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Abstract: In this paper, a compact, integrated, semiconductor-clad strip waveguide label-free
biosensor is proposed and analyzed. The device is based on CMOS-compatible materials such
as amorphous-Si and silicon oxynitride. The optical sensor performance has been modeled by a
three-dimensional beam propagation method. The simulations indicate that a 20-µm-long device can
exhibit a surface limit of detection of 3 ng/cm2 for avidin molecules in aqueous solution. The sensor
performance compares well to those displayed by other photonic biosensors with much larger
footprints. The fabrication tolerances have been also studied in order to analyze the feasibility of the
practical implementation of the biosensor.

Keywords: optical biosensor; photonic modeling; waveguide; integrated optics

1. Introduction

Integrated optics-based biosensors offer a number of remarkable features such as their small size,
high-scale integration, high sensitivity, robustness and potential for multiplexed detection that make
them ideal for lab-on-chip integration [1–3]. These compact devices are particularly well-suited for
label-free detection schemes since they are able to measure small refractive index changes produced
by the recognition of unlabeled analytes [4]. The use of Si-based materials provides additional and
important advantages, like the possibility of employing highly developed fabrication techniques based
on the CMOS technology and integration with advanced readout electronics on the same chip. Thus,
a variety of Si-based integrated photonic biosensors have been reported in the literature, including
Mach–Zehnder [5–8] and Young [9,10] interferometers, bimodal waveguides [11], microcavities [12–15]
and photonic crystals [16,17].

Semiconductor and metal-clad optical waveguides allow for the modulation of the properties
of propagating light due to coupling between the lossless modes of the dielectric waveguide and
the lossy optical modes supported by the thin cladding layer [18–21]. This coupling depends on
the thickness and refractive index of the cladding layer, as well as on the refractive index of the
surrounding medium, which makes this type of guided-wave structures suitable for refractometric
(bio)sensing [22–28]. Compared to metal-clad configurations, the use of a semiconductor layer cladding
allows for the use of both transverse electric (TE) (the electric field has no component in the direction
of propagation) and transverse magnetic (TM) (the magnetic field has no component in the direction
of propagation) polarization modes [18,19] and offers the possibility of obtaining higher refractive
index sensitivities [25]. However, despite a semiconductor-clad waveguide is highly amenable to be
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integrated on planar substrates, scarce work has been devoted to study this prospect for, for example,
lab-on-chip biosensing microsystems; the vast majority of semiconductor-clad waveguide biosensors
have been demonstrated using optical fibers [25–28].

In this work, an integrated, semiconductor-clad strip waveguide biosensor based on
CMOS-compatible materials is proposed and analyzed. The device optical performance, sensitivity to
both bulk refractive index and adlayer (biofilm) thickness, and tolerance to dimensional and material
parameter variations have been studied through three-dimensional numerical modeling. Simulations
indicate that the proposed device shows good sensing characteristics to be used as a compact photonic
label-free biosensor, and provide important information concerning its actual implementation.

2. Device Configuration and Modeling

Figure 1a,b show a perspective and cross-section schematics, respectively, of the proposed
guided-wave optical biosensor. It consists of a thin semiconductor layer (cladding) deposited on the
top surface of a lossless dielectric strip waveguide on a silicon dioxide (SiO2) substrate. The width
of both the cladding layer and the strip waveguide is w = 1 µm. The semiconductor cladding layer
thickness equals tc and the height of the strip waveguide is h = 1 µm. The length of the semiconductor
cladding layer is denoted as zc. The cladding and waveguide materials are assumed to be amorphous
silicon (a-Si) and silicon oxynitride (SiON), respectively. The refractive indices of a-Si, SiON and
SiO2 at a free-space wavelength of 632.8 nm (operation wavelength) have been considered to be
nSi = 4.1 − j0.21 [29], nwg = 1.52 [30] and nsub = 1.46, respectively. The upper cover region (bulk) has a
refractive index of nb. Both the upper cover and substrate regions are assumed to be semi-infinite in
extent. For the biosensing analysis, a uniform protein film (biofilm) of thickness tbio, width w, length
zc, and refractive index nbio = 1.41 [31] has been assumed to be adhered on the semiconductor cladding
layer in an aqueous medium (nb = 1.33).
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immobilized bioreceptors produces a change in the biofilm thickness and, therefore, in the local 
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semiconductor layer and the lossless dielectric waveguide. This is displayed as an optical power 
variation at the output of the waveguide. 

Figure 1. Perspective (a) and cross-sectional (b) schematics of a semiconductor-clad dielectric strip
waveguide biosensor. The cladding, waveguide and substrate are assumed to be amorphous-Si (a-Si),
silicon oxynitride (SiON) and SiO2, respectively. The biofilm consists of a layer of biomolecules such
as proteins.

The bio-sensitive area of the optical device is the top surface of the semiconductor cladding layer,
where biomolecule receptors (e.g., antibodies) can be immobilized or adsorbed (biofilm in Figure 1a).
Light, at an operating wavelength of 632.8 nm, is injected at the input port of the waveguide and
the optical power exiting the output port is used as the sensor response. Analyte recognition by
the immobilized bioreceptors produces a change in the biofilm thickness and, therefore, in the local
refractive index over the cladding layer, which affects the optical power coupling between the lossy
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semiconductor layer and the lossless dielectric waveguide. This is displayed as an optical power
variation at the output of the waveguide.

A three-dimensional beam propagation method (BPM) [32] was used for the calculation of the
modal-field profile and optical power propagating along the waveguide (z-axis). The computational
grid and step sizes along x, y and z were ∆x = 50 nm, ∆y = 0.5 nm and ∆z = 50 nm, respectively.
Transparent boundary conditions in the computational domain were used in the simulations.

3. Results

The bare dielectric strip waveguide configuration (that is, tc = tbio = 0) exhibits single mode
operation for both quasi-TE and quasi-TM polarization modes when the upper cover is assumed to
be water (nb = 1.33). Figure 2 shows the corresponding optical mode-field profiles for the quasi-TE
(Figure 2a) and quasi-TM (Figure 2b) fundamental modes. The calculated effective refractive indices
were 1.4811 and 1.4818, respectively. Thus, the launched (input) fields used in the BPM simulations
of the device for tc ≥ 0 were the fundamental modes of the bare dielectric waveguide for the
corresponding polarization.
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Figure 2. Transverse electric field profiles of the quasi-transverse electric (TE) (a) and quasi-transverse
magnetic (TM) (b) fundamental optical modes in a bare dielectric (SiON) waveguide (tc = tbio = 0) at
λ = 632.8 nm in an aqueous medium. Ex (a) and Ey (b) are the electric field components along the x-axis
and y-axis, respectively.

Figure 3 plots the calculated output power (Po), normalized to the input power, of the studied
guided-wave device as a function of the semiconductor layer thickness tc for quasi-TE (black line)
and quasi-TM (red line) polarizations for nb = 1.33, zc = 20 µm and tbio = 0. Quasi-TE and
quasi-TM polarizations exhibit different behaviors, indicating different guide-cladding interactions.
This is a consequence of the different sets of boundary conditions for each polarization [18,19].
Several transmission dips are observed for both polarizations in Figure 3. These output power
transmission minima (attenuation maxima) arise from the periodic coupling effect between the lossless
mode of the dielectric waveguide and the lossy mode of the thin semiconductor cladding layer [18,19].

BPM simulations revealed that variations in the bulk refractive index nb leads to shifts of the
transmission dips along the tc axis, implying that the output power is sensitive to the bulk refractive
index for particular tc values. Figure 4 shows the relative output power variation (∆P/Po,w), where Po,w

is the normalized output power for nb = 1.33, for quasi-TE (Figure 4a) and quasi-TM (Figure 4b)
polarizations, and different nb variations (∆nb) in the tc ranges where (∆P/Po,w) is largest. It is seen that,
for quasi-TE mode, the maximum relative power variation occurs for tc = 6.5 nm for all considered ∆nb

values, whereas, for quasi-TM polarization, the corresponding tc value depends on the bulk refractive
index change, and varies between 121 nm (∆nb = 0.01) and 118.5 nm (∆nb = 0.05). It should be noted
that the peaks in Figure 4a have larger amplitudes and are sharper than the corresponding curves in
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Figure 4b, indicating that the quasi-TE operation mode is more sensitive to both nb and tc variations
than the quasi-TM polarization mode.
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Figure 4. Relative power variation in a 20-µm-long semiconductor-clad dielectric strip waveguide as a
function of the semiconductor thickness (tc) for different bulk refractive index variations (∆nb) with
respect to nb = 1.33, for quasi-TE (a) and quasi-TM (b) polarizations.

Figure 5 shows the effect of the semiconductor layer length, zc, on the relative output power
variation for a particular bulk refractive index variation (∆nb = 0.05) for quasi-TE (Figure 5a) and
quasi-TM (Figure 5b) polarizations. In both cases, the maximum relative power values occur for
zc = 20 µm. Therefore, hereafter the length of the semiconductor layer will be assumed to be
20 µm for both quasi-TE and quasi-TM operation modes, and, according to Figure 4, the thickness
of the semiconductor cladding layer will be 6.5 nm and 118 nm for quasi-TE and quasi-TM
polarizations, respectively.
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3.1. Bulk Sensitivity

Intensity-based refractive index optical sensors typically use as a figure-of-merit the relative power
(or intensity) bulk sensitivity defined as [33–35]:

SI,b =
1
Po

(
dPo

dnb

)
, (1)

Figure 6a illustrates the calculated sensor response for quasi-TE polarization (black square dots).
It is seen that Po increases monotonically in a slightly non-linear fashion as nb increases. This leads
to a positive and increasing value of the sensor response derivative. However, Po increases faster
with nb than the derivative does, and counteracts the gain effect of the latter on SI,b. The resulting
consequence is a bulk sensitivity value that depends on the nb value as shown in Figure 6b (black
square dots). For the calculation of SI,b from the data of Figure 6a, the derivative of Po at the i-th
point was computed as (Po(i+1) − Po(i−1))/(nb(i+1) − nb(i−1)), and the derivatives for the first (i = 1) and
last (i = 6) points were calculated as (Po2 − Po1)/(nb2 − nb1) and (Po6 − Po5)/(nb6 − nb5), respectively.
It is seen, in Figure 6b, that SI,b decreases monotonically as nb increases, and exhibits a maximum
value of 12,372%/RIU for nb = 1.33. Quasi-TE operation is therefore particularly suitable for refractive
index sensing of diluted aqueous solutions. Assuming a minimum detectable intensity difference of
1%, a bulk refractive index resolution of 8 × 10−5 RIU [ = 1%/12,372 (%/RIU)] should be attainable.
For the sake of comparison, Table 1 shows the intensity bulk sensitivity, limit of detection (LOD),
product LOD × Lsens, where Lsens is the length of the sensing region, and footprint of relevant Si-based
planar refractive index optical sensors reported in the literature. It is seen that the device analyzed
in this work exhibits better sensitivity than those based on free-space optical interrogation [34–36].
Optical sensors based on integrated-optics [8,11] present smaller LODs but at the expense of a long
sensing region. In fact, the product LOD × Lsens, which is a convenient figure of merit for these type
of sensors, of the studied device is similar or even better (smaller) than those of the other integrated
guided-wave devices, while offering a footprint five orders of magnitude smaller. The latter is an
important advantage for large-scale integration on a single chip.

The sensor response for quasi-TM polarization is also shown in Figure 6a (red circular dots).
In this case, the response is clearly non-linear and non-monotonic. This leads to a magnitude and sign
nb-dependent behaviour of the bulk sensitivity, as shown in Figure 6b (red circular dots). The maximum
sensitivity, 6456%/RIU, is obtained for nb = 1.37. Thus, the quasi-TM operation of the sensor could be
useful for testing liquids other than aqueous solutions, such as, for example, some organic solvents.
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Figure 6. Sensor response (a) and bulk sensitivity (b) of the studied semiconductor-clad dielectric strip
waveguide as a function of the bulk refractive index for quasi-TE (black square dots) and quasi-TM (red
circular dots) polarizations. The semiconductor layer thickness values are tc = 6.5 nm and tc = 118 nm
for quasi-TE and quasi-TM operations, respectively. Data points are connected by dashed lines for the
sake of clarity.

Table 1. Si-based planar refractive index (RI) optical sensors based on intensity interrogation. Refractive
index unit (RIU); Mach–Zehnder (M–Z); limit of detection (LOD); length of the sensing region (Lsens);
not applicable (N/A).

RI Sensor Configuration Sensitivity (%/RIU) LOD (RIU) LOD × Lsens (RIU mm) Footprint (µm2)

Metasurface [34] 4450 (2 × 10−4) b N/A c N/A c

Grating/waveguide [35] 1306 (7.6 × 10−4) b N/A c N/A c

1-D grating [36] 1700 (5 × 10−4) b N/A c N/A c

M–Z interferometer [8] 5.4 × 10−6 3.8 × 10−5 3.4 × 106

Bimodal waveguide [11] 2.5 × 10−7 3.7 × 10−6 4.5 × 106

This work 12,372 a (8 × 10−5) b 1.6 × 10−6 20
a Maximum value. Sensitivity depends on the bulk refractive index. b For a change in relative output intensity of
1%. c Free-space interrogation.

3.2. Biofilm Sensing

Like the bulk sensitivity, the relative power (or intensity) thickness sensitivity SI,t can be defined as:

SI,t =
1
Po

(
dPo

dtbio

)
, (2)

Figure 7a shows the sensor response as a function of the biofilm thickness for quasi-TE and
quasi-TM polarizations. The corresponding thickness sensitivities are plotted in Figure 7b. For quasi-TE
polarization (black square dots) a nearly linear response is obtained in the entire tbio range. The highest
quasi-TE sensitivity, SI,t = 16.2%/nm, is achieved for tbio = 0 nm. This thickness sensitivity implies
that for a minimum detectable intensity difference of 1%, the smallest detectable biofilm thickness
would be 0.06 nm. For a typical protein such as avidin, modeled as a sphere of diameter 5 nm and
molecular weight of 50 kD, the surface density of a monolayer of proteins would be 254 ng/cm2 [37].
Thus, assuming that the sensor signal is proportional to the surface coverage, the minimum detection
limit would be 3 ng/cm2. This value is larger than high-performance plasmonic [37] and porous
Si [38] biosensors based on free-space and wavelength interrogation. However, it compares well to
the performance of other intensity-based integrated optics Si-based biosensors as shown in Table 2.
In particular, the product LOD × Lsens exhibited by the analyzed device is less than those biosensors
based on integrated Mach–Zehnder [6,8] and Young interferometers [10], and its footprint is several
orders of magnitude smaller. Figure 7b also shows that the sensitivity for quasi-TE polarization
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decreases as the biofilm thickness increases, which is mainly a consequence of the increment of Po with
tbio. Quasi-TE operation is therefore particularly well suited for detecting very thin layers of proteins
deposited directly on the semiconductor cladding layer.Sensors 2020, 20, x FOR PEER REVIEW 7 of 12 
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Table 2. Si-based integrated optical biosensors based on intensity interrogation. Mach–Zehnder (M–Z);
limit of detection (LOD); length of the sensing region (Lsens).

Biosensor Configuration LOD (ng/cm2) LOD × Lsens (ng cm−2 mm) Footprint (µm2)

M–Z interferometer [6] 2 24 3 × 106

M–Z interferometer [8] 0.22 1.54 3.4 × 106

Young interferometer [10] 0.075 0.9 1.8 × 107

This work 3 a 0.06 20
a Minimum value (sensitivity depends on the adlayer thickness), for a change in relative output intensity of 1%.

The response for quasi-TM polarization (red circular dots) shows no variation for tbio up to 10 nm
and a slight linear variation for larger tbio values. The quasi-TM thickness sensitivity lies between
0.9%/nm and 4.8%/nm, exhibiting similar values to those of quasi-TE polarization for tbio greater than
20 nm. The low sensitivity for tbio = 0 (0.9%/nm) indicates that, for quasi-TM operation, the sensing
device should contain a pre-deposited (or immobilized) biofilm of thickness equal or greater than
10 nm in order to function at a higher sensitivity operating point. Such a biofilm could be made up by
one or several monolayers of biomolecule receptors such as antibodies.

3.3. Material and Dimension Tolerance

From a fabrication perspective, geometrical and material parameter deviations from the target
values can always occur. An analysis of the sensitivity of the device performance to these deviations
allows critical fabrication parameters to be identified, assisting the technologists in determining or
developing proper processing techniques.

Since the quasi-TE polarization mode exhibits both a larger response variation and surface
sensitivity than those obtained for the quasi-TM mode, only the former operation mode has been
considered in this tolerance analysis. Thus, for a target device characterized by: h = w = 1 µm,
zc = 20 µm, tc = 6.5 nm, Re(nSi) = 4.1, Im(nSi) = 0.21, nwg = 1.52 and λ = 632.8 nm, Figure 8 shows the
sensor response (device output power as a function of the biofilm thickness) for individual variations
in h (Figure 8a), w (Figure 8b), zc (Figure 8c), tc (Figure 8d), Re(nSi) (Figure 8e), Im(nSi) (Figure 8f),
and nwg (Figure 8g).
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Figure 8. Normalized power at the output of a target a-Si-clad SiON strip waveguide as a function
of the biofilm thickness for different dimensional and material parameter variations: (a) waveguide
height variation, (b) waveguide width variation, (c) semiconductor cladding length variation,
(d) semiconductor cladding thickness variation, (e) variation in the real part of the semiconductor
cladding refractive index, (f) variation in the imaginary part of the semiconductor cladding refractive
index, (g) SiON waveguide refractive index variation, and (h) operation wavelength variation.
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These figures reveal that the most critical fabrication parameter is the thickness of the a-Si
cladding layer. Acceptable tolerances are obtained for the rest of the considered parameters. From the
sensor operation point of view, it is also relevant to analyze the effect of deviations in the operating
wavelength on the sensor performance. Wavelength variation can be originated by, for example,
thermal fluctuations affecting the light source (laser device). Figure 8h shows that a variation of ±
1 nm in the operating wavelength has a negligible effect on the sensor response.

4. Discussion

The integrated device analyzed in this work is based on a single channel. There is no need for
the Y-shape splitters used in integrated Mach–Zehnder and Young interferometer biosensors, which
significantly increase the footprint and are complicated to design and fabricate. Besides, the sensor
response is obtained by monitoring the waveguide output optical intensity (or power). Intensity-based
read-out schemes essentially require a fixed wavelength source (typically a single wavelength laser
device) and a photodetector, simplifying the overall sensing system; interrogation schemes based on
wavelength shift measurement require more complex and costly equipment such as a tunable laser
source or a spectrum analyzer.

The choice of silicon oxynitride for the waveguide material has been motivated by the purpose of
obtaining single mode operation at the operating wavelength using micron-sized cross-sectional
waveguide dimensions and Si-based materials. Waveguides with micron-sized cross sections
facilitate both direct optical coupling (butt coupling) and fabrication compared to submicrometer-
size waveguides. SiON can be deposited by conventional chemical vapor deposition (CVD)
techniques [6,10,30] and, depending on composition, its refractive index can be varied between
that of silicon dioxide and that of silicon nitride, offering high potential and flexibility for optical
waveguide design.

The micrometer dimensions of the dielectric waveguide (1 µm × 1 µm × 20 µm) allow for its
fabrication using standard methods from the microelectronics industry such as CVD, photolithography
and reactive ion etching (RIE). There is no need for complex and expensive nanolithographic processes.
Figure 9 illustrates a schematic description of the main processing steps involved in the fabrication
of the studied sensor on a Si wafer. The simulation results have indicated that the most challenging
fabrication issue is the deposition of the a-Si layer, whose thickness should be controlled to the
monolayer level (approximately, 0.5 nm). This task can be carried out by atomic layer deposition
(ALD), which is a well-known and mature technology that allows for the deposition of ultrathin films
of dielectric and semiconductor materials, such as Si [39–41], with precisely controlled thickness at the
atomic scale and high uniformity over large areas. Note that, unlike the difficulties of nanopatterning
lateral features, very high-quality thin films can be deposited with sub-nanometer control on a substrate.
Finally, the device can be converted into a biosensor by immobilizing biomolecules on the surface of
the a-Si cladding film, which could be achieved by contact printing with PDMS (polydimethylsiloxane)
inked with proper biomolecules [42,43].

To conclude, the performance of the modeled integrated optical biosensor, particularly for
quasi-TE polarization, compares well to state-of-the-art Si-based planar optical biosensors based on
intensity interrogation while presenting a significantly smaller footprint. The analyzed device is
therefore a promising microcomponent for use in lab-on-a-chip biosensing platforms based on Si-based
integrated optics.
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