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Abstract

Intervertebral disc (IVD) degeneration is a major cause of low back pain and repre-

sents a massive socioeconomic burden. Current conservative and surgical treatments

fail to restore native tissue architecture and functionality. Tissue engineering strate-

gies, especially those based on 3D bioprinting and electrospinning, have emerged as

possible alternatives by producing cell-seeded scaffolds that replicate the structure

of the IVD extracellular matrix. In this review, we provide an overview of recent

advancements and limitations of 3D bioprinting and electrospinning for the treat-

ment of IVD degeneration, focusing on future areas of research that may contribute

to their clinical translation.
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1 | INTRODUCTION

With a lifetime prevalence of >80%, low back pain (LBP) is one of the

major public health problems in the world that can seriously affect the

quality of life.1 LBP not only commonly results in physical disability

and psychosocial disturbance, but also has detrimental effects on the

economy of our societies related to medical costs and disability bene-

fits.2,3 As LBP is a complex disease with numerous contributing fac-

tors (eg, physical, psychological, and hereditary factors) as well as

several tissue sources, identifying its primary cause is challenging.4

However, the degenerating intervertebral disc (IVD) is known to be

one of the main origins of LBP.5 The complex structure of the IVD

comprises three areas, the nucleus pulposus (NP), the annulus fibrosus

(AF), and the cartilaginous endplate (EP). The NP (with its

chondrocyte-like cells) is the central area of the IVD that is mainly

composed of water, proteoglycans (predominantly aggrecan) and type

II collagen, as well as non-collagenous proteins. The AF (with its

fibroblast-like cells) is characterized by lamellae of type I collagen with

high density, as well as a lower proteoglycan and water content com-

pared to the NP.6 The EP (populated by chondrocytes) allows passage

of nutrients into the IVD, but also anchors the IVD to the adjacent

vertebrae.7 Several factors contribute to IVD degeneration, including

aging, genetic inheritance, inadequate metabolite transport, and load-

ing history, eventually leading to a loss of tissue hydration and func-

tionality that can entail structural failure of the AF and subsequent

herniation of the NP.8,9 On the cellular level, IVD degeneration is

characterized by an imbalance between matrix synthesis and degrada-

tion, and enhanced apoptosis and senescence, both ultimately con-

tributing to the loss in extracellular matrix (ECM).10 Clinical

treatments, such as surgical discectomy, disc arthroplasty, and spinal

fusion, are used to treat IVD degeneration and herniation. Although

current treatments reduce the pain, they do not restore IVD tissue

function, but can even cause further degeneration in surrounding tis-

sues and adjacent IVDs due to changes in the biomechanics of the
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spine.11 Therefore, new methods are needed to mimic the structure

of native tissue, whereby the use of biomaterials and cells (ie, tissue

engineering, TE) holds the greatest promise for long-term functional-

ity.12,13 TE approaches are based on manufacturing of functional and

biologically active scaffolds in the advanced stage of degeneration,

including NP replacement, AF replacement/repair, or total IVD

replacement.14,15 A plethora of techniques have been used to fabri-

cate 3D scaffolds for TE purposes, including freeze drying, solvent

casting, phase separation, and hydrogel assembly.16 Due to the spe-

cific structure of the IVD, two advanced techniques have emerged for

the two zones of the IVD: 3D bioprinting is commonly used both for

NP and AF TE, whereas electrospinning is mostly used to mimic the

structure of the AF. This review will summarize the current state of

the art of 3D bioprinting and electrospinning for IVD replacement and

repair and will highlight areas of future investigation that may help in

promoting clinical translation.

2 | 3D BIOPRINTING

3D bioprinting has attracted attention in TE research over the past

years for its unique potential to recreate tissue architecture and

assemble complex, functional living architectures.17-27 The technique

most commonly used is extrusion-based bioprinting, whereby a so-

called bioink is extruded through a nozzle in a layer-by-layer fashion

via mechanical pressure, thus creating 3D constructs in a pre-

programmed design.17-21 Despite the great flexibility of this tech-

nique, major limitations are related to low resolution, cell deformation

induced by shear stress, and limited bioink selection.28 Laser-assisted

printing represents another 3D bioprinting technique that fabricates

precise structures via a layer-by-layer technique, resulting in high

printing resolutions.29,30 The major limitation of laser bioprinting is

poor cell viability in comparison to other bioprinting methods.31 Digi-

tal light processing, a variant of stereolithography, has been used to

print high resolution constructs in a layer-by-layer fashion by using

UV light to cross-link photopolymerizable polymers.17,32 Major draw-

backs of this technique are the lack of biocompatible and biodegrad-

able materials and the harsh nature of UV radiation necessary for the

cross-linking.33 Piezo-assisted bioprinting fabricates constructs

through accurate ejection of cells into droplets to form highly orga-

nized patterns.17,21 However, as this technique only works for low vis-

cosity liquids, material selection is limited.34

Bioinks, which are used in each of these techniques, are printable

biomaterials, typically natural and/or synthetic hydrogels and hydrogel

composites, which often contain biochemical signals, living cells,

and/or growth factors.19 Thus, bioinks allow for cell encapsulation

and provide relevant cues to cells that are immersed into the ink prior

to printing. The establishment of scaffold-cell structures is the foun-

dation for recreation and replacement of damaged IVDs. Over the

past years, 3D bioprinting has been widely used to create the highly

hydrated NP, but has also been employed for AF TE (Figure 1). How-

ever, the complex structure of the IVD, its requirements for high load

bearing that can challenge biomaterial integrity, and a harsh

microenvironment that can harm cell survival and functionality, makes

the IVD difficult to repair or replicate.7,35 Despite these challenges,

one of the most prevalent advantages of 3D bioprinting is to fabricate

an appropriate custom-made implant by using patient-derived cells

which restore tissue structure and lead to faster recovery post-

surgery.11 This versatility is important when considering the differ-

ences across patients' weight, height, and lifestyle, which can change

the compressive forces each disc undergoes. Micro-computed tomog-

raphy (CT) images obtained prior to implantation of a printed disc

have been used to analyze disc structure and to evaluate tissue regen-

eration after implantation.36 Patient specific magnetic resonance

imaging or CT scans with subsequent computer-aided design imaging

may be used to fully understand and replicate the IVD of individual

human patients.

3 | OPTIMIZATION OF BIOINKS FOR
IVD TE

Classical bioinks consist of biocompatible materials that integrate well

into the body, such as alginate and collagen. However, high mechani-

cal loads in the spine negatively affect the functionality of these

hydrogels due to a lack of mechanical strength.19 Hence, the main

challenges in IVD bioprinting are to develop bioinks that are extruded

at a high resolution, recreate the complex tissue network, support cell

functionality, and handle high amounts of loading seen in the spine.

Table 1 summarizes the bioinks in IVD regeneration research,

reporting main advantages and disadvantages.

Novel bioink formulations have been proposed to aid in the

healing process via host tissue interactions as well as replace damaged

tissue.37 Thus, novel bioinks have the potential to create bioprinted

IVDs with improved strength, and circumvent the hydrogel challenges, for

example, via optimized composition of polymers, enhanced cross-linking or

inclusion of additional support structures, such as nanofiber reinforcement.

Polymer composition is often improved by combining a mechani-

cally tough polymer with a printable polymer, resulting in double net-

work hydrogels that can be rapidly and effectively printed while

promoting spinal integration with sufficient mechanical strength.19,38

A prime example of this approach is the combination of polylactic acid

(PLA) with gum-polyethylene glycol diacrylate (GG-PEGDA). While

PLA provides biocompatibility and water retention, GG-PEGDA

enables printability and supplies enhanced strength.19,39 This pairing

has shown modification abilities by varying infill patterns and densities

for scaffold strength.19 In a comparable manner, PEG can be paired

with sodium alginate and 3D bioprinted. Although not yet employed

for NP TE, this combination has been shown to create highly stretch-

able hydrogels that were found to be tougher than natural cartilage,

yet with high cell viability.26 In addition to changing polymer composi-

tion, enzymatic cross-linking shows considerable potential in creating

hydrogels with improved strength while ensuring sufficient cell

attachment and modulating degradation time. Interestingly, this tech-

nique has been investigated heavily for AF TE, specifically with silk

fibroin (SF)22,40-42 due to its high ultimate tensile strength, large
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breaking strain, and high toughness.43 To allow for cross-linking dur-

ing 3D bioprinting, SF needs to be supplied with a cross linkage site

for light polymerization, such as a methacrylate group.42 This

approach has been used with the addition of elastin to the cross-

linkable SF.22 Printing of this composite allowed for control of

mechanical, chemical, and biological characteristics of the finalized

scaffold, ensured human adipose-derived stem cell adhesion, viability,

proliferation, and provided an anchorage point to the bony verte-

brae.22 Although widely tested for AF replacement, cross-linking has

also shown success in providing a hydrogel template for NP cell prolif-

eration. Cross-linking type II collagen-hyaluronic acid with a low con-

centration of 1-ethyl-3 carbodiimide has shown progress in creating a

matrix for NP repair.44 This technique for NP repair has been limited

to the creation of hydrogels that form inside the body; however, it

may be adapted to 3D bioprinting to print physical hydrogels prior to

implantation. Furthermore, nanofiber-reinforced bioinks have been

extensively investigated in cartilage TE.24,25,45 Successful composite

bioinks for cartilage TE include (nano-) cellulose fiber-reinforced

chitosan45 and alginate/hyaluronic acid (HA) reinforced with (nano-)

cellulose fibers.25 Embedding of nanocellulose fibers in 3D printed

alginate or HA allows ECM simulation of cartilage, whereby alter-

ations in weighted percentages of alginate or HA enable tailored

modification of cartilage viability and stability.25 Initial studies indicate

that this approach may help promote the success of IVD TE. Cellulose

nanofibers have been successfully used to strengthen chitosan, with

the overall goal to create 3D bioprinted AF structures with the ability

to withstand compressive loads.45 Future studies should also investi-

gate the functionalization of bioinks with carbon fibers, silicone-

carbide whiskers, alumina platelets, and cellulose nanocrystals as

reinforcement structures, as these have been proven useful in

enhancing and tailoring mechanical properties in complex tissue struc-

tures.46 These strategies can be advanced for the reinforcement of

load-bearing structures, such as the EPs of the IVD. Although 3D bio-

printing can be a valuable tool to create EP structures, low printing

resolutions may hamper their structural functionality.47 Furthermore,

it will be crucial to achieve suitable EP diffusivity to maintain cell via-

bility, especially in the center of the engineered IVD.48

4 | OPTIMIZATION OF CELLS AND CUES
FOR IVD TE

The choice of optimal cell populations and the recreation of biomi-

metic in vitro microenvironments are crucial for the development of

F IGURE 1 State of the art of
electrospinning and 3D
bioprinting for the fabrication of
tissue-engineered intervertebral
discs
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functional IVD substitutes. The cells native to the degenerated IVD

are not an ideal cell source due to their diseased nature, although their

metabolic activity and proliferation may be enhanced by use of spe-

cific growth factors.35 Culturing degenerated human NP cells in algi-

nate with exposure to transforming growth factor beta 3 (TGF-β3)

and dexamethasone (Dex) or notochordal cell factors demonstrated

that TGF-β3 and Dex lead to higher cell proliferation.35 Although

these results were obtained in cast hydrogels, these preconditioned

cells may also be beneficial for 3D bioprinting of NP replacements

using native cells. In addition to modifying NP cells, researchers have

also attempted to use mesenchymal stem cells (MSCs) for IVD TE due

to their availability and differentiation prospects.49 However, the

harsh microenvironment of the IVD (characterized by high osmolarity,

high mechanical loads, low oxygen and glucose, acidic pH, and inflam-

mation) negatively affects MSC viability and functionality,50 thus limit-

ing the translatability of MSC-based IVD TE into clinical practice. 3D

bioprinting offers the possibility to use biologically-enhanced bioinks

that can induce preconditioning or pre-differentiation of MSCs, thus

likely improving their survival. Chemical functionalization, such as

incorporation of growth factors (TGF-β1, growth differentiation

factor-5), either through simple mixing or conjugation, can provide

pronounced cues for embedded cells.35,51,52 More recently, CRISPR/

Cas9 genome engineering has been utilized to create MSCs with

higher resistance to harsh microenvironments. This approach has been

successfully employed by repressing the expression of cytokine recep-

tors in order to minimize the detrimental effects (eg, apoptosis, ECM

degradation) of the inflammatory environment on MSCs.53,54 In the

years to come, the potential of CRISPR-modulated MSCs will likely

become increasingly evident, especially when considering the pos-

sibility for CRISPR multiplexing, that is, the simultaneous modula-

tion of several targets.55 Future research should furthermore

investigate the incorporation of (eg, MSC-derived) extracellular

vesicles into bioinks, which may represent an alternative to growth

factor treatment and may provide an even more efficient means to

protect embedded cells from apoptosis and inflammation, and

enhance ECM production.56 Furthermore, future research efforts

should focus on the use of bioreactor systems for the mechanical

stimulation of 3D bioprinted construct, in order to improve the

maturation of IVD substitutes and increase their therapeutic

effect.

TABLE 1 Bioinks for IVD regeneration with main advantages and disadvantages

Bioink Cell type Main advantage(s) Main disadvantage(s) References

PLA with GG-PEGDA Human BMSCs • High biocompatibility

• High water retention

• Enhanced strength

• Limited research 19,38,39

PEG with Alginate Human BMSCs • Highly stretchable

• High cell viability

• Not yet employed for NP TE

• Limited research

26

SFa Bovine AF cells • High resolution

• Reproducibility

• Reliability

• Strength via crosslinking

• Extensive processing 40-43

Elastin with SFa Human ADSCs • Mechanical, chemical, and

biological control

• High cell adhesion, viability

and proliferation

• Limited in vivo studies 22

Collagen-II-HAa Human NP cells • Increased gel stability

• High cell viability

• High concentration of EDC increases

toxicity to cells

• Limited in vivo studies

• Mechanical properties and gel

composition negatively affected

over time

• Reduced water uptake

44

Chitosan with (nano-)

cellulose fibers

Porcine

chondrocytes

• Biomechanical integrity • Variability of porosity and pore size 45

HA with (nano-) cellulose

fibers

IPSCs + human

chondrocytes

• High cell viability

• Able to mimic complex

architecture

• Sustained stem cell

pluripotency

• Supported cell differentiation

in 3D

• Research limited to injectable hydrogels

thus far

25

Abbreviations: ADSC, adipose-derived stem cell; AF, annulus fibrosus; BMSCs, bone marrow stromal cells; GG-PEGDA, gum-polyethylene glycol diacrylate;

HA, hyaluronic acid; IPSCs, induced pluripotent stem cells; IVD, intervertebral disc; NP, nucleus pulposus; PEG, polyethylene glycol; PLA, polylactic acid;

SF, silk fibroin; TE, tissue engineering.
aIt indicates enzymatically cross-linked bioinks.
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5 | ELECTROSPINNING

Electrospinning represents a simple, versatile, and controllable tech-

nique for the production of micro-/nanofibers from polymer solutions

or melts using electrostatic forces.57,58 A typical electrospinning setup

requires a syringe (containing the polymer solution) connected to a

metallic needle, a syringe pump to regulate the flow rate, a high volt-

age power supply, and a metallic collector. Upon application of volt-

age between the syringe and the collector, the solution extruded

through the metallic needle turns into an electrically charged jet,

which is attracted toward the collector. As the solvent evaporates

during the travel from the spinneret to the collector, the jet diameter

significantly shrinks along its trajectory, thus resulting in the formation

of a mass of fibers deposited on the metallic collector.59,60 Diameter

and reproducibility of the electrospun fibers can be affected by

numerous parameters, such as solution properties (solvent, concentra-

tion, molecular weight, viscosity), process settings (flow rate, voltage,

distance between the needle and collector), and environmental condi-

tions (humidity, temperature).61 Fiber orientation (random vs aligned)

can be precisely controlled through collector rotation62 or collector

architecture.63 One of the major advantages of electrospinning for TE

is the ability to generate 3D scaffolds with tailored architectural fea-

tures that simulate the nano- to micro- scale fibrillar structure of the

ECM.64,65 Given the anisotropic architecture of the AF region,

electrospinning has emerged as an ideal technique to replicate the

highly organized structure of the AF's ECM (Figure 1). Table 2 summa-

rizes TE strategies based on electrospun scaffolds for IVD

regeneration.

5.1 | Polymers of choice

Synthetic polymers, such as polycaprolactone (PCL), polylactic acid

(PLLA), and polyurethane (PU), have been extensively used for IVD TE

for their improved physical and mechanical properties, specifically high

elastic moduli and tensile strength, compared to natural polymers (eg,

collagen, gelatin, chitosan).66 Due to their hydrophobic nature, syn-

thetic polymers do not possess ideal water wetting behavior to allow

for optimal cell attachment. Indeed, most human and animal cells prefer

a surface of moderate hydrophilicity for adhesion and growth.67 Wet-

ting scaffolds in cell culture media is a simple technique to significantly

reduce the hydrophobicity of synthetic biopolymers. Other techniques

utilized to tune the surface properties of electrospun mats are plasma

treatment, coatings, or chemical modifications.68 PCL has been used to

fabricate anisotropic electrospun fibers which supported proliferation

and ECM deposition of AF cells, and the scaffold-cell construct mat-

ched the modulus of native inner AF after 4 weeks of culture.69 Never-

theless, PCL is associated with low Young's modulus (15-16 MPa),

which does not match the modulus of single lamella sheets of the

human AF (59-136 MPa),70 and could lead to failure of the AF in

response to high mechanical loads. Composite electrospun fibers based

on a blend of PCL with PLLA have been demonstrated to possess

higher mechanical properties in comparison to PCL-only scaffold.71

However, during the biodegradation of polylactides and polyglycolides,

acidic degradation products could adversely affect biocompatibility.72

For this reason, PU can be a valid alternative, generating milder acidic

conditions upon degradation.73

5.2 | Influence of architectural features

Despite mimicking the anisotropic structure of the ECM, aligned

electrospun fibers do not replicate the hierarchical AF architecture

necessary to support multiaxial spinal loads. The AF collagen lamellae

are aligned at a �30� angle with respect to the diagonal plane of the

spine axis, but in alternate directions in each successive layer, produc-

ing an angle-ply structure.74 Advanced fabrication strategies have

focused on the development of disc-like angle ply structures (DAPS)

by arranging PCL nanofiber sheets into AF lamellar patterning.75 Inter-

estingly, DAPS have been coupled with cell-laden hydrogels to engi-

neer AF-NP composite to imitate the multiscale architecture of the

native IVD.76 In addition, recent research efforts have focused on the

integration of DAPS with in vitro engineered cartilage tissue in order

to fabricate a tissue-engineered AF-EP substitute and develop a bio-

mimetic IVD implant suitable to use as disc replacement.77 These

strategies evidenced the possibility to combine electrospun AF equiv-

alents with other tissue engineering strategies to develop whole IVD

substitutes, increasing their therapeutic potential and clinical

translatability.

Despite the great utility of electrospinning for AF TE, several limi-

tations need to be addressed to unleash the full potential of this ver-

satile technique. Extremely small pore sizes and high packing density

of electrospun fibers produced under standard conditions constrain

cellular infiltration into the mesh.78 To overcome this limitation, sacri-

ficial components (polymers, salt, and ice crystals) can be incorporated

during the electrospinning process and subsequently removed to

create void spaces within the fibrous mesh. For instance, the water-

soluble polymer polyethylene oxide (PEO) has been utilized as a

sacrificial fiber fraction to improve cellular colonization and ECM

deposition. The abundant deposition of glycosaminoglycans (GAGs)

and collagen led to an improvement of micromechanical properties of

electrospun-based DAPS, as evidenced by an increase in the indenta-

tion modulus.79 Differently from 3D bioprinting, where cells are dis-

persed within the bioink and precisely dispensed during the process,

cell seeding onto electrospun mats is performed after the scaffold has

been formed. This method could lead to non-uniform distribution of

cells over a given scaffold architecture, resulting in regions of

acellularity.80 An alternative approach is represented by cell

electrospinning, which generates fibrous structures with living cells

embedded within.81 For instance, myoblast cell-laden constructs with

highly aligned microstructure and high cell viability were fabricated

for skeletal muscle regeneration.82 Although cell electrospinning is still

in its infancy, advantages such as improved cell-to-cell/matrix interac-

tions and the possibility to incorporate multiple cell types during the

process, make this technique a fascinating tool for the fabrication of

engineered tissue equivalents.
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TABLE 2 Tissue engineering strategies based on electrospun scaffolds for IVD regeneration

Polymer

Concentration/

solvent Fiber diameter Orientation Cell type Outcome References

PCL 285 mg/mL

THF/DMF

300-750 nm Aligned Bovine AF cells AF cells oriented along the

aligned scaffolds and

deposited ECM that

contributed to construct

mechanics under loading

69

PU 200 mg/mL

HFIP

130-890 nm Random Bovine AF cells Surface functionalization with

ADO improved cell

attachment and collagen

deposition

86

PCL 260 mg/mL

Methylene

chloride

8000-12 000 nm Aligned Porcine chondrocytes Composite biomimetic scaffold

composed of aligned

electrospun fibers (AF

analogue) and cell-laden

agarose gel (NP analogue)

102

PLLA 13% wt/wt

DCM

1.5 ± 0.9 μm
+ TGF-β -
620 ± 170 nm

Random Bovine AF cells Functionalization with TGF-β1
increased GAGs and collagen

deposition, with higher neo-

ECM thickness

87

PCL

PU

PCL-3 g in 10 g

of chloroform

PU-2 g in 10 g in

DMF/acetone

Aligned PCL-

2.17 -1.53 μm
Aligned PU- 0.84

- 0.32 μm

Random

aligned

Bovine AF cells Fiber alignment promoted the

upregulation of ECM genes

73

PCL 200 mg/mL

DMF/

chloroform

100-1200 nm Aligned Human BMSCs Fabrication of 3D hierarchic

multi-lamellar scaffold by

combining electrospinning

with FDM technique.

Scaffold promoted cell

attachment and alignment

103

PCL

PEO

PCL-143 mg/mL

in THF/DMF

PEO-100 mg/

mL in 90%

ethanol

— Aligned Bovine AF cells Sacrificial PEO increased cell

infiltration in vitro.

Electrospun scaffolds were

combined with cell-seeded

hydrogels (as an NP

replacement) to form DAPS.

In vivo, DAPS were stable in

the caudal spine and were

infiltrated by cells from the

peri-implant space

75

PLLA/PCL 150 mg/mL

(90% PLLA-

10% PCL)

HFIP

300-500 nm Aligned Human BMSCs, Human

AF and NP cells

Whole IVD constructs were

stimulated with compressive

loading, which resulted in

the downregulation of

cartilage-related markers in

AF nanofibers and

upregulation in NP hydrogel

93

PCL 143 mg/mL

THF / DMF

— Aligned Juvenile bovine BMSCs Inclusion of zirconium (IV)

oxide radiopaque

nanoparticles increased the

tensile modulus of the

scaffold. In a in vivo model

of disc replacement, the

scaffold was biocompatible

and supported the

deposition of fibrous tissue

104

Poly(ether

carbonate

urethane)-

urea (PECUU)

250 mg/mL

HFIP

— Random

aligned

Rabbit AF-derived

stem/progenitor cells

(AFSCs)

On aligned scaffolds, cells

exhibited higher gene and

protein of collagen-I and

aggrecan

105
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Another limitation of electrospinning is its use for load-bearing TE

applications. Mechanical properties of electrospun scaffolds are lost

over extended periods due to polymer degradation. Additive mate-

rials, such as carbon nanotubes83 or aluminum whiskers,84 can be

added to biodegradable polymers to improve resistance and mechani-

cal behaviors. Another strategy to reinforce electrospun fibers con-

sists in weaving, knitting, or braiding bundles of fibers to generate

solid 3D constructs.85

5.3 | Biochemical, biological, and biophysical
functionalization

Biochemical, biological, and biophysical functionalization offers great

potential to improve the outcome of electrospinning-based TE strate-

gies. Chemical functionalization strategies have been utilized to

increase attachment and proliferation of cells in AF TE. For example,

the incorporation of anionic dihydroxyl oligomer (ADO) into PU

electrospun scaffolds increased the material surface energy and

decreased surface hydrophobicity, resulting in improved cellular

attachment, proliferation, and collagen deposition.86 In order to

improve the functionality of electrospun fibers, scaffolds can be

functionalized by encapsulating different bioactive agents, such as

growth factors or cytokines, which can modulate the behavior of

seeded cells. For instance, PLLA electrospun scaffolds functionalized

with TGF-β1, which was added to the polymer solution prior to

electrospinning, have been shown to improve GAG and collagen

deposition of AF cells.87 However, the ECM composition of AF tissue

changes between the outer region, which is abundant in collagen type

I with little proteoglycans, and the inner region, which is rich in colla-

gen type II and proteoglycans.88 Supplementation of culture media

with insulin transferrin-selenium, proline, dexamethasone, and pyru-

vate to a multi-lamellated outer and inner AF engineered tissue was

able to promote the accumulation of collagen type I in the outer

region and aggrecan and collagen type II the in inner region, replicat-

ing the ECM distribution of the native tissue.89

Considering the beneficial effects on ECM components in

maintaining and/or directing cell phenotype,90 future strategies could

incorporate decellularized ECM either within the polymer solution or

post-electrospinning to improve biocompatibility, mechanical stability,

TABLE 2 (Continued)

Polymer

Concentration/

solvent Fiber diameter Orientation Cell type Outcome References

PCL THF 1.41 ± 0.36 μm
(random)

1.33 ± 0.40 μm
(aligned)

Random

aligned

— In an ovine model of AF

impairment, the aligned

scaffold integrated with the

surrounding tissue and

homogeneously aligned

collagen fibers within each

lamella

94

PCL/PLLA HFIP PLLA: 357 nm

PCL: 234 nm

Blend (50:50):

468 nm

Aligned Bovine AF cells Scaffolds made from 50:50 and

20:80 blends of

demonstrated yielded tensile

properties within the range

of human AF. 50:50 blends

exhibited optimal structural

integrity and supported

desirable cellular response in

vitro

71

PCL/PLLA HFIP — Aligned Bovine AF cells Tube-like structures (6 layers)

were created by rolling ±30�

bilayer PCL/PLLA scaffolds.

Cells remained viable over

3 weeks in culture with

evidence of collagen type I

deposition

106

PCL/PLLA HFIP PCL: 214 nm

PLLA: 330 nm

Blend: 671 nm

Aligned — After 6 months, PCL/PLLA

blended scaffold underwent

hydrolytic degradation, as

evidenced by fibers swelling,

increased crystallinity,

increased stiffness and

decreased molecular weight

107

Abbreviations: AF, annulus fibrosus; DAPS, disc-like angle ply structures; DCM, dichloromethane; DMF, dimethylformamide; ECM, extracellular matrix;

GAG, glycosaminoglycans; FDM, fused-deposit-modeling; HFIP, hexafluoroisopropanol; IVD, intervertebral disc; NP, nucleus pulposus; PCL, poly-

caprolactone; PEO, polyethylene oxide; PLLA, polylactic acid; PU, polyurethane; TGF-β1, transforming growth factor beta 1; THF, tetrahydrofuran.
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and degradation rate.91 Given the importance of mechanical loading

in disc degeneration and regeneration, bioreactor systems have been

utilized to provide more physiologically relevant conditions for the

development of functional IVD substitutes.92 For example, compres-

sive mechanical loading applied to a composite biomaterial scaffold,

composed of nanofibrous strips seeded with cocultured AF cells/

MSCs and an inner core of hydrogel seeded with cocultured NP cells/

MSCs, enhanced the AF and NP cell differentiation and increased the

IVD ECM production.93

5.4 | Preclinical studies

Considering the success of electrospun scaffolds in mimicking the

organized structure of the AF, promising in vivo data both in small

and large animal models have been achieved. Electrospun-based

DAPS have been validated in a rat caudal spine model. Results

showed that a stable fixation system improves the retention of

implanted AF substitutes and the inclusion of sacrificial PEO layers

interspersed throughout the angle-ply structure promoted cellular

infiltration from the peri-implant space.75 A recent study assessed

the potential of a biomimetic multilayer PCL fibrous scaffold to

repair AF defects in an ovine lumbar model. Results showed that

electrospun PCL successfully integrated within the AF tissue, pro-

moting cell infiltration and deposition of oriented collagen fibers

within the aligned scaffold.94 Another study focused on the

implantation of an endplate-modified DAPS (eDAPS) into a goat

cervical disc replacement model.95 Results demonstrated that the

eDAPS composition and structure were maintained up to 8 weeks

within the disc space, developing mechanical properties that either

matched or exceeded those of the native tissue. Despite these

positive studies, clinical translation of electrospinning are still lim-

ited due to scalability issues, especially when aiming to create

entire IVDs.96 The fabrication of large-scale DAPS (6 mm

height × 20 mm diameter) resulted in loss of cell viability and lack

of matrix deposition, due to poor diffusion of nutrients throughout

the constructs.97 Optimization of culture conditions by adding

channels for nutrient transports,98 growth factors supplementation

and bioreactor systems could improve the functionality of large

IVD constructs.

6 | CONCLUSIONS

IVD degeneration represents a significant health problem worldwide.

Conservative and surgical treatments do not promote long-term tissue

regeneration and fail to restore native tissue function. Although still in

the experimental phase, 3D bioprinting and electrospinning hold great

potential for tissue-engineered IVD repair, replacement, and regenera-

tion. Silk-fibroin, nanofiber-reinforced (chitosan) hydrogels as well as

PLA, and GG-PEGDA combinations have emerged as promising bio-

inks for IVD TE. Functionalization of electrospun fibrous constructs,

which closely recapitulate the architecture of the AF, has yielded

highly promising results as demonstrated in preclinical studies.

The combination of AF electrospinning with NP 3D bioprinting,

an approach that has also been discussed in engineering of

osteochondral tissues,99 could improve the advantages of the individ-

ual methods and lead to the fabrication of biomimetic whole IVD

equivalents.

Despite these advantages in 3D bioprinting and electrospinning,

sub-optimal mechanical properties, high manufacturing costs, repro-

ducibility, and scalability issues have hindered the clinical translation

of these biofabrication strategies. Future research will focus on their

optimization in order to design engineered constructs with optimal

structural, biomechanical, and biological properties. In addition, while

electrospun-based DAPS have been successfully implanted in vivo

through fixation methods, the delivery of 3D printed constructs

remains a challenge. Novel intravital and noninvasive in vivo 3D bio-

printing technologies could overcome these limitations by injecting

photosensitive cell-laden bioinks into the target tissue and bioprinting

them across the tissue using near-infrared laser light.100,101 Further-

more, cell survival and functionality within the harsh local environ-

ment has to be improved to ultimately enable their translation into

clinical practice.
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