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Microglia are activated during pathological events in the brain and are capable of releas-
ing various types of inflammatory cytokines. Here, we demonstrate that the addition of 
5% microglia activated by 1 μg/ml lipopolysaccharides (LPS) to hippocampal cultures 
upregulates Na+ current densities (INavD) of bipolar as well as pyramid-shaped neurons, 
thereby increasing their excitability. Deactivation of microglia by the addition of 10 ng/ml 
transforming growth factor-β (TGF-β) decreases INavD below control levels suggesting that 
the residual activated microglial cells influence neuronal excitability in control cultures. 
Preincubation of hippocampal cultures with 10 ng/ml tumor necrosis factor-α (TNF-α), a 
major cytokine released by activated microglia, upregulated INavD significantly by ~30% 
in bipolar cells, whereas in pyramid-shaped cells, the upregulation only reached an 
increase of ~14%. Incubation of the cultures with antibodies against either TNF-receptor 
1 or 2 blocked the upregulation of INavD in bipolar cells, whereas in pyramid-shaped 
cells, increases in INavD were exclusively blocked by antibodies against TNF-receptor 2, 
suggesting that both cell types respond differently to TNF-α exposure. Since additional 
cytokines, such as interleukin-18 (IL-18), are released from activated microglia, we 
tested potential effects of IL-18 on INavD in both cell types. Exposure to 5–10 ng/ml IL-18 
for 4 days increased INavD in both pyramid-shaped as well as bipolar neurons, albeit the 
dose–response curves were shifted to lower concentrations in bipolar cells. Our results 
suggest that by secretion of cytokines, microglial cells upregulate Na+ current densities 
in bipolar and pyramid-shaped neurons to some extent differentially. Depending on the 
exact cytokine composition and concentration released, this could change the balance 
between the activity of inhibitory bipolar and excitatory pyramid-shaped cells. Since 
bipolar cells show a larger upregulation of INavD in response to TNF-α as well as respond 
to smaller concentrations of IL-18, our results offer an explanation for the finding, that in 
certain conditions of brain inflammations periods of dizziness are followed by epileptic 
seizures.

Keywords: voltage-activated sodium currents, microglia, hippocampal neurons, interleukin-18, tumor necrosis 
factor-α, lipopolysaccharide, transforming growth factor-β, glial cells
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inTrODUcTiOn

Glial cells influence neuronal functions in various ways. Apart 
from preventing mutual excitation of adjacent neurons by K+ 
buffering and glutamate uptake (1), they can also modulate 
neuronal excitability. For instance, thyroid hormone triiodo-
l-thyronine (T3) upregulates Na+ currents and thereby increases 
excitability of postnatal rat hippocampal and cortical neurons (2, 
3) via secretion of proteins [most prominently basic fibroblast 
growth factor (FGF-2)] from satellite cells (4).

Microglia are the resident macrophage-like population in the 
central nervous system (CNS) (5–7). They are continually active 
in their resting state, palpating and surveying their microenvi-
ronment with extremely motile processes (8). Pathological events 
lead to a rapid change of the microglial morphology (9) and the 
expression of cell surface proteins (10) such as antigens (11). 
A well-established method of activating microglia in culture is 
their stimulation via lipopolysaccharides (LPS) (12), the major 
surface membrane components of Gram-negative bacteria. The 
LPS stimulus on microglia is mediated by Toll-like receptors 1–9 
(TLR), especially TLR2 (13). TLRs are a major family of pattern 
recognition receptors that mediate innate immunity but also link 
with the adaptive immune response, therefore providing a mecha-
nism by which microglia are able to sense both pathogen- and 
host-derived ligands within the CNS (14, 15). In this activated 
state, microglia secrete a variety of cytokines (16), including 
proinflammatory factors like the IL-1/IL-18 family members and 
TNF-α.

Some growth factors and cytokines do not only regulate cell 
survival, differentiation, and proliferation but are also able to 
modulate the expression of ion channels. Long-term effects on 
the expression of Na+ channels by nerve growth factor (NGF) 
have already been shown in DRG neurons (17, 18) and nocicep-
tive primary afferent neurons (19). Likewise, FGF-2 upregulates 
Na+ current density in PC12 cells (20) as well as hippocampal 
neurons (4). Recently, TNF-α has been shown to contribute to 
the upregulation of Nav1.3, Nav1.8 (21), and Nav1.7 (22) in 
dorsal root ganglion (DRG) neurons (21) and to enhance Na+ 
currents in injured DRG neurons (18). Since the voltage-gated 
sodium channels are essential for the generation and conduction 
of electrical impulses in excitable cells, an upregulation of the Na+ 
current density (INavD) especially of Nav1.7 and Nav1.8 has been 
suggested to be involved in the enhancement of excitability in 
inflammation in the peripheral nervous system (23–27) leading 
to hyperalgesia, inflammatory, and neuropathic pain.

In the CNS, inflammations are accompanied by conditions 
ranging from dizziness to epileptic seizures (28). In infectious 
diseases, transient epileptic episodes have been observed (29, 
30), which have been suggested to be caused by excessive 
cytokine release from activated microglia (31, 32). Epileptiform 
neuronal excitability can be induced by changes in the intrinsic 
neuronal excitability governed by the membrane density of 
voltage- activated sodium channels (Nav1.1–Nav1.3 and Nav1.6) 
leading to a stronger increase of excitation compared with inhi-
bition in the neuronal network. We have recently obtained the 
first evidence that in hippocampal cultures, the addition of 5% 
microglia stimulated by 1 μg/ml LPS as well as an incubation 

of the cultures with 100  ng/ml TNF-α leads to an upregula-
tion of INavD (33). As in the conditions of neuroinflammation 
in the CNS periods of dizziness may be followed by epileptic 
events (34) and TNF-α can suppress cortical excitability (35), 
it is intriguing to approach the question of whether activated 
microglia could regulate INavD differentially in pyramid-shaped 
(excitatory) and bipolar (inhibitory) neurons. The main aim 
of this study was to investigate whether both types of neurons 
regulate INavD differently in the presence of activated microglia, 
whether different TNF-α receptor subtypes are involved in the 
response of bipolar and pyramid-shaped cells, and whether 
additional cytokines, which are released from microglia, such 
as interleukin-18 (36), could participate in the regulation 
of INavD in both cell types. In order to obtain a first evidence 
whether already the presence of residual microglia in control 
cultures influences INavD, we additionally investigated whether 
an inhibition of microglia by transforming growth factor β 
(TGF-β) (37) influences INavD.

MaTerials anD MeThODs

cell cultures
Experiments were performed on cell cultures obtained from 
hippocampi dissected from brains of 2–4  days postnatal 
Wistar–Hannover rats. The hippocampi were collected in ice-
cold modified phosphate buffered saline (MPBS) [0.89  mM 
KH2PO4, 2.7 mM KCl, 5 mM Na2HPO4, 137 mM NaCl, 10 mM 
glucose, 10 mM HEPES, 1 mM pyruvate, 1 mM glutamine, 1 mg/
ml bovine serum albumin (BSA), 25 U/ml penicillin, and 25 μg/
ml streptomycin (P/S from PAA, Germany)]. After addition of 
10  μg/ml desoxyribonuclease I and 5  μl/ml of a 2.5% trypsin 
solution and gentle dissociation, the tissue was incubated under 
agitation for 7  min at 37°C. The digestion was stopped with 
50 μl/ml fetal calf serum (FCS, Invitrogen, Karlsruhe, Germany) 
and afterward triturated 15 times with a 1-ml Eppendorf pipette 
tip. The dissociated cells were collected in a 10-ml tube and 
centrifuged at 1,000  rpm at 4°C for 10  min. The pellet was 
resuspended in RPMI (Invitrogen, Karlsruhe, Germany), sup-
plemented with 10% FCS, P/S, and glutamine. The cells were 
preplated at 37°C and 5% CO2 in a humidified atmosphere for 
1  h in a B 5060 incubator (Heraeus, Hanau, Germany). After 
preplating, the neuron-enriched supernatant was collected and 
centrifuged at 1,000 rpm at room temperature for 10 min. The 
pellet was resuspended in supplemented RPMI medium. The 
3.5-cm plastic petri dishes were coated with poly-d-lysine (5 μg/
ml in sterile water, for 1 h) and 300,000 cells of the suspension 
were transferred into 1-cm diameter glass rings in the center 
of the dishes. In some experiments, ~15,000 microglia were 
added directly to the cells in the central glass ring. To expose 
neurons to microglia-secreted factors in the absence of direct 
membrane contact 60,000 microglia were transferred into cell 
culture inserts (DIM 23/34, 0.4 MY) (Fisher scientific, Schwerte, 
Germany). Since the inserts had a diameter of 2.4 cm (four times 
the surface of the glass rings) four times as many microglia were 
seeded to achieve a comparable density of microglia directly 
above the neurons.
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After culturing for 1  day, the medium was exchanged with 
Neurobasal medium (NB) supplemented with B18 prepared 
according to the composition described in Ref. (38) without the 
thyroid hormone triiodo-l-thyronine (T3) (to minimize potential 
influences of astroglia-secreted factors on Na+ current densities) 
and treated for 24 h with 4 μM Cytosin-β-d-Arabinofuranoside 
(AraC) to prevent further proliferation of glial cells and 
subsequent overgrowth of the cultures. After the third day in 
culture, the NB-medium was renewed and supplemented with 
the factors to be investigated, 10 ng/ml TGF-β (Sigma Aldrich, 
Munich, Germany), 10–100 ng/ml TNF-α (Peprotech, Hamburg, 
Germany), 1 μg/ml LPS, 5, 8 or 10 ng/ml IL-18 (Invivogen, CA, 
USA), and/or 10  μg/ml anti-TNFR 1/2 (R&D-Systems, MN, 
USA) (as indicated in the figures).

isolation of Microglia
Microglial cells were obtained from whole brain mixed glial 
cell cultures by a shaking procedure following the protocol 
published by McCarthy et  al. (39) and modified as described 
by Kleinsimlinghaus et  al. (40). Cortices were dissected from 
0 to 3 days postnatal Wistar–Hannover rats and dissociated by 
passing through 125- and 36-nm nylon meshes. The cells were 
centrifuged at room temperature at 900  rpm for 10  min and 
resuspended in 5 ml glial mixed medium (GMM) composed of 
DMEM:Ham’s F12 (1:1) supplemented with 10% FCS, P/S, and 
glutamine. The cells harvested from 1.5 brains were transferred 
to uncoated T-75 flasks (Sarstedt, Nümbrecht, Germany) and 
precultured for 10–12  days in GMM at 37°C, 5% CO2, and a 
humidified atmosphere in an incubator (B 5060, Heraues, Hanau, 
Germany) with medium changes every 3–4 days.

Following the preculture period, microglia were isolated 
from the underlying layers of stronger adhering astrocytes and 
oligodendrocyte precursor cells by shaking the flasks for 3 h on an 
orbital shaker (ES-W, Kühner AG, Birsfelden, Switzerland) in the 
incubator. The supernatant containing more than 90% microglia 
was centrifuged for 5 min at 1,000 rpm at room temperature and 
added to the neuron-enriched cultures.

Patch-clamp recordings
Na+ currents were quantified using whole cell patch clamp 
recordings. All measurements were performed at room temper-
ature using a Patch-Clamp L/M-EPC7 amplifier (List Medical, 
Darmstadt, Germany). The maximal measurement period for 
one cell culture dish was limited to 60 min since the number of 
successful recordings with small leakage currents decreased due 
to deteriorating cells. Signal filtering was performed using the 
EPC7 10-kHz lowpass filter and data obtained were digitized 
using PClamp 10 software (Molecular Devices, Sunnyvale, 
CA, USA) at a sampling rate of 20  kHz. Data were digitized 
with a Digidata 1440A board (Molecular Devices) and stored 
on a personal computer. Patch pipettes were fabricated from 
borosilicate glass capillaries (GB-150TF-8P, Science Products, 
Hofheim, Germany) using a PP-830 puller (Narishige Europe, 
London, UK) and had resistances of 6–10 MΩ. The pipette solu-
tion contained in mM: CaCl2 0.1, EGTA 1.1, MgCl2 5, NaCl 5, 
HEPES 10, and CsF 100; The bath solution contained in mM: 

CdCl2 0.5, CaCl2 1, MgCl2 1, 4-Aminopyridine 4, glucose 10, 
HEPES 10, TEA-Cl 10, and NaCl 100. The osmolarity of bath 
and pipette solution was adjusted to the osmolarity of the NB 
medium (40).

Na+ currents were recorded using a series of step depolariza-
tions, starting from a holding potential of −77 mV (after a liquid 
junction potential correction of −7 mV) in increments of 5 mV. 
Maximal peak Na+ currents were determined as peak currents at 
a test potential of −12 mV, which corresponds to the maximum 
of the current–voltage relationship.

Voltage-dependent inactivation of the Na+ currents was 
determined by applying a series of prepulse steps of 200  ms 
duration in 5 mV increments starting at an initial hyperpolariza-
tion to −82  mV, which were followed by a depolarization step 
to a test potential of −17  mV to evoke maximal Na+ currents. 
Peak Na+ currents versus prepulse potential were fitted to a 
modified Boltzmann equation [I/I0 = 1/(1 + exp([Vm − VIn1/2]/S)) 
VIn1/2  =  prepulse potential at which half of the channels are 
inactivated; I0 = current elicited from the most negative prepulse 
potential; S = slope factor].

Leakage and capacitive artifacts were subtracted using a P/4 
protocol. By normalizing the peak Na+ current to the cell capaci-
tance (calculated from the integral of the charging curve), Na+ 
current densities were calculated. Cells were only included in the 
statistical evaluation if their leak currents did not surpass 100 pA; 
their series resistances did not surpass 20 MΩ and Na+ currents 
displayed an activation voltage range of at least 20 mV in the I/V 
curve to minimize errors of poor membrane voltage control. 
A liquid junction potential of −7 mV with respect to the bath solu-
tion was corrected manually. For statistical comparison, analysis 
of variance (ANOVA) followed by Tuckey’s Post hoc test was used 
(OriginPro 9.0G, Origin Lab Corporation, Northampton, MA, 
USA), as it represents a conservative approach when sample sizes 
are not equal, and we expect homoscedasticity, normal distribu-
tion, and independence of our data.

resUlTs

regulation of na+ current Density by 
Microglial activation and Deactivation
We first investigated, whether a cocultivation of hippocampal 
neurons with a surplus of either activated or deactivated 
microglia for 7  days influences their Na+ current density. To 
this aim, control Na+ currents were measured in hippocampal 
cultures obtained from 2- to 4-day-old postnatal rats coculti-
vated with ~15,000 (5%) microglia. Currents recorded from 
control neurons after 7  days in culture were compared with 
those recorded in sister cultures in which microglia had been 
activated by addition of 1  μg/ml LPS after the first 3  days in 
culture. In a third series of dishes, the influence of microglia on 
neurons was abolished as follows: to suppress direct membrane 
interactions between microglia and neurons, instead of adding 
microglial cells directly, the same density of microglia was 
separated from the neurons by seeding into inserts. To inactivate 
protein secretion from microglia 10 ng/ml TGF-β was added in 
every medium exchange throughout the whole culture period 
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FigUre 1 | influences of lPs exposure for 4 days and TgF-β exposure for 7 days in the presence of microglia on na+ current density of cultured 
hippocampal neurons.  
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(a) Series of original Na+ current recordings from bipolar neurons elicited by step depolarizations in 5 mV increments starting from a holding potential of −77 mV 
after the different treatments. Analysis of the whole data set for (B) bipolar and (c) pyramid-shaped cells. (Ba,Ca) Average current–voltage relationships for Na+ 
currents normalized to capacitance recorded from neurons cultured in the presence of microglia and either 4 days of exposure to 1 μg LPS or 7 days of exposure to 
TGF-β. (Bb,Cb) Influence of TGF-β and LPS on steady-state inactivation of Na+ currents. Solid lines represent fits to the modified Boltzman equation as detailed in 
Section “Materials and Methods.” (Bc,Cc) Peak Na+ current densities of neurons cultured in the presence of microglia and either 4 days of exposure to 1 μg/ml LPS 
or 7 days of exposure to TGF-β determined at test potentials of −12 mV starting from holding potentials of −77 mV. All recordings performed at day 7 in culture. 
Numbers in bar charts indicate numbers of cells recorded from. Database for every column derived from 7 to 10 different preparations. Error bars represent 
means ± SE, *p < 0.05, **p < 0.01, and ***p < 0.005.
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of 7  days. As shown in Figure  1, activation of microglia via 
LPS treatment resulted in a significant increase in Na+ current 
density in both bipolar and pyramid-shaped cells increas-
ing INavD in bipolar cells from 49.9  ±  4.4  pA/pF (mean  ±  SE) 
to 69.9  ±  4.5  pA/pF in LPS-stimulated cultures (p  <  0.005). 
Likewise, the Na+ current density increased from 60.2 ± 5.2 to 
74.8 ± 4.8 pA/pF in pyramid-shaped neurons (p < 0.005). The 
suppression of microglial activation by 10 ng/ml TGF-β led to 
a significant decrease in Na+ current density to 34.9 ± 2.5 pA/
pF (bipolar, p < 0.005) and 42.4 ± 2.4 pA/pF (pyramid-shaped, 
p < 0.005). This suggests that the degree of microglia activation 
in the vicinity of neurons considerably influences neuronal Na+ 
current density. Additionally, the Na+ current densities of bipo-
lar and pyramid-shaped neurons were significantly different in 
cultures incubated with 10 ng/ml TGF-β (p < 0.01). As shown in 
Figures 1Bb,Cb, no changes in voltage dependence of activation 
and inactivation were observed.

effects of neuroactive Factors Derived 
from activated Microglia
Effect of TNF-α on the Na+ Current Density
After showing that activated microglia exert a considerable 
effect on the Na+ current density of hippocampal neurons, we 
now focused on identifying responsible neuroactive factors 
released from activated microglia. Since TNF-α regulates the 
Na+ current density in central (33) and peripheral DRG neu-
rons (18, 21), we first recorded a dose–response curve of TNF-
α effects on hippocampal neurons (Figure  2). Hippocampal 
neuron-enriched cultures obtained from 2- to 4-day-old 
postnatal rats were preincubated for 3  days and exposed to 
NB medium supplemented with or without (control) either 
10, 50, or 100 ng/ml TNF-α. As the records in Figure 1 show 
for TGF-β treated cultures, in control cultures containing no 
surplus of microglial cells, current densities in bipolar neurons 
were significantly smaller than in pyramid-shaped neurons 
(43.6  ±  2.7  pA/pF in bipolar cells versus 52.2  ±  3.1  pA/pF 
in pyramidal cells, p < 0.05). A preincubation with all tested 
concentrations of TNF-α induced an increase in Na+ current 
density. A preincubation with 10 ng/ml significantly increased 
INavD in both neuron types, while 50 ng/ml led to a significant 
increase only in bipolar neurons. We observed a maximal 
increase in bipolar neurons by ~30% (from 43.6  ±  2.7  pA/
pF, n  =  51) and in pyramid-shaped neurons by ~15% (from 
52.2 ± 3.1 pA/pF, n = 36). This suggests that the effect is already 
maximal at a concentration of 10 ng/ml.

Role of TNF-Receptor 1 and 2 in the Na+ Current 
Upregulation
To investigate whether TNF-α is involved in the upregulation of 
Na+ current density by activated microglia and which receptors 
mediate the effect, we now performed experiments using anti-
bodies against TNF-receptors (TNFR 1 and 2). Cultures obtained 
from 2- to 4-day postnatal rats were cocultivated with ~15,000 
microglia (5%). After 3 days of preincubation, the cultures were 
exposed to NB medium supplemented with either 1 μg/ml LPS, 
1 μg/ml LPS plus 10 μg/ml antibody against TNFR 1, 1 μg/ml LPS 
plus 10 μg/ml antibody against TNFR 2, or without supplements 
(control). As shown in Figure 3, we observed significant differ-
ences in the Na+ current regulation in bipolar and pyramid-shaped 
neurons. In bipolar neurons, a blockage of both TNFR 1 and 2 led 
to a decrease of the Na+ current density from 69.9 ± 4.5 pA/pF 
back to control level (in the presence of 5% microglia, all values 
between 50 and 55 pA/pF). In pyramid-shaped neurons, only a 
blockage of TNFR 2 led to a decrease of the Na+ current density 
back to control level (5% microglia) of ~60 pA/pF, whereas in 
the presence of antibodies against TNFR 1, the same elevated 
Na+ current density as in LPS-activated microglia of ~75 pA/pF 
was observed.

Regulatory Effect of IL-18 on the Na+ Current Density
The increases in Na+ current density induced by an incuba-
tion with TNF-α were smaller than the increase observed after 
 cocultivation with LPS-activated microglia (compare Figure 1 
with Figure  2). Furthermore, the blockage of the TNF-α 
receptors by antibodies did not reduce the Na+ currents to 
the levels obtained in the presence of TGF-β if the microglia 
were added in cell culture inserts (compare Figures  1Bc,Cc 
with Figures 3Bc,Cc). We thus considered that other factors 
released from microglia might additionally contribute to the 
regulation of INavD. Potential candidates are proinflammatory 
cytokines of the IL1/18-family. Preliminary data yielded no 
significant change in the Na+ current density in hippocampal 
neurons incubated with 0.01 ng/ml IL-1α and 0.02 ng/ml IL-6 
(data not shown). Since we were not aware of any investiga-
tions of IL-18 effects on voltage-activated ion currents we now 
investigated, whether a preincubation with this interleukin 
for 4  days affects INavD in bipolar and hippocampal neurons. 
Cultures obtained from 2- to 4-day-old postnatal rats were 
exposed to NB medium supplemented with or without (control) 
5, 8, or 10 ng/ml IL-18 after 3 days of preincubation. As shown 
in Figures  4Ac,Bc, a significant increase in the Na+ current 
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FigUre 2 | TnF-α exposure for 4 days increases the na+ current density of cultured hippocampal neurons. Analysis of the whole data set for (a) bipolar 
and (B) pyramid-shaped cells. (Aa,Ba) Average current–voltage relationships for Na+ currents normalized to capacitance recorded from neurons cultured in the 
presence or absence of 10, 50, or 100 ng/ml TNF-α for 4 days. (Ab,Bb) Influence of a preincubation with TNF-α on steady-state inactivation of Na+ currents. Solid 
lines represent fits to the modified Boltzman equation as detailed in Section “Materials and Methods.” (Ac,Bc) Peak Na+ current densities of neurons cultured in the 
presence or absence of 10, 50, or 100 ng/ml TNF-α for 4 days determined at test potentials of −12 mV starting from holding potentials of −77 mV. Note that 
maximal Na+ current densities are already measured at a concentration of 10 ng/ml of TNF-α, suggesting that the receptors are already saturated at this dosage. All 
recordings performed at day 7 in culture after incubations with test substances for 4 days following a preculture period of 3 days. Numbers in bar charts indicate 
numbers of cells recorded from. Database for every column derived from 4 to 10 different preparations. Error bars represent means ± SE, *p < 0.05, **p < 0.01, and 
***p < 0.005.
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density was observed in both, bipolar and pyramid-shaped 
neurons. While bipolar neurons reached a saturation level at 
5 ng/ml IL-18 with an increase of INavD by 40%, maximal values 
were observed for pyramid-shaped neurons only at higher 

concentrations of 8–10 ng/ml with average increases of INaVD 
by 40%. These observations suggest cell-type specific different 
dose–response curves for the regulation of the Na+ current 
density by IL-18.
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FigUre 4 | il-18 exposure for 4 days increases the na+ current density of cultured hippocampal neurons. Analysis of the whole data set for (a) bipolar 
and (B) pyramid-shaped cells. (Aa,Ba) Average current–voltage relationships for Na+ currents normalized to capacitance recorded from neurons cultured in the 
presence or absence of 5, 8, or 10 ng/ml IL-18 for 4 days. (Ab,Bb) Influence of IL-18 on steady-state inactivation of Na+ currents. Solid lines represent fits to the 
modified Boltzman equation as detailed in Section “Materials and Methods.” (Ac,Bc) Peak Na+ current densities of neurons cultured in the presence or absence of 5, 
8, or 10 ng/ml IL-18 for 4 days determined at test potentials of −12 mV starting from holding potentials of −77 mV. Note that the Na+ current density increases in a 
dose-dependent manner. The dose–response curve for pyramid-shaped neurons is shifted toward higher concentrations. All recordings performed at day 7 in culture 
after incubations with test substances for 4 days following a preculture period of 3 days. Numbers in bar charts indicate numbers of cells recorded from. Database 
for every column derived from 7 to 24 different preparations. Since not all experiments were performed in sister cultures incubated under all four conditions the data 
for the control cultures in this series of experiments have been pooled. Error bars represent means ± SE, *p < 0.05, **p < 0.01, and ***p < 0.005.

(a) Series of original current recordings from bipolar neurons elicited by step depolarizations in 5 mV increments starting from a holding potential of −77 mV. 
Analysis of the whole data set for (B) bipolar and (c) pyramid-shaped cells. (Ba,Ca) Average current–voltage relationships for Na+ currents normalized to 
capacitance recorded from neurons cultured in the presence of microglia and 4 days of exposure to 1 μg LPS and 4 days of either antibody against TNFR 1 or 2. 
(Bb,Cb) Influence of TNFR 1 and 2 blockage on steady-state inactivation of Na+ currents. Solid lines represent fits to the modified Boltzman equation as detailed in 
Section “Materials and Methods.” (Bc,Cc) Peak Na+ current densities of neurons cultured in the presence of microglia and 4 days of exposure to 1 μg LPS and 
4 days of either antibody against TNFR 1 or 2 determined at test potentials of 12 mV starting from holding potentials of −77 mV. Note that the Na+ current density of 
bipolar neurons is decreased by both antibodies against TNFR 1 and 2, whereas the Na+ current density of pyramid-shaped neurons is only decreased by 
antibodies against TNFR 2 to control levels. All recordings performed at day 7 in culture after incubations with test substances for 4 days following a preculture of 
3 days. Numbers in bar charts indicate numbers of cells recorded from. Database for every column derived from 7 to 15 different preparations. Error bars represent 
means ± SE, *p < 0.05, **p < 0.01, and ***p < 0.005.
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DiscUssiOn

As Na+ currents are essential for the initiation and propagation 
of neuronal firing, changes in the current density can lead to 
abnormal neuronal activity. Na+ current density can be modu-
lated by small molecular weight neurotransmitters, such as ace-
tylcholine and dopamine by the activation of phosphorylation 
cascades in a form of short-term plasticity (41). Na+ channels 
may be regulated acutely via the activation of G-proteins (41–43) 
and over larger time spans by an increase in channel synthesis 
[see e.g. Ref. (44)].

Apart from release of neurotransmitters out of neurons, astro-
cytes and microglia are sources of additional neuroactive factors 
acting at a longer time scale in the CNS [see e.g. Ref. (45)]. For 
instance, by release of FGF-2 from thyroid hormone-stimulated 
satellite cells the Na+ current density of neurons and thus their 
excitability can be increased over the course of several days in 
postnatal, maturing neurons (33). In addition, our research group 
had previously observed, that LPS-stimulated microglia can 
increase Na+ current density, and that this effect can be mimicked 
by 100  ng/ml TNF-α (33). Here, we extend these observations 
showing that the presence of activated microglia in hippocampal 
cultures effects Na+ current densities to some extent differently 
in bipolar and pyramid-shaped neurons, potentially changing 
the balance between excitation and inhibition. Thus conditions 
of neuronal hyper- as well as hypoexcitability under inflamma-
tory conditions could be explained by the release of neuroactive 
factors from microglia.

role of Microglia
Microglia are part of the innate immune system in the CNS and 
play an important role in inducing and propagating inflammatory 
signals in response to activation of the peripheral immune system 
(46) or during brain lesion. TGF-β is a known deactivator of 
microglia. Kim et al. (47) suggest TGF-β as Phosphatidylinositol 
3-Kinase (PI3K) inhibitor, which in turn is linked to the TLR4-
mediated cytokine release (48). TGF-β is a 24-kDa protein 
produced by various types of cells, not only from T and B lym-
phocytes (49, 50), activated macrophages (51, 52) but also from 
resident glial cells of the CNS such as astrocytes and microglia 
(53–55). The effects of TGF-β on cells of the monocyte lineage are 
multipotential with diverse effects, such as inducing chemotaxis 
on monocytes and IL-1 production (56). Interestingly, IL-1 and 
IL-1α induce TGF-β expression in glial cells, which suggests a 
positive autocrine feedback loop (57). In contrast, TGF-β blocks 
Interferon-γ (IFN-γ)-induced macrophage activation (58, 59), 
including the induction of class II major histocompatibility com-
plexes (MHC) antigen (60) and the reduction of macrophagic 
inhibition of intracellular replication of certain parasites (61). 
Furthermore, it suppresses proliferation and LPS-induced 
activation of microglia (62, 63), regulates cell survival (47), and 
decreases cytokine release, including IL-1, IL-1α, IL-6, TNF-α, 
and nitric oxide (NO) (37, 62).

Transforming growth factor-β regulates ion channels in 
microglia. It upregulates delayed rectifier (DR) Kv1.3 K+ channel 
though it shows no effect on inward rectifier (IR) K+ channels 

(64, 65), which could lead to an inhibition of vesicle release by 
hyperpolarization.

In accordance with previous observations of an inhibitory role 
of TGF-β on microglia, we here observed (see Figure 1) that the 
incubation of microglia-enriched cultures with 10 ng/ml TGF-β 
leads to a decrease of the Na+ current density in both, bipolar and 
pyramid-shaped neurons to values smaller than those observed 
in control cultures. Although further experiments are needed 
to further corroborate this hypothesis, our observation suggests 
that in untreated control cultures, the residual 1–3% microglia 
release neuroactive factors which influence the Na+ current of 
neurons in their vicinity. LPS stimulates the release of various 
neuroactive factors from microglia (12). As shown in Figures 1 
and 3, we extend our previous findings (33) that the presence 
of LPS-treated microglia leads to an upregulation of INavD, and 
show here that a larger increase in the Na+ current density can 
be observed in bipolar compared with pyramid-shaped neurons. 
Guo et al. (66) linked conditions of chronic pain to the innate 
immune system of the CNS by the activation of TLRs on microglia, 
which are activated among others, by LPS. Our findings of the 
increase of the Na+ current density of neurons by LPS-activated 
microglia support the idea of microglia as a link to hyperalgesia 
and hyperexcitability.

effects of neuroactive Factors released 
from Microglia
Tumor necrosis factor-α is the most prominent cytokine 
released from microglia. In the brain, it has mostly been 
associated with leukocyte recruitment through the regulation 
of adhesion processes and is involved in the activation of 
glial cells in the process of gliotic scar formation (67). TNF-α 
belongs to the superfamily of type II transmembrane proteins 
with intracellular N-terminus (68). It originates in a 26-kDa 
homotrimeric pro-molecule, which is converted by the metal-
loprotease TNF-α converting enzyme (TACE) to a diffusible 
peptide, which forms a non-covalently bound trimer (69) and is 
secreted from macrophages and monocytes [see e.g. Ref. 70, 71]. 
The source of TNF-α in the CNS are activated microglia (72). 
To our knowledge, effects of TNF-α on Na+ current densities in 
central neurons have only been investigated in one study (33). 
Here, we extend these previous results showing that already an 
incubation of cultures for 4 days with a concentration of 10 ng/
ml elicits maximal effects and that the upregulation of the INavD 
is slightly larger in bipolar compared with pyramid-shaped cells. 
In our previous publication (33), we had observed a significant 
upregulation after treatment with 100 ng/ml TNF-α in the order 
of magnitude of 20% using a larger database of about 70 cells 
recorded under each condition. In the present series of experi-
ments, we recorded from a smaller number of cells under each 
concentration such that the treatment with 100 ng/ml TNF-α 
did not yet reach significance. The decline seen with increas-
ing concentrations in the present series of experiments might 
result from the deleterious effects of higher dosages of TNF-α, 
which made it increasingly difficult to obtain stable patch clamp 
recordings from neurons.
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Tumor necrosis factor-α binds exclusively to two receptors, 
TNFR 1 and 2. TNFR 1 is regarded as the primary signaling recep-
tor for systemic TNF-α inflammatory responses (73, 74). TNFR 
2 may mediate TNF-α effects in a paracrine or autocrine manner 
because it is strongly activated by membrane-bound TNF-α (75). 
Distinct effects of TNFR activation on the TTX-resistant Nav1.8 
currents of DRG neurons (76) could be observed.

Our present findings suggest that bipolar neurons are regu-
lated by both TNFR subtypes, while pyramid-shaped neurons are 
mainly regulated by TNFR 2, suggesting that INavD in both types of 
neurons can be regulated differentially by TNF-α.

The observation that the blockage of TNF-α receptors reduced 
INavD to a smaller extent than by the inactivation of microglia by 
TGF-β suggests, that additional cytokines, released by microglia 
could contribute to INavD-regulation by microglial activation.

Apart from TNF-α, microglia have been shown to release 
cytokines from the IL-1 family (77). IL-18 is a member of the 
IL-1 family of proinflammatory cytokines. It is synthesized as an 
inactive 24-kDa precursor protein that is subsequently cleaved by 
caspase-1 into its active form (78). The IL-18 receptor (IL-18R) is 
expressed on a variety of cells, including hypothalamic neurons 
and murine glia (79, 80).

The effect of cytokines of the IL-1/IL-18 family on Na+ cur-
rents of hippocampal neurons has to our knowledge not been 
investigated. Interestingly, both interleukins and TNF-α are 
implicated in sleep regulation (81). Both enhance non-rapid 
eye movement sleep (NREMS). While the exact mechanism is 
currently unknown, it might be possible that an alteration of 
neuronal excitability might be involved in the enhancement of the 
NREMS phase. Interestingly though, a variety of cytokines has 
been linked to the increase of NREM sleep during inflammation, 
including IL-1, IL-18, and TNF-α (81–83).

Our present results suggest that IL-18 may additionally regu-
late INavD in central neurons. Differences in the dose–response 
curves observed in bipolar and pyramid-shaped neurons suggest 
that bipolar cells might already respond to lower activations of 
microglial cells releasing less IL-18. Our findings that bipolar 
inhibitory neurons are regulated more strongly by IL-18 and 
TNF-α and subsequently lead to an overall hypoexcitability of 
the neural network and may explain symptoms such as dizziness 
or an increase in NREM sleep during infectious diseases.

Tumor necrosis factor-α not only exerts long-term effects 
but is also capable of an acute p38-mediated modulation of 
Tetrodotoxin-resistant (TTX-R) Na+ channels in mouse sensory 
neurons (84). During phosphorylation, changes in the voltage-
dependence of inactivation have been observed by Chizhmakov 
et  al. and Franceschetti et  al. (85, 86). For both cytokines 
tested here, we observed no significant changes in the voltage- 
dependence of the inactivation of the Na+ currents. This indicates 
that the increased Na+ current densities might rather be caused by 
increased ion channel densities instead via short-term regulatory 
mechanisms such as phosphorylation (87).

Taken together, this study presents evidence that two major 
cytokines, namely TNF-α and IL-18, released from microglia 
activated by pathological events such as CNS injury or inflam-
mation (6, 14, 15, 28, 36, 88), not only effect, e.g., cell survival 

(89) and death (90), DNA-synthesis (91), cell proliferation 
(92, 93), cell differentiation (89, 94), and neuronal cell fate 
in embryonic neural progenitor cells (NPC) (95) but also in 
addition upregulate Na+ current density and thus excitability 
in hippocampal neurons. The differential regulation of the Na+ 
current densities in bipolar and pyramid-shaped neurons can 
lead to an imbalance between inhibition and excitation in the 
neural network. At the network level, this could lead to an overall 
neuronal hypoexcitability, which might be an explanation for the 
symptom of dizziness during neuroinflammation (96). These 
findings are in line with the results of Richter et al. that TNF-α 
reduces the amplitude of cortical spreading depression (CSD) 
by the activation of TNFR 2 in cortical inhibitory neurons (35). 
The differentiation by the TNFR subtypes enables an asymmetric 
increase of Na+ currents by the same concentration of TNF-α 
and might be an additional explanation that different concen-
trations of TNF-α can lead to bidirectional effects on cortical 
network activity (97). Another mechanism of differential Na+ 
current density regulation is the dose-dependent effect of 
IL-18. At low concentrations, it mainly affects the Na+ current 
density of inhibitory interneurons, while at higher concentra-
tions (8–10 ng) also pyramid-shaped neurons are affected. This 
finding could contribute to the origin of a general inhibition of 
cortical networks followed by a general excitation with a further 
increase of the neuroinflammation. Such a mechanism, leading 
with a delay of several days after the onset of the infection first 
to dizziness and then to epileptic seizures might also explain the 
neurological symptoms, which occurred during  immune reac-
tions in 20% of the patients over the course of the recent outbreak 
of a Shiga-toxin producing E. coli infection (98).
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