MIC in these tumors, which results in internalized NKG2D (iNKG2D) 

and inactivated NK cell. d, Interaction between MICA amplification and IgG1/3 levels 

visualized by Kaplan-Meier curves for breast invasive carcinoma (BRCA) and skin 

cutaneous melanoma (SKCM), respectively. Tumor samples were categorized into 4 groups 

based on the presence of MICA amplification and IgG1/3 levels. MICA Amp refers to 

tumors with MICA amplification, and MICA WT refers to the remaining. High or low 

IgG1/3 groups were split by the median number of IgG1 or IgG3 B cell clusters divided by 

the total number of unique CDR3s in each MICA groups. There were 579 MICA WT 

samples and 211 MICA Amp samples for BRCA, and 126 MICA WT samples and 130 
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MICA Amp samples for SKCM. Hazard ratios and statistical significance were evaluated 

using Cox proportional hazard regressions corrected for tumor purity and patient age.
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