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All-depth dispersion cancellation in 
spectral domain optical coherence 
tomography using numerical 
intensity correlations
Mikkel Jensen   1, Niels Møller Israelsen1, Michael Maria2,3, Thomas Feuchter2,  
Adrian Podoleanu3 & Ole Bang1,2

In ultra-high resolution (UHR-) optical coherence tomography (OCT) group velocity dispersion (GVD) 
must be corrected for in order to approach the theoretical resolution limit. One approach promises not 
only compensation, but complete annihilation of even order dispersion effects, and that at all sample 
depths. This approach has hitherto been demonstrated with an experimentally demanding ‘balanced 
detection’ configuration based on using two detectors. We demonstrate intensity correlation (IC) OCT 
using a conventional spectral domain (SD) UHR-OCT system with a single detector. IC-SD-OCT 
configurations exhibit cross term ghost images and a reduced axial range, half of that of conventional 
SD-OCT. We demonstrate that both shortcomings can be removed by applying a generic artefact 
reduction algorithm and using analytic interferograms. We show the superiority of IC-SD-OCT 
compared to conventional SD-OCT by showing how IC-SD-OCT is able to image spatial structures 
behind a strongly dispersive silicon wafer. Finally, we question the resolution enhancement of 2  that 
IC-SD-OCT is often believed to have compared to SD-OCT. We show that this is simply the effect of 
squaring the reflectivity profile as a natural result of processing the product of two intensity spectra 
instead of a single spectrum.

In-depth imaging of human tissue has been one of the greatest achievements of optical technologies. Optical 
coherence tomography (OCT) was initiated more than 25 years ago, when a cross-sectional image of the human 
retina using a Michelson interferometer was demonstrated1. The ability to display changes of the refractive index 
by detecting photons balistically backscattered millimetres inside tissue at the micrometre scale has let to a revo-
lution in the field of ophthalmology and is essential for many other medical fields2. Quite recently OCT has even 
been demonstrated for macroscopic imaging, thereby adding a new perspective in terms of its applications3.

With a Gaussian spectral profile the axial (in-depth) resolution limit is intrinsically given by δ =
π

λ
λΔ

z 2 ln2 c
2

, 
where, λc is the central wavelength and Δl is the full-width at half maximum (FWHM) spectral bandwidth of the 
light source2. To maximize the penetration depth in tissue λc is typically chosen to be in the near infrared (NIR) 
regime to minimize scattering2, but well below the major absorption bands of water peaking at λ = 3 μm4. In 
order to maintain δz when increasing the wavelength from the visible to the NIR, one is left to maximize Δλ. In 
doing so, chromatic dispersion in both optical components and sample will degrade the depth resolution. This is 
due to each wavelength experiencing a different optical path through the system and sample, causing the optical 
path difference to differ as well. The effect of the different optical path lengths in the two paths (reference arm and 
sample arm) for different wavelengths is commonly known as the dispersion mismatch2,5.

To counter the dispersion mismatch, dispersion compensation (DC) is done hardware wise by ensuring that 
the two arms are constructed identically. However, this makes the set-up more costly and increases complexity. 
Instead simple DC with a glass plate, such as BK7, is today used to balance the dispersion5. Alternatively, a large 
variety of numerical approaches have been introduced, first for time domain (TD) OCT6–8 and later for spectral 
domain OCT (SD-OCT). In particular, in SD-OCT several new DC methods have been demonstrated9–14 that 
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can achieve single-interface DC, i.e., sharpening only one interface in the sample. Only a few methods promise 
multi-interface DC, which is necessary in order to maintain axial resolution throughout the imaging depth of a 
multi-layered dispersive sample15–22. One approach that can compensate only second order dispersion at mul-
tiple interfaces, is the fractional Fourier transform combined with numerical segmentation of the sample and 
a radon transform, posing a heavy computational load, which scales with the number of pre-defined sample 
segmentations in depth15. Another simpler approach is to perform a linear interpolation of the depth-dependent 
DC from two depths where the dispersion mismatch is known16. Two alternative approaches, inspired by quan-
tum OCT17,18, are phase conjugate OCT19,20 and chirped-pulse interferometry OCT21,22. These approaches can 
do even-order dispersion cancellation, but are costly and complex hardware-wise, due to the requirement of 
sum frequency generation, while providing only low sensitivity. A numerical scheme exploiting a generalized 
auto-convolution function for depth-dependent dispersion cancellation, also developed in the foot steps of quan-
tum OCT, was proposed by Banaszek et al. and termed ‘blind dispersion compensation’23. This method promises 
protection from GVD using a conventional SD-OCT system with a single detector. Hardware implementations 
of Banaszek’s approach have also been proposed and termed ‘spectral intensity’ or ‘intensity-interferometric’ 
OCT24–27, but these again require two detectors and added complexity of the experimental set-up. We here con-
sider the numerical technique of Banaszek and term it intensity correlation spectral domain OCT (IC-SD-OCT). 
All reports so far on implementing IC-SD-OCT, both numerical and hardware-wise, share two major drawbacks 
compared to conventional SD-OCT: (1) Halving of the imaging depth, and (2) the appearance of IC artefacts 
stemming from intensity cross terms. Extending the numerical scheme of Shirai et al.28, we here for the first time 
demonstrate ultra-high resolution SD-OCT with all-depth multi-interface sample dispersion removal with sig-
nificant artefact reduction and full imaging depth using a conventional SD-OCT setup. We do this by numerically 
implementing the IC scheme, but on the analytical signal, which we distinguish from the standard IC scheme by 
denoting it ICA. An artefact reduction scheme similar to what is presented in28 is then applied to the ICA signal, 
and we show that the scheme works equally well using data from a conventional OCT setup. By imaging two dif-
ferent silicon phantoms, we highlight the applicability of IC-SD-OCT with a conventional SD-OCT set-up, and 
show that GVD is intrinsically removed at all depths of the sample with no depth segmentation or conventional 
DC needed, while maintaining the imaging depth.

Theory
In this section the theory behind IC-SD-OCT is presented. First, we introduce the basic concept of IC-SD-OCT 
in the setting of conventional OCT, and we later apply the analytic signal to explain the image depth-maintaining 
procedure. Subsequently, the full mathematical framework of ICA-SD-OCT is presented, including the artefact 
reduction technique. Finally we discuss the axial resolution in IC-SD-OCT, and show numerical simulations to 
validate the theoretical predictions, and ICA-SD-OCT is compared to quantum OCT.

Intensity correlation spectral-domain optical coherence tomography - IC-SD-OCT.  In SD-OCT, 
the channelled spectrum (interferogram) is given by

ω ∝ + = + + +⁎ ⁎I E E E E E E E E( ) , (1)R S R S R S R S
2 2 2

where ER and ES are the electric fields returned to the spectrometer from the reference arm and sample arm, 
respectively, see Fig. 1(a) for a sketch of the set-up. The electric field from the reference arm is

ω
ω

= ω −E I e( ) ( )
2

,
(2)R

i t ikl0 R

and for two scattering centres in the sample arm, the electrical field from the sample can be written as

Figure 1.  (a) Schematic drawing of the Michelson interferometer with path lengths employed in the text. 
BS is a beam splitter. (b) Schematic illustration of an A-scan before (solid) and after (dashed) the IC-SD-
OCT procedure and (c) the ICA-SD-OCT procedure. The grey lines with a peak at z = zS are mirror Fourier 
components from the discrete sampling of the spectrum. When the mirror components overlap on the 
real A-scan, aliasing occurs, which causes loss of information from the deep layers [red in (b)], as well as 
obscuration of the otherwise still visible part of the A-scan [blue in (b)]. In (c) the mirror terms do not interfere 
up to z = zS, and the full range of points can be used, such that the imaging depth is maintained through the 
ICA-SD-OCT procedure as opposed to the IC-SD-OCT procedure.
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where I0 is the source spectrum, r1, r2 are the complex reflection coefficients, ls, lr are the sample and reference 
paths, measured as twice the distance from the beam splitter to the sample surface and reference mirror, respec-
tively. L1, L2 are twice the distances from the sample’s surface to each of the scattering centres, and β ω ω= ω n( ) ( )

c
 

is the wavenumber in the sample, with c being the vacuum speed of light, and n being the depth-averaged refrac-
tive index of the sample. In general the depth-averaged refractive index will of course be different for two scatter-
ing centres at different depths, but we assume this difference to be negligible, such that n1(ω) ≈ n2(ω) ≡ n(ω).

Assuming real reflection coefficients, Eqs (1–3) and are combined and the normalised interferogram, In is 
obtained through = ω ω
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where ΔL = L2 − L1 and Δl = ls − lr. To generate the IC-SD-OCT interferogram, In is multiplied by itself, however 
flipped around the central frequency, ω0, and complex conjugated:

ω ω ω ω ω ω′ = + ′ − ′∗I I I( , ) ( ) ( ) (5)IC n n0 0 0

where ω′ = ω − ω0. This intra-spectral product between the two optical frequency components ω0 + ω′ and ω0 − ω′ 
can be understood as probing the sample and the reference object at two different frequencies and seeking cross 
correlations between all the four electric fields involved, hence fourth-order field correlations. This classical 
approach is inspired by quantum OCT directly measuring fourth order correlations, which will be discussed in 
a later section. It is important to note that as IC-SD-OCT is a classical analogy to quantum OCT, the first reali-
zations supposedly required two spectrometers to mimic the two photo detectors of quantum OCT, but Shirai 
showed that it is fundamentally equivalent to using two identical spectra obtained by one spectrometer instead of 
two different spectrometers in a ‘balanced detection’ configuration29. This means that In(ω0 − ω′) in eq. (5) can be 
obtained either experimentally or numerically from In(ω0 + ω′).

Equation (5) contains multiplication of cosines from eq. (4), which creates oscillations with half the initial 
period. As a result, all peaks of the Fourier transform of eq. (5) are shifted to twice the optical path difference 
(OPD) due to the decreased period of the oscillations, as illustrated in Fig. 1(b) with the solid curve being shifted 
to the dashed curve. The spacing between points of discrete sampling of the spectrum in ω-space, Δω, is fixed by 
the spectrometer, which fixes the depth range (both positive and negative OPD) to zS = 2πc/Δω. It is therefore 
possible that peaks that were well below the Nyquist limit zN = zS/2 before the multiplication are above after, 
reaching up to twice the Nyquist limit, as illustrated in Fig. 1(b). This effectively reduces the available depth 
range without aliasing (the Nyquist Sampling Theorem) by a factor of two compared to conventional SD-OCT26. 
In addition, the cross terms from multiplication between different cosines cause artefacts, which deteriorate 
the image quality23,26,27,29. For IC-SD-OCT to be relevant, the imaging depth must be restored, and the artefacts 
eliminated.

Restoring the imaging depth using the analytical signal – ICA-SD-OCT.  The coloured hatched 
areas in Fig. 1(b) indicate the IC-SD-OCT signal and aliased signal are trespassing into one another’s imaging 
range set by zN (vertical dashed lines). To eliminate this aliasing problem we here, for the first time to our knowl-
edge, propose to use the complex analytic interferograms in eq. (5), instead of the real-valued interferograms. The 
complex analytic signal Ia of a real signal I is computed by applying the Hilbert transform (HT),





ω ω ω

ω
πω

ω

= +
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I I i I

f f
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{ ( )} 1 ( )
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a

where ⊗ denotes convolution. The analytic signal is zero for negative OPDs by definition, and thus also for depths 
between zN and zS due to the repetition of the spectrum of discretely sampled signals, as illustrated in Fig. 1(c) 
(solid line). The components of the IC-SD-OCT interferogram that are deeper than the Nyquist depth (red part in 
Fig. 1(b)) are, when using the analytic signal, therefore fully distinguishable, i.e., aliasing is eliminated, as seen in 
Fig. 1(c) (dashed line). We term this the ICA scheme. As a result of any of the IC and ICA procedures, the density 
of points is doubled, but by using the ICA scheme, the imaging depth is maintained because all points are utilised 
and not only half.

Shirai et al. have theoretically investigated the application of IC-SD-OCT for multiple scattering samples in 
the special case where dispersion originates from only a dispersive element in the sample arm of the SD-OCT sys-
tem27, i.e., neglecting the dispersion from the sample itself. Here we present an extended derivation that is based 
on a conventional SD-OCT set-up and takes the dispersion from the sample into account. We want to derive a 
theory for multiple scatterers because the IC- and ICA-SD-OCT procedures cause artefact to emerge due to the 
multiplication in eq. (5) creating cross terms. We therefore consider the simplest case with cross terms, which is 
with two scatterers, without loss of generality.
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with * denoting complex conjugates. The four first terms in the second and third lines in eq. (8) are equivalent to 
the four terms from conventional OCT in eq. (7), but now positioned at twice the OPD and without any GVD 
from the dominant dispersion term β2 and all other even orders of dispersion. Contrary, the odd dispersion terms 
are not removed, and they are even enhanced by a factor of 2, but the dominating term, 2β3, often has a much 
weaker effect than β2 has in conventional SD-OCT30. The remaining five terms are artefacts emerging from the 
cross terms of the multiplication in eq. (5), and they will be treated in the following section. In order to maintain 
the correct physical distance, the z-axis must be scaled by a factor 1

2
 as previously explained, and the point density 

is thus also increased by a factor of two, maintaining the imaging depth.

Artefact reduction.  As discussed above In(ω0 − ω′) in eq. (5) can be obtained either experimentally or 
numerically by mirroring In(ω0 + ω′). The ‘balanced detection’ experimental configuration has been shown to 
supress some of the artefacts in IC-SD-OCT26,27, i.e., some of the last 5 terms in eq. (8). It has also been shown 
that in the numerical configuration artefacts can also be removed, but only one at a time using a window 
function26,29. Very recently, Shirai showed that a numerical scheme can generically remove all artefacts in the 
dual-spectrometer configuration28. Here, we briefly go through the scheme, improve it slightly by introducing 
a weight function, both on basis of eq. (8), showing that the algorithm works equally well using a conventional 
SD-OCT setup, leaving the complex and expensive dual-spectrometer redundant.

The five terms last artefact terms in eq. (8) all have a ~ cos ω0 dependence, either explicitly or implicitly through 
β = ω ωn

c0
( )0 0 . To reduce the artefacts, we employ a procedure based on varying the centre frequency. This helps 

identify the artefacts, as first noted by Banaszek et al.23. Varying the centre frequency of the source is challenging, 
and therefore a numerical procedure is implemented instead. A flowchart illustrating the process in seen in Fig. 2. 
The process works by numerically splitting the normalised, analytic spectrum In,a of length N into M sub-spectra 
of length N − M + 1, whose centres are shifted 1 pixel relative to their neighbours’, as illustrated in panel 1 and 2 
of Fig. 2. The first of the M spectra comprises the first N − M + 1 pixels of the full spectrum. The next 
sub-spectrum starts at pixel 2 of the full spectrum and so on, until sub-spectrum M, which is the last N − M + 1 
pixels of the full spectrum. This procedure varies numerically the centre frequency at the cost of narrowing the 
spectrum by M − 1 pixels. The ICA-SD-OCT procedure of eq. (8) is then applied to all M sub-spectra inde-
pendently, giving M ICA-SD-OCT sub-spectra, shown in panel 3 of Fig. 2. These spectra correspond to a span of 
ω0′s with a fixed ω′ axis, and because the artefacts oscillate in ω0, while the real OCT terms do not, the artefacts 
can be removed by averaging the M ICA sub-spectra. The ω0 span must be sufficiently large to ensure that the 
oscillations are averaged out effectively. Intuitively, this would require the span to cover at least one period of the 
oscillation, but that is, in fact not enough. Say the span of ω0’s covers a non-integer number of periods. The frac-
tion of a period in the end of the span will then, when all the values are summed, leave a residual, such that the 
artefact will still be visible, and because the artefacts oscillate with different periods in ω0, it is not possible to 
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choose the span to cover exactly an integer number of periods for all artefacts. This implies that the amount of 
periods needed are larger than one. However, applying a weighting function, w(ω0) for this final summation, 
shown in panel 4 of Fig. 2, greatly reduces the M-value required for sufficient artefact reduction. The weighting 
function weighs each sub-spectrum, such that the first has a lower weight than the second does, and the central 
sub-spectrum has the highest weight. This reduces the influence of the fractional periods in either end of the 
ω0-span, which in turn greatly reduces the residual, i.e., the artefact for a given M. As a result, the M value required 
to suppress the artefact to a given level is reduced when using the weights. As a rule of thumb when choosing M, 
we shall require at least 5 full oscillations of every artefact to ensure complete removal of all artefacts. The slowest 
oscillations are, in most cases, the ones with β ωΔ ≈ ΔL Lcos( ) cos( )0 0  in eq. (8), requiring

ω ω π
ω ω

δω
− Δ ≥ × ⇒ =

−
≥ ×

Δ
L M z

z
( ) 5 2

( )
5 2 ,

(9)max min
max min S

0, 0,
0, 0,

where Δz is the smallest OPD between two reflectors. Here we used an M-point Hanning window as weights.
The ICA-SD-OCT A-scan is reached by performing a Fourier transform on the averaged ICA-SD-OCT spec-

trum. However, due to the spectral multiplication, all the reflection coefficients r1,2 are also squared, and the 
resulting depth scan is thus a profile of the squared reflectivity instead of just the reflectivity. To re-obtain the 
OCT reflectivity profile (first order in reflectivity) the square root of the depth scans are evaluated.

The implication of the narrowing of the spectrum by M − 1 pixels depends on the hardware employed. 
When using a source with a Gaussian-like spectrum, the narrowing will not matter much. The Gaussian shape 
means that the lost pixels near the edges have little amplitude. However, in this study we use an ultra-broadband 
supercontinuum source, which ensures the interference pattern covers the entire range of the spectrometer (see 
Methods). In this case, narrowing the spectrum will consequently also deteriorate the axial resolution with a fac-
tor of N/(N − M + 1), meaning that an optimal M-value can be determined as a trade-off between the quality of 
the artefact reduction and the deterioration of the axial resolution.

Finally, the processing time must be discussed. In addition to conventional SD-OCT processing, ICA-SD-OCT 
requires a Hilbert transform on the full spectrum, M splits of the full spectrum, M × (N − M + 1) floating point 
multiplications to compute the M ICA sub-spectra, and as many additions for the averaging. For M ≪ N, the 
number of operations are proportional to M × N, i.e. the processing time scales linearly with M. Typical M-values 
are in the range 100–200 (see Results), and so, the time to process an IC-SD-OCT image is typically hundreds of 
times slower than conventional OCT making it unsuited for real-time applications. However, the processing of 
each A-scan is independent, and thus a heavily parallelized GPU-implementation could make a real-time imaging 
available.

OCT axial resolution in IC-OCT.  In the literature IC-OCT, both TD and SD, is generally claimed to have a 
2  better axial resolution than conventional OCT21,23,25–27,29,31,32. However, we find this to be misleading because 

it originates from not defining the axial resolution from the same signal, i.e., conventional OCT defines it from 
the reflection profile, whereas IC-OCT defines it from the squared reflection profile. In IC-SD-OCT for example, 
the intensity spectrum is after the Michelson interferometer mirrored and combined with itself, whereas in for 
example chirped-pulse IC-TD-OCT two oppositely chirped pulses are combined. In other words, IC-OCT in 
general exploits fourth-order correlations in that it combines two intensity spectra, i.e., four complex field spectra, 
whereas conventional OCT exploits second-order correlations.

However, if the original signal that is about to be squared in IC-OCT, cannot resolve two closely spaced reflec-
tors but shows them as a single peak, then the squared signal will also only show a single peak. Thus, if the reso-
lution was not defined as the FWHM of the A-scan of a single mirror, but as the distance between reflectors the 
system is able to resolve, then there would be no improvement in resolution with IC-OCT.

We would like to note that a “true” resolution improvement of 2  compared to standard (classical) OCT is 
found in so-called quantum OCT, which by nature requires two detectors and therefore inherently is IC-OCT, as 
demonstrated in17,32. This stems from the spectral entanglement shared between two photons. One photon travels 
the path of the reference arm and the other the arm of the sample. The two photons are subsequently mixed on a 
beam splitter (as in conventional OCT), after which a coincidence event is recorded varying the relative time 
delay (scanning the reference arm length similar to the procedure employed in TD-OCT), also known as the 

Figure 2.  Flow chart illustrating the artefact reduction algorithm. The analytic signal of the spectrum is divided 
into M sub-spectra, which are treated individually to ICA spectra according to eq. (8). To obtain the final 
A-scan, the spectra are added with weights and Fourier transformed in ω′ before the square root is taken to 
return to go from squared reflectivity to reflectivity.
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Hong-Ou-Mandel interferometer33. The A-scan so obtained is in fact assimilated to a coincidence curve. For 
equal paths lengths a dip in the coincidence curve enabled by the unique temporal and spectral correlations 
between the two photons is observed. Due to the spectral entanglement between the two photons, the FWHM of 
this curve (assuming a Gaussian shape) is indeed a factor of 2  smaller than the FWHM of the A-scan of a mirror 
in conventional (classical) OCT, even when comparing the same orders of field reflectivity. This resolution 
improvement can only be explained by non-classical correlations between the two photons34,35.

Numerical simulations.  We carried out a proof of principle simulation to test our ICA-SD-OCT approach. 
Figure 3(a1–a4) and (b1–b4) show the ICA-SD-OCT procedure applied to simulated data with one and two 
reflectors, respectively. For a single reflector conventional OCT is shown in Fig. 3(a1), ICA-SD-OCT without 
artefact reduction (M = 1) is shown in Fig. 3(a2), and ICA-SD-OCT with M = 50 artefact reduction is shown in 
Fig. 3(a3). An artefact emerging from the cross term between the single reflector and the DC term is seen at ~400 
microns in Fig. 3(a2), which is clearly suppressed by the M = 50 artefact reduction, as seen in Fig. 3(a3) and the 
zoom in Fig. 3(a4). = ≥ ×

µ
M 50 5 z

m
2

800
S  satisfies the criterion that the artefact (term 6 in eq. (8)) oscillate 5 

periods in the ω0 span. Figure 3(b) shows the result of a simulation of OCT imaging of a 100 micron thick silicon 
plate. The refractive index of silicon used for the simulation is the experimental data provided in36 and then inter-
polated to fit our spectral pixels by a standard piecewise cubic Hermite interpolating polynomial (PCHIP) rou-
tine. Figure 3(b1–b3) shows the same as 3(a1–a3), but for two reflectors. In this case Fig. 3(b2) shows nine peaks 
including the DC term (1 DC term, 2 reflectors, 1 cross term from conventional OCT, and 5 ICA-SD-OCT arte-
facts), which corresponds directly to the nine terms in eq. (8).

Figure 3(b1) constitutes the baseline for what is possible to achieve with ICA-SD-OCT in terms of artefact 
reduction. The two reflectors at 1200 microns and 1550 microns, stemming from the silicon plate (n = 3.5), and 
the cross term at 350 microns are the three peaks that should be left after the ICA-SD-OCT windowing proce-
dure. Figure 3(b3), which shows the result for ICA-SD-OCT with M = 150 artefact reduction, demonstrates that 
M = 150 is enough to suppress the ICA-SD-OCT artefacts and recover the 3 peaks from Fig. 3(b1), as expected 
from the limit in eq. (9), which gives M = 115.

Figure 3.  Simulated data to illustrate the difference between conventional OCT and IC-OCT for a single 
reflector (a) and two reflectors (b). (a/b1–a/b3) shows conventional OCT, ICA-SD-OCT without the windowing 
procedure, and ICA-SD-OCT with the windowing procedure applied, respectively. (a4) and (b4) show zoom-ins 
of the artefact and the dispersion compensated peaks, respectively. The simulations are done with 2048 points 
spaced between 1070 nm and 1470 nm evenly in k-space, giving an imaging depth of 2 mm and a pixel distance 
of 1.97 microns. The source was simulated as a Gaussian spectrum with a central wavelength of 1300 nm and a 
FWHM of 230 nm.
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Figure 3(b4) shows a zoom-in of the back face of the silicon plate, which for the case of conventional OCT is 
broadened by GVD, but for ICA-SD-OCT, both with and without artefact reduction is restored to its GVD-free 
width. The slight increase in FWHM observed for M = 150 is negligible, but for larger M values the broadening 
becomes more severe. A compromise between the artefact reduction and the resolution deterioration thus has to 
be established.

Methods
For imaging we used the conventional UHR SD-OCT system sketched in Fig. 4, which was recently used in 
clinical skin studies on healthy patients to show that UHR SD-OCT provides superior resolution sufficient to 
accurately delineate the dermal-epidermal junction37 and how nano-particles could improve the contrast in the 
OCT images38. As optical source, we used a 320 MHz superK Extreme EXR-9 OCT system (NKT Photonics 
A/S) with a long-pass filter selecting light in the range 1000–1750 nm. This high repetition rate supercontinuum 
source is especially suited for SD-OCT39. A 50/50 fibre coupler customized for 1300 nm (Goosch and Housego, 
Netherlands) wavelength, served as the beam splitter and standard achromatic lenses collimated the light in 
each output arm. In the sample arm, galvanometer scanners were deployed for scanning of the sample through a 
microscope objective (LSM02, Thorlabs, UK). In the reference arm, a block of glass was placed before the mirror 
for approximate hardware DC. Interferograms were recorded with a 1300 nm spectrometer C-1070-1470-GL2KL 
(Wasatch, USA) providing a ~400 nm bandwidth and operating at a line rate of 76 kHz.

The spectrometer non-linearity between wavenumber and pixel number is eliminated by re-sampling using 
two reference interferograms collected with a mirror placed at two different axial positions, as in11. This tech-
nique can also be used for standard single-reflector DC, which we will compare with IC-SD-OCT all-depth 
multi-reflector DC in the following. With the standard DC, an axial resolution of 3–5 µm (FWHM of Gaussian 
fit) over the entire 2 mm image range was measured (using a mirror as sample). Laterally we found our system to 
be able to distinguish features down to 6 μm (USAF target 1951 phantom). For a power of 2.4 mW on the sample, 
the sensitivity is 89 dB. All interferograms are filtered with a 1300 nm Tukey window in ω′ with bandwidth 300 nm 
to smoothen the image. All A-scans and B-scans presented are single shot images with no temporal averaging 
applied.

Data availability.  The datasets generated and/or analysed in the current study are available from the corre-
sponding author on reasonable request

Results
To verify the theory and the results of the simulation, we imaged two phantoms. Standard DC, as described in the 
methods section, was applied only where mentioned explicitly. Phantom 1 is a polished silicon wafer of thickness 
255 microns. The GVD of crystalline silicon is estimated to be 1100 ± 100 fs2/mm36, which is sufficient to cause 
significant broadening of the interface corresponding to the bottom surface of the wafer. Assuming a Gaussian 
spectrum, the relative broadening factor, p, due to GVD is calculated as:

β π λ
λ

= +





Δ 




p L c1
2ln2 (10)c

2
2
2

2

4

Here L is the physical axial position relative to the surface of the sample, in this case 255 microns. β2 = ∂2β/∂ω2 
is the GVD parameter, c is the speed of light in vacuum, and Δλ and λc are the FWHM and centre wavelength, 
respectively. From the estimated GVD parameter, we expect a relative broadening of the bottom surface by a 
factor of ~4.1 ± 0.3.

Cross sectional images, B-scans, of the silicon wafer are shown in Fig. 5, with 5(a) being the image collected 
without any DC, 5(b) the image with conventional DC of the top interface, and 5(c) the ICA-SD-OCT image. 
Figure 5(d) shows the profile along the vertical dashed lines between the short horizontal, solid lines. The image 
with no DC in Fig. 5(a) shows the two surfaces having approximately the same thickness of ~10 microns despite 
the highly dispersive sample. The top interface is broadened due to the dispersion in the set-up, while the bottom 
interface is broadened by the combined effect of the dispersion in the set-up and in the sample. As the set-up 
dispersion and sample dispersion have different signs, the accumulated dispersion for the bottom interface is in 
magnitude smaller than the set-up dispersion, and therefore the bottom interface is thinner in the image than 
the top interface (but one is not always that lucky!). The image in Fig. 5(b) displays a narrow top interface with a 

Figure 4.  (a) Sketch of the experimental SD-OCT set-up. The broadband NIR light is split evenly into a 
reference arm (R) and a sample arm (S). The interferometric signal is detected in the fourth arm of the coupler, 
and an example of an interferogram is displayed. (b) Shows a photograph of one of the phantoms imaged.
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FWHM of 4 microns and a bottom interface with a thickness that has increased by a factor of approximately 4 to 
16 microns, as expected from eq. (10). The extra broadening of the bottom surface is due to the set-up dispersion 
having been cancelled, and it highlights the major drawback of conventional DC: Not all depths can simultane-
ously achieve the theoretical dispersion-free axial resolution. As shown in Fig. 5(c) the ICA-SD-OCT method 
allows thinning of all interfaces to about 4 microns simultaneously, irrespective of depth, by intrinsic cancellation 
of all even order GVD. The ICA-SD-OCT image is created with M = 150 sub-spectra, which allows to obtain 
significant reduction of the artefacts originating from cross terms between two scatterers seen in Figure 4(a2) 
and (b2), with no trace of these artefacts even on a logarithmic scale. We note however that the ICA-SD-OCT 
procedure introduces a weak set of artefacts in the background of each reflector peak, seen as the blur around 
both surfaces in Fig. 5(c), and as side lobes in Fig. 5(d), as marked by the black arrows. These noise side lobes 
stem from the cross term between a scatterer and the background noise, which was not included in the theoretical 
derivation or the numerical simulations. The width of these side lobes, that appear around every reflector peak, 
decreases with an increasing M number. However, since the side lobes are a direct consequence of the noise in 
the system, the side lobes can also be reduced by employing a low-noise source. In a simple phantom as imaged 
here, the side lobes do not obscure the signal, but in a complex biological sample, this not generally the case. The 
optimal M values does thus also require sufficiently reduced side lobes, where the level deemed sufficient will 
depend on the sample.

To further evaluate the performance of the ICA-SD-OCT procedure, we created phantom 2 by placing a sil-
icon wafer with a surface structure below phantom 1. The resulting images are seen in Fig. 6 with (a) showing 
a top view OCT image of the structured surface, and (b) and (c) the B-scan along the blue line in (a) with con-
ventional DC and ICA-SD-OCT respectively. (d) and (e) show zoom-ins of the structured surface of (b) and (c), 

Figure 5.  B-scan of a polished silicon wafer with (a) no DC, (b) global compensation of system dispersion, and 
(c) ICA-SD-OCT image with M = 150. (d) shows pieces of the A-scan along the white dashed line in (a–c). All 
images are single shot and filtered with a Tukey window.

Figure 6.  OCT images of a silicon wafer with surface structure placed beneath an ordinary silicon wafer. (a) 
Shows a top view of the surface structure, (b) shows a B-scan along the dashed blue line with conventional DC 
applied, and (c) shows the same B-scan using ICA-SD-OCT. (d) and (e) show a zoom of the structure from (b) 
and (c), respectively, highlighting the superior level of detail of ICA-SD-OCT.
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respectively. This phantom imitates a sample with several interfaces and small scale features deep inside it. From 
Fig. 6(b,d) we see how an SD-OCT system with conventional DC is not able to clearly visualise the fine details 
of the structure on the bottom wafer. In contrast, in Fig. 6(c,e), the ICA-SD-OCT image with M = 200 artefact 
reduction provides such a good all-depth DC that the structure is clearly visible. The blurry parts in Fig. 6(d) are 
clearly seen in Fig. 6(e) to be elevated slightly relative to the rest of the wafer, a detail not visible in Fig. 6(d). From 
Fig. 6(c) we can appreciate that ICA-SD-OCT restore the two surfaces of the top wafer and the top of the bottom 
wafer to their dispersion free widths.

Summary and Conclusions
In summary, we have theoretically and experimentally demonstrated a new ICA-SD-OCT procedure that allows 
all-depth DC of all even order GVD. We show that we numerically can eliminate the GVD due to the sample, 
irrespective of the scattering depth, allowing us to maintain the theoretical axial resolution at all depths, and this 
using a conventional SD-OCT set-up with only a single spectrometer. Furthermore, our new numerical proce-
dure maintains the axial range, which was not possible before, as well as generically removes all artefacts emerg-
ing from the multiplication of two interferograms. Numerical simulations were performed using a single and 
dual layer sample to investigate the dispersion compensating abilities and artefact reduction of the ICA-SD-OCT 
procedure. These simulations demonstrated tolerance to GVD from the sample as well as excellent reduction of 
the artefacts. Two phantoms were imaged experimentally, a single polished silicon wafer, and the same polished 
silicon wafer with another structured silicon wafer placed underneath it. We demonstrated how a conventional 
SD-OCT system with conventional single-reflector DC, showed a severely broadened bottom surface due to 
sample dispersion and was not able to clearly image the surface structure of the bottom wafer. In contrast, our 
experimental results showed how ICA-SD-OCT processing can compensate dispersion in-depth and image the 
bottom small features 260 microns into the phantom and re-establish a 4-micron resolution for both top and 
bottom surfaces.

In the scope of increasingly applied supercontinuum sources, multi-layer DC becomes gradually more rel-
evant as the optical bandwidth is increased to improve the axial resolution of OCT systems, and to this end, 
ICA-SD-OCT is ideal because the dispersion is automatically and intrinsically removed. Only the number of 
windowed spectra M around the central frequency ω0, needs to be chosen, but this can become a constant for 
a given sample, such that after initial tuning of M, imaging can proceed as with conventional OCT. We expect 
that this procedure will be particularly useful for non-destructive testing and metrology, where highly dispersive 
samples are common.

Following the recipe of ICA-SD-OCT, all present SD-OCT systems can operate as ICA-SD-OCT systems. A 
future necessary step towards advancing the applicability of ICA-SD-OCT is to investigate the noise properties 
further and sensitivity, which we have not included in this study.
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