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Cardiovascular diseases are the leading cause of mortality worldwide and this has largely

been driven by the increase in metabolic disease in recent decades. Metabolic disease

alters metabolism, distribution, and profiles of sphingolipids in multiple organs and

tissues; as such, sphingolipid metabolism and signaling have been vigorously studied as

contributors to metabolic pathophysiology in various pathological outcomes of obesity,

including cardiovascular disease. Much experimental evidence suggests that targeting

sphingolipid metabolism may be advantageous in the context of cardiometabolic

disease. The heart, however, is a structurally and functionally complex organ where

bioactive sphingolipids have been shown not only to mediate pathological processes,

but also to contribute to essential functions in cardiogenesis and cardiac function.

Additionally, some sphingolipids are protective in the context of ischemia/reperfusion

injury. In addition to mechanistic contributions, untargeted lipidomics approaches used in

recent years have identified some specific circulating sphingolipids as novel biomarkers

in the context of cardiovascular disease. In this review, we summarize recent literature

on both deleterious and beneficial contributions of sphingolipids to cardiogenesis and

myocardial function as well as recent identification of novel sphingolipid biomarkers for

cardiovascular disease risk prediction and diagnosis.
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INTRODUCTION

Sphingolipids, which constitute a large and diverse lipid class, were originally recognized over a
century ago as structural components of cell membranes. More recently they are recognized as
crucial bioactive lipids that regulate many cell processes (1). Sphingolipid biosynthesis commences
with condensation of an amino acid with acyl-CoA to yield an amino alcohol, or sphingoid
base, which is the defining structural component of the sphingolipid class. The sphingoid base
can subsequently be modified by acylation, phosphorylation, glycosylation, and/or addition of
multiple headgroups or other functional groups (2, 3). These structural modifications generate
hundreds of sphingolipid subspecies involved in most if not all major aspects of cell regulation
including cell division and senescence, migration, differentiation, apoptosis, autophagy, nutrient
uptake, metabolism, and protein synthesis (1). Commensurate with their multiple regulatory
roles, disruption of sphingolipid metabolism has emerged as a component of many diseases
including cardiometabolic disease. As such, sphingolipid metabolism may be a suitable therapeutic
target in the context of cardiovascular disease (CVD). However, perhaps less appreciated are the
constitutive and protective roles of sphingolipids in some contexts including heart development
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and ischemic injury, and these desirable and homeostatic
roles should be considered for both in vivo experimental
design and, more importantly, developing pharmacologic
strategies for clinical use. A comprehensive awareness of
both deleterious and beneficial roles of sphingolipids will
inform successful therapeutic approaches based on targeting
sphingolipid metabolism.

SPHINGOLIPID BIOSYNTHESIS: A BRIEF
OVERVIEW

De novo synthesis of sphingolipids starts in the endoplasmic
reticulum (ER) where the enzyme serine palmitoyltransferase
(SPT) catalyzes the condensation of an amino acid with acyl-
CoA into 3-ketodihydrophingosine (KDHSph). The second
step occurs through 3-Ketodihydrosphingosine reductase, which
rapidly converts KDHSph to dihydrosphingosine (DHS). DHS
is the first easily detected sphingolipid metabolite and serves as
the sphingoid base for synthesis of ceramides and downstream
complex sphingolipids. DHS can be phosphorylated (forming
DHS-1-phosphate) but more often undergoes N-acylation.
This is accomplished by a family of (dihydro)ceramide
synthase enzymes (CerS) consisting of 6 isoforms with various
enzymological distinctions including partially distinct substrate
preferences for the incorporation of fatty acids with different
chain lengths (4–6). In mammals the length of the ceramide
acyl chain length ranges from medium (12-14C), long (16-20C),
very long (22-26C), and ultra-long chain fatty acids (>26C).
Dihydroceramide (DHC) is converted into ceramide by DHC
desaturase (DES), which introduces a double bond into the
sphingoid base. Once formed, ceramide can be hydrolyzed
by ceramidase enzymes, yielding sphingosine, which can be
reincorporated into ceramides by CerS or phosphorylated by
sphingosine kinases (SphK1 and SphK2) to produce sphingosine-
1-phosphate. Ceramide can also undergo phosphorylation,
yielding ceramide-1-phosphate, or O-acylation, yielding a
structure similar to a triacylglycerol (TAG), and similarly, is
stored in lipid droplets (7). Most ceramide, however, is shuttled to
the Golgi apparatus via vesicular transport or ceramide transport
protein (CERT) for further metabolism to complex sphingolipids
including glycosphingolipids (GSLs) and sphingomyelins (SM)
through the addition of sugars or phosphocholine, respectively.
These complex sphingolipids can be catabolized to yield
ceramide, which plays an essential role in regulating cell
ceramide profiles. A less well-studied pathway of sphingomyelin
catabolism generates sphingosylphosphorylcholine (SPC). SPC is
composed of a long-chain sphingosine and phosphorylcholine
and is essentially lyso-sphingomyelin, thus sharing similar
structure with S1P and other lysophospholipids. Phosphorylated
sphingoid bases are the only known sphingolipids that can
exit the cell sphingolipid pool. This occurs via S1P lyase
(SPL) which catabolizes S1P into non-sphingolipid components;
fatty aldehyde and ethanolamine phosphate. Because SPL is
the only exit from the sphingolipid metabolic pathway, it has
been proposed as a major regulator of total cell sphingolipid
levels (8).

The diversity of sphingolipid species arises not only from
the length of the N-acyl chain of ceramide and its derivatives
or the functional groups added to the sphingoid base, but
also from the length of the sphingoid base. Synthesis of the
sphingoid base occurs through SPT, a multimeric enzyme
comprised of catalytic subunits and various regulatory proteins.
SPTLC1 and SPTLC2 form the canonical catalytic complex, but
SPTLC3 can also be included and/or substitute for SPTLC2.
The composition of the SPT complex determines substrate and
product specificity. The SPTLC1/SPTLC2 complex condenses
serine with palmitoyl-CoA giving rise to canonical sphingolipids
with an 18-carbon sphingoid backbone (d18:0 DHS) (9). In
contrast, inclusion of SPTLC3 in the SPT complex renders a
more promiscuous enzyme, using 14-carbon myristoyl-CoA,
18-carbon stearoyl-CoA, and potentially others. This seems
to be regulated at least in part by inclusion of small SPT
subunits (ssSPTa and b) in the SPT complex (10). These bases
are also incorporated into downstream sphingolipids, though
not evenly across all sphingolipid species (11). Importantly,
variations in both sphingoid base and N-acyl chain determine
biological functions (3, 12). Several proteins, namely, neurite
outgrowth inhibitor (Nogo-A/B) and orosomucoid-like proteins
(ORMDL) negatively regulate SPT. Upon their respective
ablation or inhibition, the resulting heart phenotype drastically
varies, suggesting sphingolipid levels from de novo synthesis
must be within a narrow range to maintain normal heart
homeostasis (13–15). In the cardiovascular system, many
sphingolipid subclasses and even specific molecules have distinct
functions, some of which are desirable and others deleterious;
for example, increased ceramide and SM oftentimes with
concomitant decrease of S1P have been implicated in dilated
cardiomyopathy, diabetic cardiomyopathy (DbCM), ischemic
heart disease (IHD), and myocarditis (16–20). Therefore, the
alterations that occur in sphingolipid content and profiles
in disease contexts have emerged as a central focus in
cardiovascular biology.

SPHINGOLIPIDS IN HEART
DEVELOPMENT AND THE CARDIAC
CONDUCTION SYSTEM

Multiple processes are involved in forming the heart,
which is the first functional organ in vertebrate embryos.
Cardiogenesis begins with formation and positioning
of the primitive heart tube followed by heart looping,
and finally chamber and septal formation (Summarized
in Figure 1). In the context of cardiovascular biology,
sphingolipids, especially ceramides, are most often considered
deleterious; however, data show that the sphingosine
kinase/sphingosine-1-phosphate signaling pathway is essential
for heart development.

Studies in both zebrafish and mice support a regulatory
function for sphingosine-1-phosphate (S1P) in formation and
positioning of the primitive heart tube. Sphingosine produced
by hydrolytic de-acylation of ceramides can be phosphorylated
by sphingosine kinases (SphKs) to produce S1P, which signals

Frontiers in Endocrinology | www.frontiersin.org 2 September 2020 | Volume 11 | Article 652

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Kovilakath et al. Sphingolipids in the Heart

FIGURE 1 | (A) Sphingolipid de novo synthesis. Overview of sphingolipid structure and metabolism. ssSPTa, small SPT subunit a; ssSPTb, small SPT subunit b; DHS,

dihydrosphingosine; CerS, ceramide synthase; DHC, dihydroceramide; DES, DHC desaturase; SM, sphingomyelin; GSL, glycosphingolipid. (B) Sphingolipids involved

in cardiogenesis. The receptors S1PR1-3, Spns2, OGR1, GPR12 and the sphingolipids S1P and SPC are highly expressed in stem cells that migrate to form the

primitive heart tube. Normal expression of S1P via the S1PR1 receptor is needed for normal heart looping. Ceramide and S1P via the Cert and S1PR3 receptors,

respectively, are required for chamber and septal formation. Cardia bifida is observed after failure of the myocardial cells to coalesce into one single primitive heart

tube. Overexpression of Spns2 or S1PR1 or mutation of S1PR2 causes cardia bifida.

through endocrine, paracrine, and autocrine mechanisms
depending on context (21). For endocrine and paracrine
functions S1P is transported into the extracellular milieu through
plasma membrane ATP binding cassette family members (ABC)
or spinster two (Spns2) transporters where it then signals through
one of five different G protein-coupled receptors (S1PR1-5)
(21). In Zebrafish, mutations in s1pr2, but not any of the
other S1P receptors, led to cardia bifida or formation of two
laterally positioned hearts (22) (Summarized in Figure 1). This
phenotype was also observed in multiple studies with a spns2
mutant or overexpression of s1pr1 (22–29). In mice, conditional
knockout (KO) of S1PR1 caused embryonic lethality due to

ventricular non-compaction, ventricular septal defects, absence
of normal increase in the number of cardiomyocytes and
decreased myofibril organization (28). These studies suggest S1P
signaling components S1PR1, S1PR2, and Spns2 are necessary for
cardiomyocyte expansion and myocardial precursor migration
to the ventral midline of the embryo where they develop
into the primitive heart tube. At later developmental stages,
knockdown of the zebrafish gene homolog to s1pr1 caused
an improperly looped heart (30, 31). Another study showed
that an s1pr1 morpholino in zebrafish affected heart valve
orientation, an indicator of incorrect looping (28). During
the looping process, precursors of cardiac valves—endocardial
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cushioning (EC) and atrioventricular canal (AV)—are also
formed. In mice, S1PR1−/−, but not S1PR2 or S1PR3 KO,
resulted in embryonic lethality due to severe heart hemorrhaging
(32, 33). This may arise from the well-known role of this
receptor in maintaining cell-cell contacts in the vascular
endothelium (34). In mouse whole embryo cultures, inhibition
of sphingosine kinase led to cell death, but elevating S1P
levels prevented differentiation of cells into distinct cardiac cell
types (35). These studies show that appropriate concentrations
of S1P must be maintained for normal development of
cardiac valve precursors. It should be noted, however, that
affinities of S1P receptors for S1P are in the nanomolar
range (e.g., 50–250 nM) and therefore, effects observed with
higher concentrations in vitro may arise from non-specific
activity, for example cross-reactivity with other lysophospholipid
receptors, or even gross membrane perturbations due to the
detergent properties of S1P. Therefore, care must be taken in
interpreting data from experiments using supraphysiological
S1P concentrations.

In addition to development, cardiac function also suffers
from perturbed sphingolipid synthesis. For example, mouse
embryos treated with exogenous S1P exhibited sinus bradycardia
(decreased heart rate) (35, 36). In addition, S1PR3 KO mice
treated with FTY720, an S1P receptor agonist known to cause
sinus bradycardia in humans, did not show altered heart
rates, whereas arrhythmias were observed in S1PR3 knock-
in (KI) mice (36). S1PR3 is expressed on neural crest-derived
atrioventricular nodes (AVN), His bundles, cardiac Purkinje
fibers and vascular smooth muscles of the coronary arteries in
mice. Extensive studies have suggested S1P plays a multifaceted
role as a primary and secondary messenger in regulating both
calcium and potassium ion channels (37, 38). This suggests
S1P binds its receptor, S1PR3 within the AVN conduction
block to regulate intracellular calcium and potassium levels
which in turn alter the heart rate (39–41). Taken together
these studies show broad roles for S1P receptors in the cardiac
conduction system.

SPC displays cross-reactivity to S1P receptors due to its
structural similarity to S1P. In addition, SPC also signals
via OGR1 and GPR12 receptors (42). SPC, like S1P, is
important for heart development, playing a pivotal role
for end stage differentiation of committed multipotent
cardiovascular progenitors to cardiomyocytes, vascular
smooth muscle and endothelial cells (43). Importantly,
SPC also induced differentiation of resident cardiac stem cells
to cardiomyocytes, a finding which may hold tremendous
therapeutic potential (44), as there is currently great interest
in therapeutic strategies that leverage the potential for stem
cell differentiation to cardiomyocytes in treating cardiac injury.
In sum, several lines of evidence point to essential functions
of S1P, SPC and their respective receptors in normal heart
development and function (summarized in Table 1). Therefore,
while sphingolipids have largely been implicated in cardiac
pathology, they make essential contributions to cardiogenesis
and therefore a broader cognizance of sphingolipids in the
heart may benefit efforts to develop sphingolipid-based
therapeutic approaches.

SPHINGOLIPIDS IN CARDIOVASCULAR
DISEASE

Cardiovascular diseases (CVDs) are the leading cause of death
in USA and worldwide, and it is estimated that by 2030 upward
of 40% of the American population will be afflicted with some
form of CVD (64). CVDoccurs largely in the context ofmetabolic
disease, such as diabetes, and obesity which are known to
reconfigure sphingolipid profiles in multiple organs and tissues.
It is unsurprising, then that a wide spectrum of sphingolipid
species have been implicated in the pathophysiology of numerous
CVDs (65, 66).

Myocardial Lipotoxicity
It is now well-established that ceramide metabolism is altered in
the context of type 2 diabetes mellitus (T2DM) and obesity which
are both linked to CVD (67–69). In fact, higher plasma ceramide
levels have been associated with visceral obesity, non-alcoholic
fatty liver disease, and T2DM, which are also predictors of CVDs
(70–76). Genetically modified mouse models of lipotoxicity have
greatly facilitated understanding of sphingolipid contributions
to lipotoxic cardiomyopathy (The outcomes of many of these
lipotoxic animal models are summarized in Table 1). In fact,
the first recognition of a potential link between sphingolipids
and cardiac lipotoxicity arose from mice with cardiomyocyte-
specific overexpression of long-chain acyl-CoA synthetase (77).
This increased lipid uptake generated a lipotoxic cardiomyopathy
phenotype. Hearts from these mice showed increased TAG
concomitant with increased lipid droplets (77, 78). Because
increased cell death was observed in these mice the investigators
measured total ceramide, a known apoptotic mediator, and found
a 50% increase in total ventricular ceramide content. Metabolic
disease increases uptake, utilization, and storage of fatty acids in
lipid droplets, but the potential toxicity of lipid droplets/TAG,
or other lipids remained in question. To address this, a follow-
up study crossed these transgenic mice with another strain
overexpressing diacylglycerol acyltransferase 1 (DGAT1), which
increased intracellular TAG and reduced ceramide (79). Because
DGAT1 catalyzes the final step in TAG synthesis, it diverts
Acyl-CoA into neutral sphingolipid pools, thereby reducing
toxic lipids in myocardial lipotoxicity such as ceramides (80,
81). Long-chain acyl-CoA synthetase 1 (ACSL1) catalyzes the
conversion of long-chain fatty acids to fatty acyl-CoAs, which
are then used as substrates by SPT in de novo sphingolipid
biosynthesis (82). Thus, crossing the DGAT1 mice with the acyl
coenzyme A synthetase-1 (ACSL1) transgenic mice increased
TAG and lipid droplets, but lowered ceramides and improved the
cardiac phenotype of ACSL1mice, indicating that triacylglycerols
(TAGs) are not lipotoxic per se but serve as an indicator of
lipid oversupply (83). These studies and others gave rise to the
concept that routing of lipids into TAGs could decrease their
incorporation into bioactive lipids and therefore improve cardiac
outcomes of lipotoxicity; however, whether sphingolipids per se
were the underlying toxic lipid species remained to be addressed.

The first studies to effectively identify a mechanistic link
between ceramide and lipotoxic cardiomyopathy employed mice
with transgenic overexpression of a GPI-anchored lipoprotein
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TABLE 1 | Sphingolipid knockout models and their cardiac tissue phenotypes.

Animal model Cardiac tissue phenotype References

Constitutive heterozygous Sptlc1 knockout &

glycosylphosphatidylinositol (GPI)-anchored human lipoprotein

lipase transgenic

- Decreased cardiac ceramides comparable to WT mice

- Prevention of lipotoxic cardiomyopathy induced by

glycosylphosphatidylinositol (GPI)-anchored human lipoprotein

lipase knockout

(16)

Cardiomyocyte-specific Sptlc2 knockout - Decreased C18:0 and very long chain ceramides

- Increased ER stress markers

- Increased apoptosis

- Upregulation of heart failure markers

- Decreased fractional shortening

- Thinner cardiac walls

(45, 46)

Constitutive α-galactosidase A knockout (Fabry disease) - Progressive accumulation of globotrioasylceramide in aged mice

- Decreased glucosylceramides

- No alteration in total ceramide

(47, 48)

Constitutive Smpd1 knockout - Accumulation of aSMase in aged mice (49)

Heterozygous smooth muscle-specific deletion of Asah1 (acid

ceramidase)

- Severe arterial medial calcification in aorta and coronary arteries (50)

Constitutive heterozygous SPL knockout - Smaller infarct size after ischemic/reperfusion (I/R) injury

- Increased S1P

- Increased functional recovery after I/R

(51)

Constitutive mutant Spns2 allele (zebrafish) - Cardia bifida

- Shortened anterior–posterior distance in the ventral pharyngeal arch

- Embryonic lethality

(30)

Constitutive SphK1 knockout - Decreased S1P levels

- Poor animal resuscitation after cardiac arrest

- Impaired survival post-resuscitation after cardiac arrest

- Increased infarct sizes after I/R

(52, 53)

Constitutive maternal and zygotic SphK2 knockout (zebrafish) - Cardia bifida

- Failure of cardiac progenitor migration to form primitive heart tube

- Decreased S1P levels

(54)

Cardiomyocyte-specific S1pr1 knockout - Ventricular non-compaction

- Ventricular septal defects

- Perinatal lethality

- Decreased cardiomyocyte proliferation

- Decreased myofibril organization

- No alteration in coronary I/R injury

(55)

Cardiomyocyte, endocardial & epicardial-specific S1pr1 knockout - Ventricular non-compaction

- Ventricular septal defects Perinatal lethality

(55)

Cardiomyocyte-specific S1pr2 knockout - No alteration in coronary I/R injury (56)

Constitutive mutant s1pr2 allele (zebrafish, mil) - Cardia bifida

- Failure of cardiac progenitor migration to form primitive heart tube

- Embryonic lethality

(22)

Cardiomyocyte-specific S1pr3 knockout - No alteration in coronary I/R injury (57)

Constitutive S1pr2 & S1pr3 double knockout - Increased infarct size after I/R injury

- Perinatal lethality

(58, 59)

Constitutive S1pr2 & ApoE double knockout - Decreased atherosclerotic lesions

- Decreased number of macrophages in lesions

(60)

Constitutive S1pr3 & ApoE double knockout - No change in atherosclerotic lesions

- Decreased number of macrophages in lesions

(61, 62)

Constitutive Cert knockout - Severely compromised cardiac function

- Accumulation of ceramide

- Embryonic lethality

(63)

lipase on the cardiomyocyte surface (LpLGPI) (78). Lipoprotein
lipase (LpL) degrades circulating TAGs into free fatty acids, thus
increasing fatty acids to cardiomyocytes. Similar to the ACSL1
mice, these mice showed a robust lipotoxic cardiomyopathy
phenotype. These mice were treated with an inhibitor of

de novo sphingolipid biosynthesis, myriocin, which lowered
ceramide and ameliorated the phenotype. Additionally, crossing
the LpLGPI mice to mice haploinsufficient in SPTLC1, which
mediates de novo sphingolipid synthesis, showed a similar
effect (16). These studies suggest that in the lipotoxic context,
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sphingolipid synthesis is deleterious, and increased incorporation
of fatty acids into TAG is cardioprotective. This would imply that
myocardial TAG levels are not indicative of cardiac dysfunction
but rather reflect lipid metabolic dysfunction within the heart.

These studies were highly informative and led our lab to
investigate specific sphingolipid species that may play roles
in lipotoxic cardiomyopathy and the mechanism(s) by which
they contributed. Based on our previous studies on the
effects of saturated vs. unsaturated fatty acids on sphingolipid
metabolism, we developed a high saturated fat diet (84–
86). Mice on this high fat diet exhibited elevations in total
myocardial ceramides and also DbCM-like cardiac hypertrophy
and dysfunction (87). Further examination of specific ceramide
chain lengths revealed that C14:0 ceramide as well as very
long-chain (VLC) ceramides increased specifically in the high
saturated fat-fed mice compared to mice on control and
lard diets. Reducing sphingolipid synthesis by inhibition of
SPT with Myriocin treatment inhibited sphingolipid synthesis
including C14:0 ceramide production and also restored cardiac
function. These animals also showed increased autophagosomes
in cardiomyocytes; indeed, treatment of cultured primary
cardiomyocytes with myristate (C14:0) increased autophagy. As
noted above, ceramide synthase enzymes have partially distinct
substrate preferences, and C14:0 ceramide is a product of
CerS5, while VLC ceramides are products of CerS2. Indeed,
overexpression of CerS5 in cardiomyocytes increased autophagic
flux, and treating cardiomyocytes lacking CerS5 with myristate
did not increase autophagy. These studies were the first to
identify a specific ceramide species and ceramide synthase
isoform in cardiac lipotoxicity. Upon overexpression of CerS2,
VLC ceramides were elevated inducing insulin resistance,
oxidative stress, mitochondrial dysfunction and mitophagy. As
gain and loss-of function studies targeting CerS5 had no effect
on these same functions, a distinct role was established for CerS2
(87, 88). These studies established specific roles for subsets of
ceramide species and/or CerS enzymes in lipotoxic outcomes
in the context of high fat feeding and subsequent diabetes (87,
88). Though these studies were conducted in mice and various
primary and cultured cardiomyocyte models, the findings may
nonetheless bear some relevance to humans (45). Importantly,
many of these studies addressed lipotoxicity in the context
of metabolic disease; however, other cardiac insults also cause
lipotoxicity, and this may proceed by alternative mechanisms
(69–76, 89). For example, metabolic tracing studies in mice
subjected to pressure overload via transverse aortic constriction
(TAC) showed that transgenic overexpression of acyl coenzyme
A synthetase-1 (ACSL1) mitigated heart dysfunction relative to
WT mice (83). In this context, ACSL1 overexpression prevented
de novo synthesis of C16-, C24-, and C24:1-ceramides, which
are synthesized by CerS5 and CerS2, respectively, but increased
C20- and C22-ceramides. These subspecies can be generated
by CerS4 and therefore, CerS4-derived ceramides may have a
distinct, protective function in the context of HF, though this
remains to be tested.

In addition to the n-acyl chain length, dictated by CerS, we
showed that the sphingoid base chain length also distinguishes
activities of sphingolipids. While the canonical SPT complex

includes SPTLC1 and 2, SPTLC3 is an alternate subunit that
can substitute for SPTLC2 and alter sphingoid base chain
length. Therefore, the SPTLC1/2 complex generates an 18-
carbon sphingoid base, but inclusion of SPTLC3 alters substrate
preference to generate sphingoid bases of alternate chain
lengths. We showed that high saturated fat feeding in mice
induced SPTLC3 and altered cell sphingolipid profiles to include
a high proportion of sphingolipids containing a 16-carbon
sphingoid base within the myocardium (11). This shortened
base did not cause autophagy but rather led to apoptotic cell
death in cardiomyocytes, further exemplifying how distinct
sphingolipid molecules can have divergent effects. Emerging
literature continues to build a case for a role for SPTLC3 in
human CVDs. Interestingly, a study of three German populations
linked single nucleotide polymorphisms (SNPs) in the SPTLC3
locus to MI (90). Another study identified 28 SNPs close to the
SPTLC3 locus which were significantly associated with reduced
C22:0 and C24:0 ceramide concentrations, which are thought to
correlate with disease risk (91).

Initial studies including our own showed that inhibition of
overall sphingolipid biosynthesis prevented cardiac lipotoxicity,
suggesting that merely reducing ceramide in the lipotoxic heart
may be a “magic bullet.” However, rather than improving cardiac
function, a cardiomyocyte-specific SPTLC2 null mouse showed
an exacerbated cardiac phenotype (46). While the mechanism
for this was not revealed in that study, a speculative hypothesis
is that SPTLC3 may show compensatory upregulation in the
context of SPTLC2 depletion. If so, this could explain the
phenotype observed in the SPTLC2 depletion mouse model.
These studies coupled with observations of cardioprotection
in TAC correlating to increased C20:0 and C22:0 ceramides
clearly demonstrate that roles of ceramides in cardiac pathology
are complex. In addition to ceramides, however, alterations
in dihydroceramides, ceramide-1-phopshates, sphingomyelins,
and glycosphingolipids likely play disparate roles in cardiac
pathology, and genetic manipulations or use of myriocin in vivo
does not necessarily enable identification of specific lipid classes
involved in pathological processes. Further research is required
to fully understand the links between specific sphingolipid pools
and molecular structures and deleterious outcomes through
modulation of cell signaling.

Coronary Artery Disease
Coronary Artery Disease (CAD) or IHD is the most common
type of CVD worldwide and has been the leading cause of
death for the past 16 years. CAD is caused by narrowing of
arteries and subsequent reduction of blood flow to the heart
due to build-up of plaque (atherosclerosis) within the arteries of
the heart, ultimately leading to heart failure (HF). More often
than not, coronary atherosclerosis observed in CAD occurs in
the context of metabolic disease. As a result of chronic CAD,
myocardial infarction (MI) and HF often occur. In contrast
to much literature implicating ceramides as inducers of CVDs,
pronounced cardiogenic and cardioprotective properties have
been attributed to S1P (92–101).

Current therapeutics already undergoing clinical trials for
CAD, ischemia/reperfusion injury, MI and HF target the
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S1P/SphK axis, specifically drugs targeting S1P receptors (102–
104). Mice with combined deletion of S1PR2 and S1PR3 subject
to ischemia/reperfusion injury showed increased infarct size,
however, infarct size was not altered when either S1PR2 or
S1PR3 was deleted (58, 105). However, another study showed
that intravenous SPC treatment of S1PR3 null mice subject
to IR injury reduced infarct size (106). Agonists specific to
S1PR1 protected mouse cardiomyocytes from hypoxia, while the
opposite effect was observed with S1PR1 antagonists (107–111).
Another study showed that S1PR1 attenuated cardiac fibrosis and
hypertrophy in mice with HF induced by TAC (112). Nogo-A/B
deficient mice were protected from HF for up to 3 months after
TAC, while also seeing a significant induction of S1P (14).

In mouse, rabbit and rat models of ischemia/reperfusion
injury (IRI) it was noted that ceramide, membrane neutral
sphingomyelinase (nSMase) and acidic sphingomyelinase
(aSMase) increased in the infarct site and blood with concomitant
decrease of S1P (113–120). Ischemic preconditioning with S1P
is a tried and proven method to induce significant recovery of
cardiac function and infarct reduction in IRI (57, 121–123).
The absence of improved cardiac function in SphK1 and SphK2
ablated mice subject to IR levels suggest the significance of
S1P in ischemic conditioning (121, 124). These studies suggest
targeting the S1P-SphK axis satisfies the criterion as an effective
therapeutic agent to overcome the damages elicited by IRI.
Though further investigation into the crosstalk between S1P
receptors and analogs signaling behavior in comorbidities would
better optimize the therapeutic potential of S1P in IRI.

Multiple in vitro studies observed upregulation of aSMase
and nSMase along with increased SM in animal models of HF
(125, 126). The nSMase and aSMase hydrolyze sphingomyelin
to release ceramide, and thus the accumulation of ceramide in
post-ischemic heart may arise from SM catabolism and not de
novo sphingolipid biosynthesis (127, 128). Another study in both
mice and humans with HF noted increased levels of SPTLC2,
which participates in de novo sphingolipid synthesis and likely
contributes to the significant increase of total ceramides in the
aforementioned studies (45). However, this same study did not
note any changes in aSMase or nSMase in HF, the primary
catabolic enzymes for ceramide production (45). Therefore, it
may be that chronic conditions leading to HF increase de novo
synthesis, while acute insults such as MI activate sphingolipid
catabolism, though there are clear exceptions to this concept,
including nSMase activity was increased 2–3months post-MI and
SPTLC2 was observed to increase 2 weeks post-MI (45, 127).

While the roles of ceramides and S1P are well-established and
antagonistic in CVDs, some literature suggests sphingosine plays
a dichotomous role as a cardio protectant and CVD inducer.
Induction of sphingosine in patients with and animal models of
IRI points toward the maladaptive role of sphingosine in CVDs
(129, 130). However, the same group preconditioned animals
with sphingosine prior to ischemia or perfusion resulting in
massive reduction of infarct size. This contradictory evidence
points toward sphingosine as a cardio protectant in CVDs
(131). Importantly, sphingosine can be used as a substrate for
generation of either ceramides or S1P; therefore, whether it
is protective or deleterious may arise from its metabolic fate.

However, sphingosine does have its own signaling functions and
thus may make these contributions directly and without further
metabolism (132–134).

SPHINGOLIPIDS AS EMERGING
BIOMARKERS IN ASSESSING
CARDIOVASCULAR DISEASE

Over the past several decades various heart studies including
the Framingham Heart Study, Busselton Family Heart Study,
Strong Heart Family Study, Utah CAD and others have sought
to determine CVD development, risks and therapeutics all aimed
at combating CVD. As a result, conventional risk factors such
as age, sex, ethnicity, blood pressure, total triglyceride levels and
total cholesterol levels emerged as biomarkers for risk of major
adverse cardiac events. However, given the substantial and rising
burden of CVDs, ongoing efforts to shed light on novel, more
specific biomarkers for CVD are needed. In response to this
need, more sensitive lipidomics analysis have been developed
focusing on sphingoid base and acyl chain length composition
of total sphingolipids. Using these advanced techniques, risk
assessment scores utilizing sphingolipid species levels have been
recently developed in detecting CVDs and they continuously
outperform conventional cardiovascular risk markers (135). For
example, A Busselton Family Heart Study identified many classes
of the sphingolipid species ceramides, DHC, mono-, di- and tri-
hexosylceramides, SM, GM1, GM3 and sulfatides associated with
heritable cardiac events, most of which were positively genetically
correlated with LDL, HDL, total cholesterol and negatively
correlated with triglyceride levels. In another study, the serum
of patients with a clinical diagnosis of HF with preserved
ejection fraction (HFpEF), the most common form of HF and
also strongly associated with diabetes, in The Alberta Heart
Failure Etiology and Analysis Research Team (HEART) project
showed reduced SM compared to non-HF controls (136). These
sphingolipids seemed to have no relationship to conventional risk
factors such as diastolic blood pressure, systolic blood pressure,
BMI and waist-hip ratio, suggesting they may be used as more
specific markers to identify high-risk patients especially likely to
have CVD (137–140).

A growing body of literature suggests long-chain ceramides
and very long-chain ceramides and SM are associated with
adverse cardiac outcomes. Ceramide analysis on an aggregate of
29,818 individuals from 7 cohort studies and determined plasma
Ceramide (d18:1/16:0), (d18:1/18:0), and (d18:1/24:1) levels were
associated with major adverse CVD events. Whereas, Ceramide
(d18:1/22:0) were not associated (141). Javaheri et al., observed
significant association of increased circulating concentrations of
C16:0 and C18:0 ceramides in participants with HFpEF (142).
This study was especially informative, as HFpEF is difficult to
diagnose and controversy still exists as to diagnostic algorithms
(143). Similarly, another study showed that levels of ceramide
and SMwith 16-carbon acyl chain length were directly associated
with higher risk of mortality deaths from CVD (144). Analysis
of myocardial tissue and serum from patients with HF showed
increased ceramide, the significance of which was mainly driven
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by the very long chain ceramides (45). When the HFpEF patients
underwent left ventricular assist devices (LVAD) these changes
were reversible. In contrast, another study observed that levels of
Ceramide with a 22-, or 24-carbon acyl chain length and SMwith
a 20-, 22-, or 24- carbon acyl chain were directly associated with
lower risks of CVD mortality (142, 144).

While these biomarkers and diagnostic indicators represent
advances in identifying and diagnosing CVD, the distinction
between long chain (i.e., C16–C18) and very long chain (i.e.,
C20–C24) ceramides, which are generated by distinct ceramide
synthase isoforms (CerS1/5/6 vs. CerS2/4, respectively) hints
at potential mechanistic involvement. However, though much
circulating lipid in general arises from liver, a detailed study
demonstrated that circulating ceramides but not SM are derived
from the endothelium of blood vessels (145). Interestingly the
endothelium is functionally impaired in CVDs and could thus
contribute to the plasma sphingolipid profile reported in HF.
Therefore, further determining the points of origin of these lipids
may enable further study on potential mechanistic functions of
these lipids in CVD.

DISCUSSION

In this review we highlighted recent studies implicating
sphingolipids in heart development, ischemic injury, and CVDs.
In general, the SphK/S1P/S1P receptor signaling axis appears
beneficial both in development and in ischemic injury. On
the other hand, elevation of myocardial ceramides appears
mostly deleterious. Therapeutic potentials of targeting the
SphK/S1P/S1P and ceramide pathways are beneficial and have
been approved for treatment in patients in other systems, for
example the FDA approved FTY-720, an S1P antagonist for
treating relapsing multiple sclerosis (146). Since these have
been tried in other systems they can be applied to CVDs,
as targeting this axis in animal models of CVDs suggested
prevention or reversal (147). Targeting CerS1-6 have a great
therapeutic potential but there have beenmultiple developmental
roadblocks, however a recent study observed that a CerS1
selective inhibitor endogenously inhibited mitochondrial fatty
acid oxidation in muscle and regulated whole-body adiposity,
which could potentially benefit in treating patients with some
forms of CVDs (148). Further, relationships among circulating
sphingolipid species are novel biomarkers of CVD. Therefore,
sphingolipid metabolism and signaling is a constant thread
from heart development to CVD, with distinct pathways playing
beneficial or deleterious roles.

Lipidomic analyses based on mass spectrometry has enabled
identification of different sphingoid bases and acyl chain lengths
allowing for novel biomarkers in diagnosing and assessing risk
in the context of CVDs. These novel risk scores and biomarkers
that utilize sphingolipids show the full complexity of the altered
lipidmetabolism and outperform traditional lipidmeasurements.
Sphingolipid risk scores are better predictors of major adverse
cardiac events than conventional risk factors, including total
and LDL cholesterol. As such, ceramide testing is now routinely
performed as a diagnostic tool in CVD (149–152).

Many studies highlighted in this review contradict one
another with respect to the significant sphingolipid species
associated with a particular heart development stage or in
association with a CVD. It is important to note these
controversial observations can arise from the type of lipidomics
technology utilized, the size of the population studied, the type
of sample collected, sex distribution, and race/ethnicity. For
example, an African American healthy control population had
significantly higher plasma levels of most SM species and lower
levels of lactosylceramide species compared to Caucasian control
subjects in the same study (153). These differences were noted in
healthy individuals; therefore, stratification of a study population
based on race/ethnicity is essential to provide clear conclusions
and, moreover, to identify health disparities when considering
disease patients between different ethnicities.

Implications of the association of SPTLC3 SNPs with MI and
other cardiovascular events is an emergent finding deserving
further mechanistic study (90, 91). Synthesis of d16-, and d20-
sphingoid based sphingolipids are entirely dependent while
d18-sphingoid based sphingolipids are partially dependent on
SPTLC3. Our lab previously showed that 1/3rd of the mouse
myocardial sphingolipid pool is comprised of d16-sphingoid
based sphingolipids presumably derived from SPTLC3 (11).
Moreover, HF patients showed reduced SPTLC3 upon placement
of left-ventricular assist devices (LVAD) (45). In addition to
recognizing the function of SPTLC3 to generate non-canonical
sphingoid bases, our understanding of the complexity of
sphingolipidmetabolism and the diversity of sphingolipid species
has exploded in recent years. Thus, when it comes to matters of
the heart, untargeted sphingolipidomics has the unique potential
for revealing non-canonical sphingolipid species that indicate
and/or play mechanistic roles in CVD.

Importantly, while most in vivo studies in the heart that
address sphingolipid function have manipulated SPT, either
genetically or pharmacologically (e.g., with myriocin treatment),
these approaches inhibit biosynthesis of all sphingolipids, both
desirable and deleterious, and, therefore, would be much
too broad for clinical application. However, identification of
specific enzymes that participate in distinct branches and
pathways of sphingolipid metabolism would provide much
greater specificity for therapeutic intervention in the CVD
context. However, the dearth of isoform-specific CerS inhibitors
has been an impediment to therapeutic targeting of CerS,
though efforts to develop specific agents are beginning to yield
results (148).

Over the last decade our lab has focused on studying
heart sphingolipids showing that ceramides with not
only distinct N-acyl-chains but particular sphingoid base
backbone lead to apoptosis, mitochondrial damage and
lipotoxicity in cardiomyocytes. It should be noted that
identification of specific CerS isoforms that mediate CVD
does not necessarily implicate ceramides, per se, but
could implicate dihydroceramides as well as downstream
products of ceramides including ceramide-1-phosphate,
O-acylceramides, sphingomyelin, and glycosphingolipids.
This understanding is crucial both for enabling further
specificity of therapeutic targeting and facilitating the
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potential identification of additional therapeutic targets.
Ultimately, more research is needed to elucidate the
regulatory pathways by which sphingolipids regulate
cardiogenesis and cardiovascular function in both health
and disease.
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