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INTRODUCTION 
 

Head and neck squamous cell carcinoma (HNSCC), as 

one of the most common malignant carcinomas, has a 

poor prognosis, as indicated by its high recurrence 

rate and metastasis risk. The 5-year overall survival 

(OS) of patients with HNSCC is 40–50%, while that 

of patients with advanced stage disease is 30–40%  

[1, 2]. Local and distant tumor recurrence are the 

main causes of death in patients with locally advanced 

HNSCC. 

 

Angiogenesis, the process by which pre-existing blood 

vessels form new capillaries, is a crucial biological 

process in normal physiology, for example in healing 

wounds. In addition, angiogenesis is important in 

pathological conditions, for example in accelerating the 

growth, progression, and metastasis of tumors [3, 4]. 
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ABSTRACT 
 

Purpose: Apatinib resistance is the main obstacle to the effective treatment of advanced head and neck 
squamous cell carcinoma (HNSCC). This study aimed to evaluate the function of Erb-B2 receptor tyrosine kinase 
2 (ERBB2) and stimulator of interferon response cGAMP interactor (STING) in apatinib resistance in HNSCC. 
Method: The Cancer Genome Atlas database of HNSCC was used to analyze the relationship between vascular 
endothelial growth factor receptor 2 (VEGFR2) expression and prognosis. An apatinib resistant (AR) HNSCC cell 
line was constructed based on the CAL27 cell line. RNA sequencing was performed to explore the differentially 
expressed mRNAs. Quantitative real-time reverse transcription PCR (qRT-PCR) and western blotting were used 
to evaluate the expression and phosphorylation level VEGFR2, ERBB2, STING, and related proteins. Apatinib 
resistance was evaluated by colony formation and cell viability assays. A mouse subcutaneous tumor formation 
model was established to evaluate the efficiency of combination treatment and vascularization was evaluated 
by assessing CD31 immunofluorescence. 
Result: The expression of VEGFR2 was high in tumor of patients with HNSCC. Western blotting and qRT-PCR 
revealed that in AR cells, ERBB2 expression was high, whereas the expression of STING was low. Targeted 
treatment of ERBB2 using lapatinib could attenuate apatinib resistance. Further research confirmed that 
overexpressing STING could decrease ERBB2 expression. 
Conclusion: STING could sensitize AR cells to apatinib by decreasing ERBB2 expression. The combination of 
lapatinib or a STING agonist with apatinib ameliorated acquired apatinib resistance in a synergistic manner. 
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Various pro-angiogenic signaling pathways drive 

angiogenesis, among which the vascular endothelial 

growth factor (VEGF)/VEGF receptor (VEGFR) 

pathway is the most important [5, 6]. 

 

Apatinib is an oral tyrosine kinase inhibitor of 

VEGFR2, which exhibited promising anti-neoplastic 

and antiangiogenic and activities in certain tumors, such 

as breast carcinoma [7], sarcoma [8], hepatocellular 

carcinoma [9], non-small-cell lung cancer [10], and 

recurrent epithelial ovarian cancer [11]. Although 

apatinib reverses multidrug resistance of chemo-

therapeutic agents, apatinib resistance can occur, 

making its full use challenging [8]. For some VEGFR 

inhibitors, the duration of response is short before the 

drug resistance occurs, resulting in only limited 

improvements in progression-free survival (PFS) and 

OS. Given apatinib’s central role in targeted therapy 

and the unsatisfactory clinical outcome resulting from 

apatinib resistance, new methods to ameliorate apatinib 

resistance are required [12]. 

 

In the present study, overexpression of the oncogene 

ERBB2 (encoding Erb-B2 receptor tyrosine kinase 2), 

and low expression of the antioncogene STING 

(encoding stimulator of interferon response cGAMP 

interactor), were observed in apatinib resistant (AR) 

cells. Accordingly, we hypothesized that STING and 

ERBB2 might regulate apatinib resistance in HNSCC 

via unknown pathway. The relationship between 

prognosis and VEGFR2 expression was first evaluated. 

The expression and function of STING and ERBB2 in 

apatinib resistance of HNSCC were further evaluated. 

The STING/ERBB2 pathway provides a potential target 

to overcome apatinib resistance during VEGFR2 

inhibition therapy. 

 

RESULTS 
 

Highly expressed VEGFR2 induces angiogenesis in 

HNSCC 
 

According to the analysis of the TGCA-HNSC dataset, 

VEGFR2 (also known as KDR) expression was 

increased in cancer tissue compared with that in normal 

tissue. (Supplementary Figure 1A). Compared with that 

of the patients with low VEGFR2 expression, the 

survival time of patients with high VEGFR2 expression 

was shorter (Supplementary Figure 1B). According to 

the qRT-PCR and western blotting results, HNSCC 

cells had higher VEGFR2 levels than HIOECs. 

VEGFR2 expression was lower in HN6 cells than in 

HN30 and CAL27 cells (Figure 1A, 1B). In accordance 

with the in vitro results, subcutaneous tumors formed by 

HN30 showed a greater degree of angiogenesis than of 

those formed by HN6 cells (Figure 1C). 

High ERBB2 expression and low STING expression 

were observed in AR cells 

 

The colony formation assay and CCK-8 results for the 

AR cells compared with the PC cells showed that 

proliferation occurred in a fold-change manner (Figure 

2A). (**P < 0.01). The viability of the AR cells higher 

than that of the PC controls. To analyze the signaling 

pathways related to apatinib resistance, RNA seq of AR 

and PC cells was performed. A total of 198 

downregulated and 277 upregulation mRNAs were 

obtained for differential analysis (Figure 2B). STING 

and ERBB2 showed the highest fold change. To 

evaluate the relationship between VEGFR2, STING, 

and ERBB2, the TIMER database was used 

(http://timer.cistrome.org/), which identified a negative 

correlation between VEGFR2 and STING (also known 

as TMEM173) (Figure 2C). Meanwhile, a positive 

correlation was confirmed between VEGFR2 and 

ERBB2 (Figure 2C). In accordance with bioinformatic 

results, qRT-PCR and western blotting results showed 

upregulation of ERBB2 levels and downregulation of 

STING levels in AR cells compared with those in PC 

cells (Figure 2D). 

 

An ERBB2 inhibitor, lapatinib, and apatinib in 

combination re-sensitized AR cells to apatinib 
 

To further explore the function of ERBB2 in apatinib 

resistance, TIMER analysis was used, which revealed 

the negative correlation between ERBB2 and immune 

cell infiltration (Figure 3A). This led us to speculate that 

apatinib combined with an ERBB2 inhibitor might 

increase apatinib sensitivity effectively. Lapatinib is an 

FDA approved ERBB2 inhibitor. According to a 

previous report [13], phosphorylation of ERBB2 is 

greatly downregulated by lapatinib. To address the 

efficacy of ERBB2 inhibition in apatinib resistance, AR 

cells were treated with lapatinib combined with 

apatinib. The results showed that the combined 

treatment suppressed AR cell proliferation in a 

synergistic manner (Figure 3B, 3C). Lapatinib has been 

reported to inhibit the growth of cancer via the 

ERBB2/AKT/mTOR [14] and RAF/MEK/ERK [15, 16] 

signaling pathways. The western blotting results 

showed that levels of p-ERBB, p-ERK, and p-AKT in 

AR cells decreased after 24 h of treatment with apatinib 

and lapatinib (Figure 3D). The amount of total AKT or 

ERBB2 protein in AR cells did not change after 

treatment. 

 

Phosphorylation of ERBB2 could be inhibited by a 

STING agonist, vadimenzan 
 

We observed a negative correlation between ERBB2 and 

STING (Figure 4A). Moreover, STING could stimulate 

http://timer.cistrome.org/
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immune cell infiltration. To explore the mechanism of 

STING in ERBB2-mediated apatinib resistance, a 

plasmid overexpressing STING was constructed and 

transfected into AR cells (Figure 4B). STING over-

expression was confirmed using western blotting and 

qRT-PCR. Overexpression of STING resulted in 

inhibition of the phosphorylation of ERBB2, AKT, and 

ERK (Figure 4C). Considering the significance of 

STING in apatinib resistance, we hypothesized that  

the combination of apatinib with a STING agonist, 

Vadimenzan, would effectively enhance apatinib 

sensitivity. Combined treatment with vadimenzan and 

apatinib displayed a synergistic effect by markedly 

inhibiting AR cell proliferation (Figure 4D, 4E). 

The combination of lapatinib and vadimenzan re-

sensitizes AR cells to apatinib in vivo 

 

We used HNSCC xenografts in nude mice to verify 

the in vitro results. The tumor volume in the 

combined treatment group was significantly smaller 

than that in the groups treated with each single agent 

(Figure 5A). Moreover, immunohistochemistry 

indicated decreased Ki67 levels, which suggested 

inhibition of proliferation in the combined treatment 

group (Figure 5B). Correspondingly, the subcutaneous 

tumors of the combination group showed less 

angiogenesis than those from the apatinib only group 

(Figure 5C). 

 

 
 

Figure 1. Highly expressed VEGFR2(KDR) induces angiogenesis in HNSCC. (A, B) qRT-PCR and western blotting results for VEGFR2 in 
HIOEC and HNSCC cell lines (HN30, CAL27, and HN6) (C) Representative images of HN6 and HN30 subcutaneous tumors using 
immunofluorescence staining against CD31 and DAPI staining of nuclei. Higher angiogenesis was observed in the HN30 group, which has a 
higher VEGFR2 expression level. *P < 0.05, **P < 0.01, ***P < 0.001 versus the control. 
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Figure 2. High ERBB2 expression and low STING expression were observed in AR cells. (A) Cell proliferation after treatment with 
apatinib for different times, as assessed using an MTT assay (*P < 0.05, **P < 0.01). The successful establishment of AR HN30 cells was 
demonstrated by their insensitivity to apatinib. Colony formation of AR cells was enhanced compared with that of the control. (B) Venn 
diagram of predicted up or downregulated mRNAs for AR cells compared with PC controls. A total of 198 downregulated and 277 
upregulated mRNAs were obtained for differential analysis. STING and ERBB2 were identified as having the highest fold change. (C) A 
correlation was determined among VEGFR2, ERBB2, and STING using TIMER correlation analysis (http://timer.cistrome.org/). (D) AR and PC 
cells were treated with apatinib (20 μM) for 24 hours. Then, qRT-PCR and western blotting were performed to assess expression of ERBB2 
and STING in AR and PC cells. *P < 0.05, **P < 0.01, ***P < 0.001 versus the control. 

http://timer.cistrome.org/
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Figure 3. The combination of lapatinib and apatinib re-sensitizes AR cells to apatinib (A) The negative correlation between ERBB2 and TILs 
was confirmed using TIMER 2.0. (B) Cell viability after apatinib (20 μM) treatment, with or without lapatinib (20 μM), for different times, as 
assessed using an MTT assay. The combination of lapatinib and apatinib re-sensitized AR cells to apatinib. (C) Colony formation was inhibited 
in the combination group compared with that in the groups treated with each drug alone. (D) Western blotting illustrating the abundance of 
related signaling pathway proteins after apatinib (20 μM) treatment, with or without lapatinib (20 μM). Lapatinib treatment suppressed the 
levels of ERRB2, AKT and ERK phosphorylation. *P < 0.05, **P < 0.01, ***P < 0.001 versus the control. 
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Figure 4. The combination of STING and apatinib re-sensitizes AR cells to apatinib (A) The positive correlation between STING and TILs was 
confirmed using TIMER 2.0. (B) AR cells were transfected with a STING overexpression plasmid, qRT-PCR and western blot result confirmed 
the successful establishment of STING PLUS AR cells. (C) Levels of ERBB2, AKT, ERK, p-ERBB2, p-AKT, and p-ERK were detected using western 
blotting. Compared with NC PLUS cells, the levels of ERBB2, p-ERBB2, p-AKT, and p-ERK were downregulated in STING PLUS cells. (D) MTT 
assay illustrating the cell viability of NC PLUS and STING PLUS AR cells after apatinib (20 μM) treatment for different times. The combination 
of STING and apatinib re-sensitized AR cells to apatinib. (E) Colony formation was inhibited in the combination group compared with that in 
the groups treated with each drug alone. *P < 0.05, **P < 0.01, ***P < 0.001 versus the control. 
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Figure 5. The combination of vadimenzan and lapatinib re-sensitizes AR cells to apatinib in vivo. (A) After washing with PBS 
three times, AR cells (total of 1 × 106) suspended in 50 µL of DMEM were injected in each injection site. The tumor volumes of the mice 
were evaluated among the three groups. (B) Ki67 staining images of cancer samples in the different groups. (C) Representative images of 
subcutaneous tumors using immunofluorescence staining against CD31 and DAPI nuclear staining. *P < 0.05, **P < 0.01, versus the 
control. 
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DISCUSSION 
 

Therapeutic strategies targeting vascular endothelial 

growth factor receptors (VEGFRs) have been studied 

extensively because of the important roles of VEGFRs in 

carcinogenesis [17]. Apatinib is an oral tyrosine kinase 

inhibitor of VEGFR-2 that can induce autophagy [18] 

and apoptosis, and suppresses tumor proliferation in 

anaplastic thyroid cancer [8], hepatocellular carcinoma 

[19], and osteosarcoma [20]. However, effective 

treatment is challenged by apatinib resistance [21]. The 

acquired resistance involves the activation of pathways 

such as JAK/STAT, PI3K/AKT, and MAK/ERK 

signaling [22, 23]. Thus, new approaches are required to 

enhance apatinib’s efficacy [7, 24]. However, most 

related research has focused on microRNAs and circular 

RNAs, which are unlikely to be transformed into clinical 

application in coming years. ERBB2 is a well-known 

oncogene, and in preclinical studies of HER2-positive 

advanced solid tumors, ERBB2 inhibitors have 

displayed very good antitumor activity, both in vivo and 

in vitro [25, 26]. A previous study showed that an 

ERBB2 inhibitor combined with apatinib was effective 

against HER2-positive gastric cancer and acquired 

resistance against the ERBB2 inhibitor [27]. In HNSCC, 

ERBB2 is upregulated in primary and metastatic tumors, 

which is related to poor prognosis [28]. 

 

In this study, we confirmed that upregulation of ERBB2 

enhances apatinib resistance through PI3K/AKT and 

MAK/ERK signaling, which is consistent with the 

results of previous studies [22, 23]. We speculated that 

phosphorylation of ERBB2 could increase apatinib 

resistance by activating AKT and ERK. Inhibition of 

ERBB2 phosphorylation by the TKI inhibitor, lapatinib, 

effectively re-sensitized AR cells to apatinib. 

Furthermore, cell viability was significantly decreased 

under the combined treatment of apatinib and lapatinib. 

 

STING expression correlates negatively with that of 

many oncogenes and is thus believed to be a tumor 

suppressor [29, 30]. Within the tumor micro-

environment (TME), STING pathway activation in 

antigen-presenting cells leads to increased production of 

type I interferons and promotes tumor-mediated cross 

priming of CD8+ T cells, finally resulting in adaptive 

anticancer immune responses [31, 32]. STING shows 

strong expression in HPV+ HNSCC cancer cells, but 

not in HPV
−
 HNSCC cancer cells [33]. STING ligands 

administered locally to the tumor led to non-

autonomous activation of STING in non-cancer cells in 

the TME, suggesting that such therapy might be 

effective to treat STING
− 

and
 
STING

+
 tumors [33, 34]. 

According to these activities, STING agonists were 

demonstrated to synergize cancer treatment by 

promoting CAR T cells or overcoming tumor resistance 

to PD-1 blockade [35–37]. Our research has shown that 

the antitumor effort of STING acts via proliferation and 

this proliferation sensitizes AR cells to apatinib. To the 

best of our knowledge, this is the first report of the 

effect of STING on apatinib resistance. 

 

In HPV
-
 HNSCC, STING expression is suppressed, and 

is further downregulated in AR cells; therefore, we 

investigated whether treatment promoting STING 

combined with apatinib has therapeutic potential in 

HNSCC. Our results demonstrated that ERBB2, AKT, 

and ERK confer apatinib desensitization. In addition, 

vadimenzan, a STING agonist, attenuated apatinib 

desensitization and decreased the proliferation on AR 

cells in vitro. In vivo, vadimenzan treatment resulted in 

xenografts becoming sensitive to apatinib therapy. 

Thus, targeting the ERBB2/AKT/ERK axis by 

stimulating STING represents a feasible method to 

restore the apatinib sensitivity of HNSCC cells. 

 

Overall, the results of the present study indicated  

that the ERBB2/AKT/ERK axis regulates apatinib 

desensitization. Importantly, upregulation of STING 

expression overcame apatinib resistance effectively by 

inhibiting ERBB2 phosphorylation. Apatinib combined 

with a STING agonist, e.g., vadimenzan, could be used 

to ameliorate apatinib resistance in HNSCC. 

 

MATERIALS AND METHODS 
 

Cells and chemicals 
 

The American Type Culture Collection (ATCC) 

(Manassas, VA, USA) provided the CAL27, HN6, and 

HN30 cells. Human immortalized oral epithelial cells 

(HIOECs) were grown in defined keratinocyte serum-

free medium (Invitrogen, Waltham, MA, USA). 

CAL27, HN6, and HN30 cells were grown in 

Dulbecco’s modified Eagle’s medium (DMEM) (Gibco, 

Grand Island, NY, USA) containing 1% penicillin-

streptomycin, 1% glutamine, and 10% fetal bovine 

serum. Apatinib was obtained from Hengrui Medicine 

Co., Ltd. (Jiangsu, China). The STING agonist, 

vadimenzan, was purchased from Selleck CO., Ltd. 

(Shanghai, China). In vitro, AR CAL27 cells were 

established by treating the cells with 5 μM apatinib 

initially and the increasing the concentration 

incrementally to 20 μM once a week for 3 months. To 

verify the successful establishment of AR cells, 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) assays were performed. 

 

Bioinformatics 
 

The mRNA profiles (Normal: 44, Tumor: 520) were 

obtained from The Cancer Genome Atlas (TCGA) 
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database as the TCGA-HNSC dataset (https://portal. 

gdc.cancer.gov/). Kaplan–Meier analysis of OS and 

PFS was performed based on the TCGA-HNSC dataset. 

 

Quantitative real-time reverse transcription PCR 

(qRT-PCR) 

 

The total mRNAs were extracted from HIOEC and 

HNSCC cells lines. A NanoDrop 2000/2000C 

spectrophotometer (Nanodrop Technologies, 

Wilmington, DE, USA) was used to assess the RNA 

purity and concentration at wavelengths of 260/280 

nm. The RNA was transcribed into cDNA using  

a PrimeScript™ RT Reagent Kit (Takara 

Biotechnology, Dalian, China). A TB Green® Premix 

Ex TaqTM Kit (Takara Biotechnology) master mix 

was used to perform the qPCR reactions using the 

cDNAs as templates on a StepOnePlus™ Real-Time 

PCR System (Applied Biosystems, Foster City, CA, 

USA). GAPDH (encoding glyceraldehyde-3-

phosphate dehydrogenase) expression was detected as 

an internal control. The primers used for qPCR of 

human genes were:  

 

Gene name Type Sequence 5'-3' 

ERBB2 
Forward TGCAGGGAAACCTGGAACTC 

Reverse ACAGGGGTGGTATTGTTCAGC 

STING 
Forward CGCTTCCTGGATAAACTGCC 

Reverse GCCCACAGTAACCTCTTCCT 

VEGFR2 
Forward GGCCCAATAATCAGAGTGGCA 

Reverse CCAGTGTCATTTCCGATCACTTT 

GAPDH 
Forward AATCCCATCACCATCTTCCAG 

Reverse GAGCCCCAGCCTTCTCCAT 

 

Western blotting 
 

Cells were treated with 20 μM apatinib, with or 

without lapatinib (20 μM) and vadimenzan (20 μM), 

for 24 h. Then, at various time points, we extracted 

total cellular proteins. The proteins were separated 

electrophoretically and then electrotransferred onto a 

membrane. Next, 5% skim milk in 1% TBST was 

used to block the membrane for 1 h at 4° C. The 

proteins on the membrane were then reacted with 

primary antibodies that recognized STING (catalog 

number 13647S; 1:1,000); ERBB2 (catalog number 

2165S; 1:1,000); phosphorylated (p)-ERBB2 (catalog 

number 6942; 1:1,000); VEGFR2 (catalog number 

9698; 1:1,000); protein kinase B (AKT) (catalog 

number 4685S; 1:1,000); p-AKT (catalog number 

4060S; 1:1,000); extracellular regulated kinase (ERK) 

(catalog number 9194S; 1:1,000); p-ERK (catalog 

number 4370S; 1:1,000); and GAPDH (catalog 

number 174S; 1:1,000). All primary antibodies were 

purchased from Cell Signaling Technology (Danvers, 

MA, USA). 

Immunohistochemistry and immunofluorescence 
 

To evaluate angiogenesis, an anti-CD31 primary 

antibody was incubated with tumor sections, followed 

by reaction with an Alexa 488-conjugated goat anti-

mouse secondary antibody according to the 

manufacturer’s protocol. 4′,6-diamidino-2-phenyl-

indole (DAPI) was used to stain the cell nuclei. The 

stained sections were observed under a confocal 

microscope (SP5, Leica, Wetzlar, Germany). To 

evaluate cell apoptosis, marker of proliferation Ki-67 

(Ki67) staining was performed using anti-Ki67 primary 

antibodies. 

 

Colony formation and cell viability assays 

 

To assess cytotoxicity, parental control (PC), AR, and 

CAL27 cells were seeded at a density of 1 × 10
4
 

cells/ml in 96-well flat-bottom plates in triplicate and 

cultured in 100 μL medium for 12 h before being 

exposed to apatinib, with or without lapatinib and 

vadimenzan. Then, Cell Counting Kit 8 (CCK-8) 

solution (10% in 100 μL of medium; Dojindo, Japan) 

was added to each well at different timepoints. The 

absorbance at 450 nm was measured after 2 h of 

incubation. For the colony formation assay, PC, AR, 

and CAL27 cells were seeded in six-well plates at 1 × 

10
4 

cells per well. Ten days later, neutral 

paraformaldehyde was used to fix the cells, followed by 

staining with a crystal violet solution. Formed colonies 

comprising 50 to 100 cells were counted. 

 

RNA sequencing (RNA-seq) 
 

For apatinib resistance studies, the HiseqXTen system 

(Genomeditech Co. Ltd., Shanghai, China) was used to 

perform RNA-seq. Differentially expressed mRNAs 

were identified based on their fold-change in 

expression and their P-values, which were determined 

using one-way analysis of variance. Differentially 

expressed genes (DEGs) were displayed on a volcano 

plot according the set as a fold-change of X and a  

P-value of Y, and the DEGs were displayed used a 

volcano plot. 

 

Tumor xenografts 
 

The Chongqing experimental animal center supplied 4-

week-old specific pathogen free male BALB/c nude 

mice (nu/nu), weighing 16.31 ± 0.9 g. All laboratory 

procedures were approved by the laboratory animal care 

and use committee of the hospital. HN6/HN30 cells (1 × 

10
6 

cells) were washed in PBS three times before being 

suspended in 50 µL of DMEM per injection site. The 

cells were injected subcutaneously into the back of the 

right rear leg in each group of mice (n = 5). The sample 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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size was calculated according to previous research  

[38, 39]. At 10 days after injection, the average tumor 

volume was nearly 200 mm
3
. At this point, the mice 

were euthanized humanely. In another experiment, 1 × 

10
6
 AR cells (3rd passage) were washed in PBS three 

times before being suspended in 50 µL of DMEM per 

injection site. The cells were injected subcutaneously 

into the back of the right rear leg of the mice. Seven days 

later, the average tumor volume was nearly 125 mm
3.
 

The exact sizes of the tumors on each animal before 

treatment are shown in Supplementary Table 1. Then, 

the mice were randomly separated into three groups (n = 

5 per group): the apatinib group (orally-delivered 

apatinib at 150 mg/kg per day), the apatinib+lapatinib 

group (the same dose and schedule of apatinib plus 

lapatinib solution (100 mg/kg)), and the apatinib+ 

lapatinib+vendimenzan group (the same oral doses and 

schedule of apatinib and lapatinib plus i.p. administered 

vadimenzan (50 mg/kg) twice a week). The development 

and progression of solid tumors were monitored every 

two days until the tumor reached greater than 1.5 cm in 

length. At this point, the mice were euthanized 

humanely. The tumor volume (V) was calculated as: V = 

L x W
2
/2, where L is the tumor length and W is the 

tumor width. Immunohistochemistry and immuno-

fluorescence analyses were performed on xenograft 

samples. 

 

Statistical analysis 
 

The mean ± SD was used to represent continuous 

variables. The clinical and histological data were 

analyzed using the chi-squared test or Pearson’s chi-

squared test. All statistical data analysis was carried out 

using GraphPad Prism version 7 (GraphPad Software 

Inc., San Diego, CA, USA). The statistical significance 

of differences was assessed using Student's t-test and 

one-way analysis of variance. In the figures, statistical 

significance is indicated using: *p < 0.05, **p < 0.01 

and ***p < 0.001. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. (A) Compared with the normal group (blue), the expression of VEGFR2 was high in tumor samples (red); (B) 
Survival curves of VEGFR2 expression for prognosis in the TCGA-HNSC dataset. Red represents the high expression group and blue represents 
the low expression group. 
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Supplementary Table 
 

Supplementary Table 1. The exact sizes of the tumors on each 
animal before treatment. 

Group Tumor volume (mm
3
) 

Apatinib 130 123 171 148 145 

apatinib+lapatinib 145 128 123 150 174 

apatinib+lapatinib+vendimenzan 171 148 174 150 123 

 


