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Abstract
Introduction Stable isotope tracer studies are increasingly applied to explore metabolism from the detailed analysis of 
tracer incorporation into metabolites. Untargeted LC/MS approaches have recently emerged and provide potent methods for 
expanding the dimension and complexity of the metabolic networks that can be investigated. A number of software tools 
have been developed to process the highly complex MS data collected in such studies; however, a method to optimize the 
extraction of valuable isotopic data is lacking.
Objectives To develop and validate a method to optimize automated data processing for untargeted MS-based isotopic 
tracing investigations of metabolism.
Methods The method is based on the application of a suitable reference material to rationally perform parameter optimi-
zation throughout the complete data processing workflow. It was applied in the context of 13C-labelling experiments and 
with two different software, namely geoRge and X13CMS. It was illustrated with the study of a E. coli mutant impaired for 
central metabolism.
Results The optimization methodology provided significant gain in the number and quality of extracted isotopic data, 
independently of the software considered. Pascal triangle samples are well suited for such purpose since they allow both the 
identification of analytical issues and optimization of data processing at the same time.
Conclusion The proposed method maximizes the biological value of untargeted MS-based isotopic tracing investigations by 
revealing the full metabolic information that is encoded in the labelling patterns of metabolites.
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LC/MS  Liquid chromatography with mass spectrometry
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PEP  Phosphoenolpyruvate
PRPP  5-Phosphoribosyl-pyrophosphate
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UMP  Uridine monophosphate
UTP  Uridine triphosphate

 * Floriant Bellvert 
 bellvert@insa-toulouse.fr

1 RESTORE, CNRS ERL5311, EFS, ENVT, Inserm U1031, 
UPS, Université de Toulouse, Toulouse, France

2 Toulouse Biotechnology Institute, TBI-INSA de Toulouse 
INSA/ CNRS 5504-UMR INSA/INRA 792, 5504 Toulouse, 
France

3 MetaboHUB-MetaToul, National Infrastructure 
of Metabolomics and Fluxomics, 31077 Toulouse, France

http://orcid.org/0000-0002-2553-0257
http://orcid.org/0000-0002-3480-0933
http://orcid.org/0000-0002-3259-8655
http://crossmark.crossref.org/dialog/?doi=10.1007/s11306-022-01897-5&domain=pdf


 N. Butin et al.

1 3

41 Page 2 of 16

1 Introduction

Stable-isotope labelling experiments coupled with mass 
spectrometry (MS) are increasingly used to obtain a com-
prehensive understanding of metabolism in many fields 
of biology, biotechnology, and medicine (Wittman, 2002, 
Chokkathukalam et al., 2014; Zaimenko et al., 2017). In 
such investigations, an isotope tracer (most commonly 
13C in metabolic studies) is fed to a biological system of 
interest (cells, tissues, whole organisms). The incorpora-
tion of the labelled atom into metabolites is measured by 
MS and provides valuable information on metabolic path-
ways (pathway profiling) and metabolic fluxes (fluxomics) 
(Wittman, 2002; Wiechert et al., 2001; Wiechert, 2001; 
Zamboni et al., 2009). These approaches were initially 
developed by exploiting targeted MS methods in which 
the labelling patterns of selected metabolites—hence of 
selected metabolic pathways—could be measured (Chok-
kathukalam et al., 2014; Stuani et al.,; 2018). Progress 
in MS instrumentation and methods has led to the recent 
emergence of untargeted approaches with the potential to 
access the labelling patterns of a much larger number of 
metabolites, resulting in significant gains in the cover-
age of cellular and tissular metabolic processes (Creek 
et al., 2012; Zamboni et al., 2015). Similar to untargeted 
metabolomics, which aims at maximizing the number of 
detected metabolites, untargeted isotopic profiling aims at 
maximizing the number of isotopic data—i.e. the number 
of measured isotopologue abundances—collected from 
isotopically labelled material using appropriate analyti-
cal methods and data processing tools (Hiller et al., 2010; 
Chokkathukalam et al. 2012; Bueschl et al., 2014, Kluger 
et al., 2014; Capellades et al., 2016, Weindl et al., 2016). 
Data processing in untargeted isotopic tracing studies is 
a real challenge, firstly because the MS spectra collected 
on labelled material are much more complex than those 
of (the same) unlabelled material. Potentially all the iso-
topologues of each metabolite in the labelled samples can 
be generated and detected. Given the high molecular com-
plexity of typical biological samples, the total number of 
peaks in the MS spectra is drastically increased. Moreover, 
since the total intensity of the MS signal from a given 
analyte is the same whether a compound is labelled or not, 
the MS spectra of labelled compounds contain more sig-
nals each with lower intensities than in the corresponding 
unlabelled spectra. The MS spectra of labelled material 
therefore contain more peaks with lower intensities than 
those of equivalent unlabelled samples.

The untargeted processing of MS data from labelled 
material is also more complex. The extraction of isotopo-
logues from the raw MS data is basically the same process 
as in unlabelled metabolomics so that the same tools—
such as XCMS (Kessner et al., 2008), MS-Dial (Tsugawa 

et al., 2015), MZmine 2 (Pluskal et al., 2010)—can be used 
in both cases. However, the task of regrouping isotopo-
logues into isotopic clusters is specific to isotopic studies. 
A number of dedicated software tools have been devel-
oped, such as X13CMS (Patti et al., 2014), geoRge (Capel-
lades et al., 2016), MetExtractII (Buelschl et al., 2017), 
mzMatchIso (Chokkathukalam et al., 2012), DynaMet 
(Kiefer et al., 2015) and HiResTec (Hoffmann et al., 2018). 
Considering the wealth of information to be exploited in 
untargeted isotopic studies, the processing software needs 
to be robust and efficient in maximizing the number and 
quality of the extracted data. Comparisons of these pro-
grams (Capellades et al., 2016; Dange et al., 2020) have 
highlighted the differences in requirements, algorithms, 
and parameter optimizations between the different tools, 
as well as inconsistencies (non-detection of known peaks, 
inconsistent isotopic clusters, abnormal redundancy, etc.) 
in the results obtained. This can be explained in part by the 
newness of these programs, which will likely be improved 
in the near future. It can also be explained by the challenge 
that parameter optimization represents in such a complex, 
multi-step data processing workflow. Indeed, no rational 
strategy to optimize the recovery of all the available infor-
mation in raw MS data has yet been proposed.

In this article, we present a method for optimizing MS-
based untargeted isotopic tracing experiments by maximiz-
ing the amount and quality of the isotopic information that 
can be extracted from the analytical data. This method is 
based on the use of a suitable reference material to rationally 
perform parameter optimization throughout the processing 
workflow. It is applied here for 13C-labelling experiments 
analysed with geoRge and X13CMS, but the approach is 
generic and can be used with any similar program or label-
ling strategy. We demonstrate it here for the study of a well-
described E.coli mutant with altered metabolic fluxes.

2  Experimental section

2.1  Preparation of biological samples

2.1.1  Reference material: the Pascal triangle sample

The ‘Pascal Triangle’ (PT) sample was produced biologi-
cally as described by Millard et al. (2014). Briefly, Escheri-
chia coli K-12 MG1655 was grown in minimal medium with 
a mixture of unlabelled + 13C-labelled acetate as sole carbon 
source. This mixture consisted of the four different (carbon) 
isotopic forms of acetate in equal proportions, i.e., 25% of 
U-12C-acetate, 25% of 1-13C-acetate, 25% of 2-13C-acetate, 
and 25% of U-13C-acetate. The actual isotopic composi-
tion of this mixture was controlled by quantitative 1H NMR 
before use. A similar culture was performed with only unla-
belled acetate to produce the unlabelled PT sample. Cells 
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were grown in a 500 mL Multifors Bioreactor (Infors HT, 
Bottmingen-Basel, Switzerland) under pH control (pH 7.0). 
Cell growth was monitored by measuring the optical density 
at 600 nm with a Genesys 6 spectrophotometer (Thermo, 
Carlsbad, CA, USA). Intracellular metabolites were sampled 
by fast filtration (Kiefer et al., 2007; Millard et al., 2014) 
from cells collected in the mid-exponential growth phase. 
Samples (2 mL) of cell culture were rapidly dropped on a 
filter (Sartolon Polyamide 0.2 μm) to eliminate the culture 
medium. The filter was rinsed with 2 mL of washing solu-
tion (NaCl 0.9% with 5 mM of acetate), quickly removed 
from the filtration unit, then placed in a precooled centrifuge 
tube containing 5 mL of ACN/MeOH/H2Omq (2/2/1) with 
125 mM formic acid for metabolite extraction and incubated 
for 20 min at − 20 °C. The tubes were then centrifuged for 
5 min at 2000×g and the supernatant was evaporated (Savant 
SC250 EXP 230 Speedvac, ThermoFisher) and resuspended 
in 100 µL of water before LC–MS analysis.

2.1.2  E. coli samples

Two E.coli BW-25113 strains from the Keio collection 
(Baba et al., 2006) were used: BW25113 wild type, and 
BW25113 ∆zwf.

Both strains were first cultured in LB medium (10 g/L 
tryptone, 5 g/L yeast extract and 10 g/L NaCl) with kanamy-
cine (25 μg/ml) at 37 °C overnight and then stored in glyc-
erol stock. The strains were then inoculated from a glycerol 
stock and first cultured in 48-well microplates in liquid LB 
medium. The LB cultures were used to inoculate preculture 
cells in 48-well microplates in minimal synthetic medium 
containing 17.4 g/L  Na2HPO4,12H20, 3.03 g/L of  KH2PO4, 
0.51 g/L NaCl, 2.04 g/L  NH4Cl, 0.49 g/L  MgSO4, 4.38 mg/L 
 CaCl2, 15 mg/L  Na2EDTA  2H2O, 4.5 mg/L  ZnSO4  7H2O, 
0.3 mg/L  CoCl2 17.6H2O, 1 mg/L  MnCl2  4H2O, 1 mg/L of 
 H3BO3, 0.4 mg/L  Na2MoO4  2H2O, 3 mg/L  FeSO4  7H2O, 
0.3 mg/L  CuSO4  5H2O, 0.1 g/L thiamine and 3 g/L glu-
cose. The M9 precultures were used to inoculate cells grown 
in minimal medium containing 3.48 g/L  Na2HPO4,12H20, 
0.606  g/L  KH2PO4, 0.51  g/L NaCl, 2.04  g/L  NH4Cl, 
0.098 g/L  MgSO4, 4.38 mg/L  CaCl2, 15 mg/L Na2EDTA 
 2H2O, 4.5 mg/L  ZnSO4  7H2O, 0.3 mg/L  CoCl2 17.  6H2O, 
1 mg/L  MnCl2  4H2O, 1 mg/L  H3BO3, 0.4 mg/L  Na2MoO4 
 2H2O, 3 mg/L  FeSO4  7H2O, 0.3 mg/L  CuSO4  5H2O, 0.1 g/L 
thiamine and 3 g/L glucose. These cultures were performed 
in 48 15 ml bioreactors under controlled growth condi-
tions using a robotic platform (Freedom EVO 200, Tecan), 
with collection of labelled samples (biomass or cultivation 
medium) at defined culture times or optical densities. This 
cell culture robot and its operation are described in detail in 
Heux et al. (2014) and Bergès et al. (2021).

The cultures were carried out with either unlabelled 
glucose or a mixture of 80% [1-13C1]-d-glucose + 20% 
[U-13C6]-d-glucose. To minimize sources of unlabelled 
carbon atoms from the first culture steps in the latter experi-
ments, cells were inoculated at a starting OD of between 
0.04 and 0.076 from pre-cultures grown with the same 
medium and the same (unlabelled or labelled) carbon 
sources as the cultures.

All cultures were performed in 15 mL reaction vessels, 
at 37 °C, pH 7, a stirring speed of 2300 rpm and with 5 L/
min of compressed air flowing through the culture module. 
Intracellular metabolites were automatically sampled in each 
bioreactor when  OD600nm = 1.2 was reached. Samples (200 
µL) were extracted and quenched in 2 mL of acetonitrile/
methanol/water (4/4/2) with 125 mM formic acid at − 20 °C. 
These 2 mL were then evaporated in a SpeedVac and resus-
pend in 200 µL of water before LC-HRMS analysis. All sam-
ples were produced in five replicates.

2.2  LC/MS measurements

LC/MS analyses were performed using an ICS5000 + ion 
chromatography system (Dionex, CA, US) coupled to an 
Orbitrap Q Exactive + mass spectrometer (Thermo Fisher 
Scientific, Waltham, MA, USA) operated in negative elec-
trospray ionization (ESI−) mode. Central metabolites were 
separated on an ionic chromatography column IonPac AS11 
(250 × 2 mm i.d.; Dionex, CA, USA). The mobile phase was 
a KOH gradient at a flow rate of 380 μL/min, varied as fol-
lows: 0 min, 0.5 mM; 1 min, 0.5 mM; 9.5 min, 4.1 mM; 
14.6 min, 4.1 mM; 24 min, 9.65 mM; 31.1 min, 90 mM; and 
43 min, 90 mM. The column was then equilibrated for 5 min 
at the initial conditions before the next sample was analysed. 
The injection volume was 15 μL.

MS analyses were performed in full-scan mode at a reso-
lution of 70 000 (at 400 m/z) over the m/z range 80–1000. 
Data were acquired with the following source parameters: 
the capillary temperature was 350 °C, the source heater tem-
perature, 350 °C, the sheath gas flow rate, 50 a.u. (arbitrary 
units), the auxiliary gas flow rate, 10 a.u., the S-Lens RF 
level, 65%, and the source voltage, 2.75 kV.

The data were acquired in a single analytical batch. As 
in untargeted metabolomics approaches, all the biologi-
cal samples were randomized in the analytical run and the 
five-replicates of the reference sample were injected at 
regular intervals throughout the experiment. Raw LC/MS 
data were converted into the open “mzXML” format using 
the software Proteowizard (Kessner et al., 2008). The raw 
data were cut after 42 min to retain all essential information 
while avoiding artefacts from the cleaning step and reducing 
data size. Figure S-1 shows the Graphical User Interface of 
MSConvert.
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2.3  Data processing

2.3.1  Reference data

Twenty-five metabolites covering representative metabolite 
classes were selected as reference metabolites: organic acids 
(fumarate, succinate, malate, orotate, alpha-ketoglutarate 
(α-KG), citrate), phosphorylated compounds (2 and 3-phos-
phoglycerate (2/3-PG), phosphoenolpyruvate (PEP), glyc-
erol-3phosphate (Gly-3P), 5-phosphoribosyl-pyrophosphate 
(PRPP), pentose-5-phosphate (P5P), fructose-1,6-diphos-
phate (FBP), sedoheptulose-7-phosphate (Sed7P), glucose-
1-phosphate (G1P), glucose-6-phosphate (G6P), fructose-
6-phosphate (F6P), mannose-6-phosphate (Man6P)), and 
nucleotides (adenosine diphosphate (ADP), adenosine 
triphosphate (ATP), cytidine diphosphate (CDP), cytidine 
triphosphate (CTP), guanosine diphosphate (GDP), uridine 
diphosphate (UDP), uridine monophosphate (UMP), uridine 
triphosphate (UTP)). All these compounds were identified in 
the MS data with a confidence level 1 (Creek et al., 2014), 
including confirmation with authentic compounds.

The isotopologues from these metabolites were extracted 
from the MS data collected on the reference material, and 
were assigned to molecular isotopic clusters in a targeted 
manner with the software Emzed (Kiefer et al., 2013) using 
a mass tolerance of 0.003 m/z. Carbon isotopologue distribu-
tions (CIDs) of the reference metabolites were then quanti-
fied from the corresponding mass fractions after correcting 
for the presence of all naturally occurring isotopes and the 
isotopic purity of the tracer (99%) using the software IsoCor, 
v2.0.4 (Millard et al., 2019). The complete dataset (includ-
ing the list of reference metabolites, the isotopologues, their 
analytical characterics, their abundances, the isotopic clus-
ters and the metabolite CIDs) is detailed in Supplementary 
Information Table S1 and was used as reference material to 
evaluate the optimization of data extraction.

2.3.2  Detection of LC/MS features using XCMS

LC/MS features were extracted using the XCMS package 
(Smith et al., 2006) in Rstudio. The isotopologue param-
eters optimization (IPO) tool (Libiseller et al., 2015) was 
first used to optimize XCMS parameters, using unlabelled 
samples (E.coli) as required. The set of parameters selected 
using the IPO tool are given in SI Table S2, and were used as 
starting settings for subsequent data processing optimization.

All raw datasets (i.e. from unlabelled and labelled PT 
samples and E.coli samples) were grouped and processed in 
a single batch with XCMS (Smith et al., 2006) so that peaks 
were identified and integrated using exactly the same pro-
cessing parameters. This operation was iteratively repeated 
after changing the parameter settings to minimize the 

difference between the XCMS data and a reference dataset, 
as explained in the Results section. The XCMS parameters 
and their tested range of values are described in SI Table S3. 
The parameters giving the optimal recovery of the reference 
data are given in SI Table S2.

2.3.3  Isotopologue clustering

The XCMS object containing the list of putative isotopo-
logues was processed separately with the R packages 
X13CMS (Patti et al. 2014) and geoRge (Cappellades et al. 
2016). The parameters for the two programs are listed in SI 
Table S4.

2.3.4  Calculation of CIDs

Carbon isotopologue distributions were calculated from the 
relevant mass fractions of isotopic clusters after correct-
ing for naturally occurring isotopes of elements other than 
carbon using IsoCor (Millard et al., 2019), accounting also 
for the MS resolution. The CIDs of metabolites in the PT 
samples can be predicted from the composition of the label 
input and the number of carbon atoms in the metabolites. 
The theoretical CIDs of metabolites in the PT sample were 
calculated using the equation

where n is the total number of carbon atoms in a molecu-
lar entity with k 13C atoms and p is the abundance of 13C 
isotopes. Here, the molecular enrichment of 13C-acetate 
measured by NMR was p = 0.512. Standard deviations of 
measured CIDs were determined from the analysis of five 
analytical replicates of the PT sample.

2.4  Statistical analyses

Principal Component Analysis (PCA) was applied to all the 
biological samples (unlabelled and labelled E.coli strains). 
PCA was performed using SIMCA [REF, v 15.0.02.5959] to 
separate all the biological samples (unlabelled and labelled 
E.coli strains) into different classes. A Wilcoxon test (p 
value ≤ 0.05) was used to identify the most discriminating 
isotopologues between the two E.coli strains. An in-house 
database with 47 metabolites was then used for metabolite 
identification based on exact masses and standard retention 
times (RTs). Metabolite identification was confirmed with 
authentic compounds.

Mk =

(

n

k

)

∗ pk ∗ (1 − p)n−k
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2.5  Evaluation criteria for processing optimization

This study is primarily based on the establishment of specific 
metrics to evaluate isotopic measurements and validate soft-
ware parameters used to process data in untargeted MS-based 
isotopic tracing investigations of metabolism. We used the cri-
teria established by Heuillet et al. (2018) to validate MS-based 
isotopic measurements:

• The mass accuracy, i.e., the error on isotopologue masses, 
estimated from the difference between the theoretical  (Mth) 
and experimental  (Mexp) mass of each isotopologue.

• The RT accuracy, i.e., the error on the measured RTs, cal-
culated from the difference between theoretical and meas-
ured RTs.

• The RT isotopic deviation, i.e., the measured deviation of 
RTs between isotopologues belonging to the same isotopic 
cluster.

• The area precision, i.e., the spread of measured areas, esti-
mated from the standard deviation of measurements on PT 
sample replicates.

• The CID accuracy (CID mean bias), i.e., the error on meas-
ured CIDs, simply the difference between predicted and 
measured CIDs.

We also used two further criteria to evaluate the closeness 
of the clustering data obtained with the two 13C-clustering 
programs to the clusters obtained by manual analysis:

• The recall, i.e. the ability of the process to retrieve the 
information, calculated as follows:

• The cluster precision, i.e., a measure of the relevance of the 
retrieved information, defined by:

mass accuracy (ppm) =
(

Mth−Mexp

)

∕Mth × 106

RT accuracy (s) =
(

RTth−RTexp

)

∕RTth × 10000

CID accuracy = CIDth − CIDexp

recall =
{relevant isotopic clusters} ∩ {retrieved isotopic clusters}

{relevant isotopic clusters}

cluster precision =
{relevant isotopic clusters} ∩ {retrieved isotopic clusters}

{retrieved isotopic clusters}

3  Results and discussion

3.1  Overall strategy and case study

The aim of this work was to optimize data processing in 
untargeted MS-based isotopic tracing studies of metabo-
lism, which refers here to isotope-labelling experiments 
aiming at the identification of metabolic pathways from 
the detailed examination of the label incorporation into 
metabolites. In contrast to isotope-assisted metabolomics 
in which a labelled sample with known label content of 
metabolites is added to assist in metabolome annotation 
(or quantification) (de Jong et al. 2012; Wang et al., 2019), 
the labelling patterns of metabolites are not known—and 
are not predictable—in tracing studies of metabolites. 
Indeed, they represent the desired information to elucidate 
metabolic pathways. According to the isotopic composi-
tion of the labelled source and to the operating metabolic 
pathways, potentially any combination of isotopologues 
can be generated for each metabolite in such experiments, 
which means that the complete isotopic envelope has to be 
measured to get valuable metabolic information. Moreo-
ver, the isotopologue abundances are determined by the 
pathways activities and can be exploited to measure meta-
bolic fluxes. Hence, untargeted MS-based isotopic tracing 
studies of metabolism can be defined as the quantitative 
measurement of the complete isotopic envelope of all 
detected metabolites. It currently represents a major chal-
lenge in terms of MS data processing and interpretation 
because both metabolites and their labelling patterns are 
not known. Some software tools have been recently intro-
duced to perform automated extraction of isotopic clusters 
in untargeted MS-based isotopic tracing studies, but due 
to the high complexity of the MS data collected in such 
studies, specific strategies to optimize the parametrization 
of these tools are required. In this work, a methodology 
to optimize the extraction of complete isotopic envelopes 
of all metabolites detected in full-scan MS spectra of 
labelled samples is introduced. The raw MS data in these 
experiments are processed in two steps: (1) extraction of 
individual isotopologues and (2) grouping of individual 
isotopologues into isotopic clusters. The proposed strategy 
for optimizing data processing in this context is shown 
in Fig. 1. The key feature is the addition to the analytical 
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batch of a reference isotopically labelled sample to opti-
mize data processing parameters. The labelling data of 
a set of metabolites are manually extracted from the MS 
data of the reference material to generate a reference data-
set and the processing parameters are then optimized by 
minimizing the difference between this reference dataset 
and the data extracted for the reference metabolites. The 
same reference dataset is used to optimize the isotopo-
logue extraction and isotopologue clustering steps.

The proposed optimization process is generic and can be 
applied to various stable isotope tracers used to investigate 
metabolism. Its use is demonstrated here for 13C-tracing, 
which is the most widespread approach in isotopic studies 
of metabolism (Wiechert et al., 2001; Zamboni et al., 2009). 
As a test case to illustrate the application and relevance of 
the proposed optimization strategy, a 13C-labelling experi-
ment was performed in which two E. coli strains (wild-type 
BW25113 and its ∆zwf derivative knocked-out for the gene 
encoding the first committed step of the pentose-phosphate 
pathway) were grown in the presence of 13C-labelled glu-
cose as sole carbon source. The intracellular metabolites 
were sampled at mid-exponential growth and analysed by 
LC–MS. A reference material was analysed together with 
the biological samples to optimize the data processing. 
The reference material and its use for data optimization are 
described in detail in the following sections. To properly 
evaluate data quality throughout the optimization process, 
all samples (including the reference material) were produced 

and analysed in five replicates. In keeping with the require-
ments of the 13C-profiling software furthermore, unlabelled 
samples (five replicates) of the reference material and of 
the E. coli strains were produced and analysed in the same 
analytical batch as the labelled samples.

3.2  Definition of reference sets for optimization

3.2.1  Choice of the reference material

Various isotopically labelled materials can be used, provided 
they satisfy a number of criteria related to the analytical 
method, the analysed samples, and the biological question 
to be addressed. The reference material should ideally have 
an identical or similar matrix to the samples of interest to 
generate the same matrix effects in the MS experiments and 
contain the same metabolites. It is very important for the 
labelling patterns of the metabolites to be known or be fully 
predictable to provide reliable reference data for the opti-
mization process.

The reference material used here was a so-called Pas-
cal triangle (PT) sample. PT samples are biologically pro-
duced materials whose isotopic composition is designed to 
obtain metabolites with tracer isotopologue distributions that 
match the binomial coefficients of Pascal's triangle. Details 
about these samples and their application to MS-based iso-
topic tracing studies can be found in Millard et al. (2014), 
Heuillet et al. (2018) and Schwaiger-Haber et al. (2019). 
PT samples were used here for several reasons. First, the 
fact that the sample could be produced by cultivating E. 
coli on 13C-labelled acetate and collecting intracellular polar 
metabolites, meant that it had exactly the same matrix as the 
biological samples to be analysed. Second, the chosen PT 
sample satisfies many of the above-mentioned criteria for 
reference materials, including a broad metabolome coverage, 
fully predictable labelling patterns and broad coverage of 
the isotopologue space (all tracer isotopic forms of the same 
metabolite are present at the same abundance).

3.2.2  Definition of the reference dataset

The reference dataset corresponds to analytical data man-
ually extracted from the reference material for a list of 
selected metabolites (the reference metabolites) and used as 
reference data during the optimization process. As for the 
reference material, various sets of metabolites can be used. 
The reference metabolites should be sufficient in number to 
cover the metabolome. They should be known compounds 
so that their labelling patterns can be extracted in a targeted 
fashion and complete isotopic clusters should be reliably 
detected in the reference material to optimize isotopologue 
recovery and isotopologue grouping. Note that the reference 
metabolites do not necessarily have to occur in the biological 

Fig. 1  Strategy for software parameter optimization in untargeted 
MS-based isotopic profiling using a reference labelled material
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samples for the data optimization process itself since this 
depends only on the data from the reference material. How-
ever, they should be selected for their relevance to the objec-
tives of the study.

For this case study, we selected 25 metabolites that are 
representative of the central metabolism of E. coli and are 
known to be reliably detected with our analytical method. 
All of them are confirmed level 1 annotated metabolites 
(Creek et al., 2014). The complete list of the selected ref-
erence metabolites is given in the Material & Methods 
(Sect. 2.3.1). This set of metabolites was consistent with 
the metabolite content of the labelled reference material and 
the biological question for the E.coli strains considered in 
this work.

According to the elemental formula of the 25 reference 
metabolites, the reference dataset should consist of 25 iso-
topic clusters containing 184 tracer (carbon) isotopologues 
in total. By manually processing the MS data collected for 
the PT sample using the software Emzed (Kiefer et al., 
2013), all 25 isotopic clusters were found, along with 181 
tracer isotopologues (Table S1). The missing isotopologues 
corresponded to MS signals that were either undetected 
(CDP M0 and Mn) or with too low S/N ratio (G1P Mn).

The reference dataset was further characterized for the 
mass accuracy and RT isotopic deviation of individual iso-
topologues. Compared to their theoretical values the mean 
mass error was 1.42 ± 1.1 ppm for the 181 isotopologues. 

For the 25 reference metabolites, the RT isotopic deviation 
ranged from zero to 3 s with a mean relative error of 0.02% 
across the complete analytical run. These results indicate 
that the analytical characteristics (m/z, RT pairs) of the 
detected isotopologues are fully consistent with the values 
expected for the selected metabolites.

The experimental CIDs of the corresponding metabo-
lites were calculated from the reference dataset to generate 
reference values (reference CIDs) (Table S1), which were 
validated by comparing them with predicted values for the 
PT sample. The CIDs measured manually for all 25 metabo-
lites deviated by less than 5% on average from the predicted 
values (Fig. S2).

These results highlight one of the benefits of using a ref-
erence material such as the PT sample to optimize process-
ing, namely that analytical problems—limited sensitivity in 
this case—can be identified and considered separately from 
processing issues.

The 181 isotopologues in the reference dataset are 
referred to hereafter as the reference isotopologues.

3.3  Optimization of isotopologue extraction

The proposed strategy for data processing optimization 
based on a reference material is illustrated in Fig. 2 and 
involves two steps (i) optimization of isotopologue extrac-
tion and (ii) optimization of isotopologue clustering, as 

Fig. 2  Proposed strategy for the two-step optimization of data processing in untargeted MS-based isotopic tracing studies
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described in detail below. Briefly, in the first step, the bench-
mark isotopologues of the reference metabolites are identi-
fied automatically using extraction software (XCMS in this 
work) and are compared to the reference isotopologues using 
three evaluation criteria (recovery rate, analytical character-
istics, and isotopologue integrals) and the extraction param-
eters are then iteratively modified to minimize the difference 
between the two isotopologue datasets.

3.3.1  Starting the optimization process

Some tools were recently published to perform automated 
parametrization of software in untargeted metabolomics 
(Libiseller et al., 2015; Manier et al., 2018). Because iso-
topologue extraction is performed with the same tools as 
feature extraction in untargeted metabolomics—i.e. XCMS 
in this study-, such tools can be also applied to untargeted 
isotopologue analysis. In this work we used the tool IPO 
(Alboniga et al. 2020; Libiseller et al., 2015), which was 
specifically designed to parameterize XCMS, to provide 
starting parameter settings for isotopologue extraction. In 
compliance with the IPO guidelines, this was done with MS 
data collected on unlabelled samples—i.e. the unlabelled 
PT samples. The so-obtained parameters (Table S2) were 
applied to extract the isotopologues from the labelled PT 
samples (benchmark isotopologues). A total of 164 out 
of the 181 reference isotopologues, were retrieved at the 
end of this process (Fig S3a). Closer inspection of the data 
(Table S5) showed that the mass of the extracted peak dif-
fered significantly from that of the corresponding peak in the 
reference data (Table S4). Indeed 22 isotopologues showed 
mass errors above 3 ppm, the error being higher than 5 ppm 
for 8 of them, and up to 18.8 for malate M2. This mass dis-
crepancy, together with the fact that 17 isotopologues were 
not detected at all, indicates that the IPO-defined param-
eter settings were not optimal for isotopologue extraction. 
Such results can be explained because IPO was designed to 
optimize the processing of MS data collected on unlabeled 
material. The processing of MS data collected on labeled 
material, which are much more complex (more peaks with 
lower intensities), requires specific optimization tools. The 
tool IPO was found useful to provide a first set of parameter 
values which could be used to as a starting point to evaluate 
the benefit of the proposed optimization strategy.

3.3.2  Manual parameter selection

The XCMS parameters were next optimized using a semi-
manual approach depicted in Fig. 2. The IPO parameters 
(see Materials and Methods, Table S2) were used as a start-
ing point for this process, but other tools or starting values 
could also have been used. In each optimization round, the 

isotopologues from the 25 reference metabolites were auto-
matically extracted using XCMS and gathered into bench-
mark isotopologues. The benchmark isotopologues were 
then compared to the reference isotopologues using the 
evaluation criteria mentioned above. The process was then 
iterated after changing the extraction parameters values to 
maximize the agreement between the benchmark isotopo-
logues and the reference isotopologues.

This optimization process was used for the five labelled 
PT samples in the analytical batch. Table S2 lists the param-
eter settings giving the optimal isotopologue recovery by 
automated extraction accross the five PT sample replicates 
(Fig. S3b). The optimized parameters allowed the recov-
ery of 174 isotopologues, i.e. 10 more than with the initial 
parameter settings. This gain in recovery was accompanied 
by a gain in data quality (Table S5). The average error in 
mass accuracy over the common detected isotopologues (for 
161 isotopologues) was 1.29 ± 1.02 ppm, to be compared 
to 1.74 ± 2.38 ppm in the initial data. The lower standard 
deviation on the mass errors indicated a higher precision of 
isotopologue masses after optimization. The RT accuracy 
for the benchmark isotopologues compared to the reference 
isotopologues was 0.29 ± 0.22 s on average. The results 
are given in full in the Supplementary Data (Table S5) and 
highlight the improvement in data extraction afforded by the 
proposed optimization strategy.

Nevertheless, seven reference isotopologues remained 
undetected in the optimized dataset, indicating that the auto-
mated process was slightly less efficient than manual extrac-
tion. Five of the missing isotopologues, the M0 and Mn of 
ADP and GDP and the  Mn-1 of CDP, were not detected in 
any of the five PT sample replicates. The two others miss-
ing isotopologues (UDP M0 and CDP M1) were detected 
in only one replicate. The chromatographic signal appeared 
more intense in this replicate than in the others. Overall, 
the above data indicated not only that the number missed 
isotopologues was decreased after optimization process, 
but also that the detected isotopologues were much better 
defined.

3.3.3  Quality of isotopologue quantification

In isotopic studies of metabolism, valuable quantitative 
information on biochemical pathways is obtained from 
isotopologue abundances. The reliability of isotopologue 
quantification is a major issue at the data acquisition level 
because ionization problems and matrix effects mean that 
MS is not inherently quantitative. Methods for validating 
MS methods for reliable isotopologue measurements—
including the benefits of using PT samples for such a pur-
pose—as discussed recently by Heuillet et al. (2018) and 
Schwaiger-Haber et al. (2019), are beyond the scope of 
this work. Isotopologue quantification can also be limited 
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by data processing. Several factors can be problematic, but 
the main limitation is the capability of the processing soft-
ware to properly integrate the MS signals. Optimizing data 
processing in untargeted isotopic tracing studies therefore 
also means ensuring isotopologue abundances are properly 
measured.

Because manual integration is somewhat arbitrary and 
automatic integration is imperfect regardless of the algo-
rithm considered, the quality of isotopologue quantification 
was controlled and maximized throughout the optimiza-
tion process by comparing isotopologue abundances in the 
benchmark isotopologues to those in the reference isotopo-
logues. Two methods were used to evaluate quantification 
accuracy.

We first compared the absolute abundances of individual 
isotopologues separately. Figure S4 shows that the bench-
mark isotopologues have absolute abundances very close to 
those in the reference dataset. The isotopologue areas were 
closely similar whether integrated manually or automati-
cally, indicating the reliability of automated isotopologue 
quantification after optimization. Some slight overestima-
tions were observed for two metabolites showing noisy 
peaks (succinate and malate), while individual isotopologues 
with very low S/N (lightest and heaviest isotopologues of 
G1P, Sed7P) were underestimated.

The mean SD in integrated areas across the five replicate 
measurements was 0.0003 for the 174 extracted isotopo-
logues (Fig. 3A), emphasizing the high quantitative relia-
bility of the automatic isotopologue extraction process. We 
next compared the isotopologue abundances relative to the 
isotopic cluster of the corresponding metabolite by calculat-
ing the CIDs. Isotopologue quantification errors propagate 
to the entire CID vector, so that comparing CIDs calculated 
after automated extraction to manually measured CIDs is a 
sensitive method of detecting processing-induced quantifi-
cation errors.

Benchmark CIDs were calculated for the benchmark iso-
topologues—before (i.e. with IPO settings) and after param-
eter optimization—after reconstructing molecular isotopic 
clusters and correcting for naturally-occurring isotopes. The 
benchmark CIDs were then compared to the reference CIDs. 
The data are shown in full in the Supplementary Data (Fig 
S5). The results obtained with the final, XCMS-optimized 
dataset are shown in Fig. 3B, C. For all 25 metabolites, the 
CIDs obtained after parameter optimization were in close 
agreement with the reference values (average error below 
2%; Fig. 3B). Figure 3C compares the CIDs of selected 
metabolites with reference values before and after param-
eter optimization. The CIDs calculated from the initial 
non-optimized dataset are generally biased and show sig-
nificant inter-replicate variability (e.g. PRPP, Fig. 3C). This 
is partly because many isotopologues go undetected with 
the IPO parameters, as mentioned above. After parameter 

optimization however, the CIDs were in good agreement 
with the corresponding values in the reference dataset, 
showing the benefit of the proposed optimization strat-
egy. Interestingly, the CIDs of both malate and succinate, 
whose isotopologue abundances were overestimated in the 
optimized dataset (Fig. S4), were also closely consistent 
(Fig. 3C). This means that although the MS signals of the 
two compounds were overestimated in the automatically 
extracted data, the quantitative relationships between iso-
topologues of the same compound were preserved. This 
observation points to a potential bias in interpreting the 
abundances of individual isotopologues from different 
metabolites to derive quantitative metabolic information—
e.g. comparing the M + 5 isotopologue of citrate to the M + 5 
isotopologue of glutamine to determine reductive glutamine 
metabolism –without considering all potential data acquisi-
tion and processing problems.

Altogether, the above results clearly emphasize the sig-
nificant improvement in the quality of the quantitative data 
achieved through the proposed optimization strategy. The 
results also show that data processing can be a substantial 
source of bias in MS-based untargeted isotopic tracing inves-
tigations, in terms of the number, correctness and quantifica-
tion of the recovered isotopologues.

3.4  Optimization of isotopologue clustering

Isotopologue clustering consists in the grouping of extracted 
isotopologues into metabolite isotopic clusters (Fig. 2). Two 
different programs, geoRge and X13CMS (Patti et al. 2014; 
Capellades et al., 2016; Dange et al., 2020), were used to 
do this. Clustering was optimized in a similar fashion as the 
extraction process was (Fig. 2). The isotopic clusters of the 
25 reference metabolites (reference clusters) were manu-
ally extracted from the optimal set of isotopologues. The 
software were used to automatically extract the 25 clusters 
(benchmark clusters) from the same dataset. The optimiza-
tion consisted in adjusting software parameters to minimize 
the difference between benchmark clusters and reference 
clusters.

The quality of clustering was evaluated from the propor-
tion of correct clusters that were recovered. A correct cluster 
was defined as containing only all the correct isotopologues. 
Two types of incorrect cluster were considered: incomplete 
clusters, missing one or more isotopologues, and corrupt 
clusters, with one or more spurious isotopologues. We 
defined two figures of merit to optimize based on the pro-
portions of correct and incorrect clusters in the benchmark 
clusters: recall, or sensitivity, the ability to detect a cluster 
for all 25 reference metabolites; and precision, the number 
of correct clusters retrieved in the benchmark clusters. The 
software parameters were then iteratively modified to maxi-
mize the recall and the precision of the benchmark clusters.
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Fig. 3  Impact of parameter optimization on the measurement of iso-
topologue abundances. a Distribution of precision for the 174 XCMS-
extracted benchmark isotopologues in the PT sample. b Mean biases 
(%) of optimized benchmark CIDs with respect to reference CIDs. 

c Comparison of reference CIDs (dark blue), IPO benchmark CIDs 
and optimized benchmark CIDs (light blue) for PRPP, citrate, ATP, 
malate and succinate in the PT samples
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Preliminary tests showed that the quality of the cluster-
ing depended mainly on two parameter (isotopologue mass 
deviation and RT window). The isotopologue mass devia-
tion (“ppm” for X13CMS and “ppm.s” for geoRge) is the 
acceptable error in m/z measurements between successive 
isotopologues in the same isotopic cluster (the accuracy of 
isotopic distances), which should be the mass difference 
between 13C and 12C (1.00335 m/z). The RT window (“RT 
window” for X13CMS and “rt.win.min” for geoRge), cor-
responds to the tolerance on the RTs of isotopologues from 
the same metabolite, which should in theory be exactly the 
same. The RT deviation was measured to vary between 0.2 
and 7.2 in the isotopologue dataset obtained after XCMS 
optimization (Table S5, see 3.3.2). From these values, two 
different RT windows (5 and 10 s) were considered and the 
isotopologue mass deviation was varied from 1 to 10 ppm. 
The noise threshold was deliberately set at a low value 
(5000) to maximize peak extraction.

As reported previously (Dange et al., 2020), many redun-
dancies were observed in the clusters obtained with geoRge 
independently of the parameters used. This is due to the 
clustering algorithm of geoRge, which generates various 
clusters from the same set of isotopologues. The optimiza-
tion for geoRge was therefore performed after manual cura-
tion of obvious redundancies in the geoRge dataset.

For both programs, a low mass deviation threshold pro-
duced more incomplete clusters while increasing the mass 
deviation generated more corrupt clusters (Fig. 4). The miss-
ing species were most often the Mn isotopologues of nucleo-
tides (ADP, ATP, CTP, GDP, UDP, UMP, UTP), which can 
be explained by the lower quality of the XCMS data for these 
species and their larger mass deviation (see Sect. 3.3 and 
Table S4). Processing the data with a larger mass tolerance 
allowed these isotopologues to be recovered but also tended 
to generate corrupt clusters.

An RT window of 10 s was found to yield a greater pro-
portion of correct clusters than an RT window of 5 s for all 
isotopologue mass deviation values except 1 ppm, for which 
the proportion of correct clusters was the same with both. 
The number of corrupt clusters did not depend on the length 
of the RT window, regardless of the mass deviation used. 
These results are because while unlabelled and labelled 
samples were processed simultaneously, the heaviest iso-
topologues were only detected in the 13C-enriched samples 
leading to a certain amount of variation in RTs.

These results are based on a targeted search of 25-bench-
mark clusters and we assume that the observed errors are 
representative of the clustering process for the entire dataset. 
Table 1 shows that with an RT window of 10 s, the preci-
sion and recall were optimal with both programs at a mass 

Fig. 4  Quality of isotopologue clustering. Number of correct (green 
line), incomplete (orange line) and corrupt (red line) isotopic clusters 
detected by X13CMS and geoRge depending on the isotopologue 

mass deviation (1, 2, 3, 5, 8 or 10 ppm) and the RT window (5 s, dot-
ted line; or 10 s, solid line) based on the set of reference clusters (pur-
ple line) for the five replicates of the PT sample

Table 1  Cluster precision and 
recall for X13CMS and geoRge 
with a RT window of 10 s and 
different isotopologue mass 
deviations, evaluated for the 25 
reference metabolites in the PT 
sample

Isotopologue mass 
deviation (ppm)

1 (%) 2 (%) 3 (%) 5 (%) 8 (%) 10 (%)

X13CMS Precision 60 80 84 96 92 92
Recall 100 100 100 100 100 100

geoRge Precision 60 68 76 92 88 84
Recall 100 100 100 100 100 100
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deviation of 5 ppm. The equivalent results for an RT window 
of 5 s are provided in Table S6.

The recall of both programs was 100%, meaning that all 
25 reference metabolites were retrieved. Almost all these 
clusters were correct, with a precision of 96% (1 incorrect 
cluster) and 92% (2 incorrect clusters) for X13CMS and 
geoRge, respectively. The ATP cluster was found incor-
rect with both programs, with some isotopologues wrongly 
identified by the software as M35 to M39. The second 
incorrect cluster for geoRge was ADP, whose M9 isotopo-
logue was missed because of the statistical rules applied 
by geoRge to select potential enriched isotopologues in the 
labelled samples. Close inspection of the data for this iso-
topologue showed that some noise had been integrated for 
the unlabelled samples, and could be interpreted as signal 
by geoRge, so that the M9 peak in the labelled data was not 
considered as labelled.

These results show that both programs perform well 
despite their slightly different approaches. Briefly, geoRge 
compares potential isotopic peaks in the labelled and unla-
belled samples with all candidate basepeaks within the vec-
tor of masses calculated for each potential isotopologue. On 
the other hand, X13CMS compares all potential isotopo-
logue peak pairs within a RT bin, groups them together 
based on a common basepeak and discards duplicate infor-
mation. In this targeted search of 25 reference metabolites, 
X13CMS generated a smaller number of incorrect clusters 
than geoRge and no correction for clustering redundancy 
was required. It has been shown that in spite of these redun-
dancies, geoRge tends to generate fewer false positives than 
X13CMS, but can miss some features that X13CMS finds 
(Capellades et al., 2016; Dange et al., 2020). The above 
results show that regardless of the software chosen, inde-
pendently optimizing the parameters used to group isotopic 
clusters is essential.

3.5  Application to the case study

To illustrate its use, the optimization workflow was applied 
to the study of wild type E. coli BW 25113 and a mutant 
deleted for the zwf gene (∆zwf) that encodes glucose-6-phos-
phate dehydrogenase (G6PDH). This mutation has a neg-
ligible impact on the growth of the bacterium but leads to 
metabolic adaptations, which can be nicely revealed by using 
13C-labelling experiments (Nicolas et al., 2007; Zhao et al., 
2004; Bergès, Cahoreau et al. 2021). We used this example 
of an untargeted MS based isotopic tracing investigation to 
illustrate how the proposed workflow optimizes the recovery 
of this kind of labelling information.

The E. coli samples were analysed by LC–MS and first 
processed using the starting (IPO-derived) parameter set-
tings (Table S2). Then data processing was repeated with 
the optimal parameter settings (Table S2). The gain in data 

quality resulting from the optimization is illustrated in for 
the WT strain (Table 2). The fact that the proposed approach 
yields the same cluster precision for biological samples as 
for the reference material, confirms the efficiency of the opti-
mization process.

In total, 10,129 isotopologues were extracted by XCMS 
from the two E. coli strains and were further processed with 
geoRge and X13CMS to group some of isotopologues in 
isotopic clusters. As already observed, geoRge generated a 
significant number of redundancies from this dataset com-
pared to X13CMS (Fig. 5A), but after manual curation the 
number of clusters was similar with both software (1037 and 
1133 for geoRge and X13CMS, respectively) (Fig. 5B). Over 
all the distinct clusters detected (1180) with both programs 
(Fig. 5B), a total of 990 clusters had the same basepeak, 
corresponding to an overlap of 84%, of which 797 were iden-
tical in both cluster length and isotopologue composition 
(Table S7).

Regarding the greater number of clusters detected by 
X13CMS than by geoRge, the 190 isotopic clusters identi-
fied by one program and not the other (147 by X13CMS 
and 43 by geoRge) mostly contained a single isotopologue 
possibly because of instrumental noise or the presence of 
unlabelled metabolites or other unresolved peaks.

In isotope labelling experiments, isotopologue abun-
dances can be interpreted either individually (e.g. the evo-
lution of the M + 3 peak intensity of a metabolite) or relative 
to the complete isotopic cluster (isotopologue distribution), 
the latter approach being the most common way of describ-
ing labelling patterns in 13C-fluxomics. Here, mass fractions 
were calculated for all detected clusters in all the samples 
(unlabelled and labelled) from the outputs of X13CMS and 
geoRge, and PCA was used to explore differences in the 
isotopic profiles of two E.coli strains (Fig. 5C). Compari-
sons of isotopic profiles depend heavily on the number of 
features detected and how they are clustered, therefore on 
the quality of the data processing. The PCA plots for the 
two programs show a similar level of separation between the 
different biological conditions, confirming the repeatability 
of the workflow from sample preparation through to data 

Table 2  Impact of parameter optimization on the extraction of data 
from the E. coli WT samples

Cluster precision (%) of the two programs for the 25 reference metab-
olites before and after parameter optimization

Clustering software Cluster precision (%)

Starting parameter 
settings (%)

Optimized 
parameter set-
tings (%)

X13CMS 40 96
geoRge 44 92
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processing. In these plots, labelled and unlabelled samples 
are strictly separated along the first PCA component and WT 
and ∆zwf strains along the second. The lack of separation 
between the two groups of unlabelled samples is expected 
because the unlabelled mass fractions have the same iso-
topomer composition (i.e. natural abundance), such that 
the only discriminating factor is the presence or absence of 
peaks. On the contrary, the 13C-enriched samples are closely 
grouped by strain on the plots according to their isotopic 
composition. This demonstrates the significant impact of the 
∆zwf mutation on flux distribution, which then significantly 
affects the isotopic composition of the metabolites.

The WT and ∆zwf groups were analysed to identify the 
most discriminating labelling data between the two strains. 
The corresponding isotopic clusters were compared using 
Wilcoxon tests, with 207 (X13CMS) and 138 (geoRge) of 
these clusters having more than one significantly different 
(p ≤ 0.025) isotopologue between strains. By exploiting an 
in-house database (containing 47 metabolites), 20 isotopic 
clusters could be assigned to metabolites with a level 1 con-
fidence (Creek et al., 2014). They were related to glycolysis 
(Fumarate, Succinate, Malate, 2/3-PG, PEP, G6P, FBP), the 

PPP (Sed7P, Orotate, P5P, Shiki3P (CAS: 63959-45-5)) and 
nucleotide biosynthesis (ADP, ATP, CDP, CTP, UMP, UDP, 
UTP, UDP-Glucose (CAS: 133-89-1), UDP-Acetylglucosa-
mine (CAS: 528-04-1)) (Fig. S7). Changes in the labelling 
patterns of these metabolites was fully consistent with the 
modifications expected for the ∆zwf strains, which is known 
to significantly impact the partition between glycolysis and 
the PPP (Nicolas et al., 2007; Zhao et al., 2004), resulting 
also in differential labelling of the ribosyl moiety of nucle-
otides. Furthermore, the number of significantly different 
isotopic clusters that remain unidentified after this initial 
analysis demonstrates the power of the untargeted approach 
and the need for further identification.

4  Conclusion

This work emphasized that specific workflows have to be 
developed for optimal processing of the complex MS data 
that are generated in MS-based untargeted isotopic tracing 
studies of metabolism. Indeed, the results showed that sig-
nificant gain in the recovery of valuable information was 

Fig. 5  a Comparison of the number of isotopic clusters each detected 
isotopologue appears in for X13CMS (blue) and geoRge (red) soft-
ware. b Venn diagram of the number of isotopic clusters detected by 
X13CMS (blue) and geoRge (red) in biological samples, including 

clusters identical both in length and isotopologue composition (green 
circle). c PCA plots of the extracted isotopic profiles of unlabelled 
and labelled wild-type and ∆zwf E.coli strains after processing using 
X13CMS (left) and geoRge (right)
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obtained by applying the proposed methodology for data 
processing optimization. The application of a suitable refer-
ence material to optimize software parametrization proved 
to increase not only the number of recovered isotopic data 
but also the quality of the data. Pascal Triangle samples 
are well suited for such purpose since they allow both the 
identification of analytical issues and optimization of data 
processing at the same time. Together with the progress in 
MS instrumentation and analytical methods, which allows 
to extend the metabolome—and fluxome—coverage, apply-
ing the proposed methodology is maximizing the biological 
value of isotopic tracing investigations by revealing the full 
metabolic information that is encoded in the labelling pat-
terns of the metabolites.

Glossary

Benchmark clusters  Dataset containing the benchmark 
isotopologues automatically 
clustered using the two cluster-
ing software

Benchmark isotopologues  Dataset containing isotopo-
logues of reference metabolites 
automatically extracted from 
MS data of the reference mate-
rial using XCMS

Isotopic cluster  Group of MS peaks from a unique molec-
ular entity, i.e. with the same elemental 
composition but different isotopic compo-
sitions (IUPAC definition) 

Isotopologues  Molecular entities that differ only in their 
isotopic composition (IUPAC definition) 

Pascal triangle (PT) sample  Biologically-produced 
material in which the 
isotopic composition 
of the labelled substrate 
is designed to obtain 
metabolites with tracer 
isotopologues distrib-
uted according to the 
binomial coefficients 
of Pascal's triangle

Reference clusters  Reference dataset containing the 
benchmark isotopologues manu-
ally clustered 

Reference isotopologues  Reference dataset contain-
ing isotopologues of reference 
metabolites manually extracted 
from MS data of the reference 
material

Reference material  Labelled sample used as a ref-
erence to optimize processing 
parameters

Reference metabolites  List of metabolites identified with 
a level 1 confidence expressed 
and measurable in the reference 
material

Tracer isotopologues  Isotopologues of the tracer 
element
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