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Background: Oxidative stress is related to oncogenic transformation in kidney renal
clear cell carcinoma (KIRC). We intended to identify a prognostic antioxidant gene
signature and investigate its relationship with immune infiltration in KIRC.

Methods: With the support of The Cancer Genome Atlas (TCGA) database, we
researched the gene expression and clinical data of KIRC patients. Antioxidant related
genes with significant differences in expression between KIRC and normal samples
were then identified. Through univariate and multivariate Cox analysis, a prognostic
gene model was established and all patients were divided into high- and low-risk
subgroups. Single sample gene set enrichment analysis was adopted to analyze the
immune infiltration, HLA expression, and immune checkpoint genes in different risk
groups. Finally, the prognostic nomogram model was established and evaluated.

Results: We identified six antioxidant genes significantly correlated with the outcome of
KIRC patients as independent predictors, namely DPEP1 (HR = 0.97, P< 0.05), GSTM3
(HR = 0.97, P < 0.05), IYD (HR = 0.33, P< 0.05), KDM3B (HR = 0.96, P< 0.05), PRDX2
(HR = 0.99, P< 0.05), and PRXL2A (HR = 0.96, P < 0.05). The high- and low-risk
subgroups of KIRC patients were grouped according to the six-gene signature. Patients
with higher risk scores had poorer prognosis, more advanced grade and stage, and
more abundance of M0 macrophages, regulatory T cells, and follicular helper T cells.
There were statistically significant differences in HLA and checkpoint gene expression
between the two risk subgroups. The performance of the nomogram was favorable
(concordance index = 0.766) and reliably predicted the 3-year (AUC = 0.792) and 5-year
(AUC = 0.766) survival of patients with KIRC.

Conclusion: The novel six antioxidant related gene signature could effectively forecast
the prognosis of patients with KIRC, supply insights into the interaction between cellular
antioxidant mechanisms and cancer, and is an innovative tool for selecting potential
patients and targets for immunotherapy.

Keywords: kidney renal clear cell carcinoma, cellular antioxidant mechanisms, immune infiltration, nomogram,
prognosis
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INTRODUCTION

Renal cell carcinoma (RCC) is a common cancer of urinary
system, accounting for around 4% of all newly diagnosed
cancers worldwide (Siegel and Miller, 2021). There will be
approximately 76,080 new cases and 13,780 deaths in the
United States alone by 2021 (Siegel and Miller, 2021). Kidney
renal clear cell carcinoma (KIRC) occupies 70–80% of RCC
and is the eighth most common cancer type (Zhao et al.,
2018). Asymptomatic patients are found more likely to have
progressed to advanced stages which causes high mortality
and recurrence rates of RCC. This reasonably indicates the
importance of early diagnosis and prognosis evaluation of RCC
(Sejima et al., 2013; Zhao et al., 2018). While, as one of
the major burdens of global health, KIRC still lacks effective
prognostic biomarkers (Barata and Rini, 2017). Hence, it is
prospective to find novel biomarkers for the identification of
patients at high risk of worse outcome and construct a risk model
to assess their prognosis for reasonable clinical decision and
management in KIRC.

Recent studies have confirmed that reactive oxygen species
(ROS) and antioxidants participate in the occurrence and
progress of cancers and other diseases (Dalle-Donne et al.,
2006; Agarwal et al., 2012; Tangvarasittichai, 2015). ROS
plays a crucial role in normal cellular signaling pathways,
but excessive ROS can injure genomic and mitochondrial
DNA, leading to oxidative damage, molecular mutations, and
changes in signaling pathways (Alpay et al., 2015), which
promotes tumorigenesis (Ishikawa et al., 2008; Kumar et al.,
2008). Some studies have shown that certain antioxidants
play an essential role in tumor prevention by preventing
DNA damage caused by excessive ROS (Snezhkina, 2019;
Harris and DeNicola, 2020), while other studies claimed that
antioxidants promote tumorigenesis by protecting cancer
cell from excessive ROS caused death (Athreya and Xavier,
2017). For example, recent studies have shown that the
role of peroxidase 1 (PRDX1) as an antioxidant in breast
cancer has two sides. For one thing, PRDX1 may prevent
oxidative stress-mediated ERα loss through antioxidant
function, thereby contributing to maintaining the ER-
positive phenotype of breast tumors and improving the
prognosis of breast cancer (O’Leary et al., 2014). For another,
some studies have shown that PRDX1 is overexpressed in
breast tumors compared with normal tissues, predicting
poor prognosis (Cha et al., 2009; Wang G. et al., 2019).
Similarly, compared with normal tissues, another typical
2-Cys antioxidant enzyme, peroxiredoxin 2 (PRDX2), is
downregulated in melanoma tissues and upregulated in
the colon, cervical, lung, and other malignancies (Furuta
et al., 2006; Lomnytska et al., 2011; Stresing et al., 2013;
Xu et al., 2017). In summary, the role of antioxidants
in cancer is controversial and worthy of further study.
Accordingly, in this study, the expression pattern of
antioxidant genes in KIRC was investigated based on the
transcriptome profile of the Cancer Genome Atlas (TCGA)
database to reveal the role or mechanism of antioxidant
genes in KIRC. Furthermore, antioxidant genes may also be

potential biomarkers, which can provide valuable prognostic
information for KIRC.

In recent years, immunotherapy has become an
effective means of cancer treatment. Due to the poor
sensitivity to conventional radiotherapy and chemotherapy,
treatment of KIRC has gradually shift from non-specific
immunological approaches to targeted therapies, and now
to new immunotherapeutic agents (Barata and Rini, 2017;
Fan et al., 2021). Cytokine-based immunotherapies, such as
IFN-α and IL-2, are effective in a small proportion of patients
with metastatic RCC (Fyfe et al., 1995). Immunotherapy
suppresses immune tolerance by inhibiting the interaction
between immune and tumor cells (Fyfe et al., 1995). Certain
immune checkpoint pathways are activated as the main
mechanism of immune resistance of cancer. Therefore, blocking
immune checkpoints is expected to be a new way of cancer
treatment (Pardoll, 2012). Many immune checkpoints are
initiated by ligand-receptor interactions, and the receptors
involved in such interactions include cytotoxic T lymphocyte-
associated protein-4 (CTLA4), the PD1 receptor expressed in
activated T cells, and the PDL1 and PDL2 receptors expressed
on immune and tumor cells (Pardoll, 2012; Batlevi et al.,
2016). Nivolumab, a PD1 checkpoint inhibitor with anti-
tumor activity, has been shown to benefit the survival of
patients with advanced KIRC who received anti-angiogenic
therapy in the past (Motzer et al., 2015). Besides, the
efficacy of ipilimumab, a CTLA4 checkpoint inhibitor, and
atezolizumab, a PDL1 checkpoint inhibitor, was investigated
and promising in KIRC (Hammers et al., 2017; Atkins and
Tannir, 2018; Motzer et al., 2018; Pal et al., 2020). Exploring
new checkpoint inhibitors is essential to provide additional
therapeutic targets for KIRC immunotherapy. Currently, the
selection of target patients with high response to specific
drugs is still a major challenge for immunotherapy. It is
necessary to find new and effective biomarkers to guide
the selection of specific patients. Both immune cells and
tumor cells are affected in a tumor microenvironment where
ROS levels remain high. Some researchers have proved
that the anti-cancer effects of immune cells are related to
their antioxidant capacity (Yang et al., 2013; Yarosz and
Chang, 2018). When the ROS level increases to inhibit the
anti-tumor ability of immune cells, immune suppression
occurs in the tumor microenvironment (Wang et al., 2021).
Considering the association between antioxidants and
immune infiltration, the establishment of an antioxidant
gene signature can not only assess the prognosis of patients
with KIRC, but also select the appropriate immunotherapy
population according to the immune infiltration status of
different subgroups.

This study determined a novel antioxidant gene signature
correlated with the prognosis of patients with KIRC
by analyzing the data from TCGA database. Then we
investigated the association between this gene signature
and immune infiltration. In addition, combined with the
gene signature and other important clinical manifestation, a
nomogram was built to effectively foresee the prognosis of
patients with KIRC.
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MATERIALS AND METHODS

Collection of Data
The clinical information and gene expression data of KIRC
patients were collected from TCGA database.1 Gene expression
files were presented as FPKM formatted RNA-seq data. FPKM
is defined as the fragments per kilobase of transcript per
million mapped reads, which indicates that its calculation
normalizes read count by dividing it by the gene length and
the total number of reads mapped to protein-coding genes.
In this study, we included 539 KIRC samples and 72 normal
samples. Moreover, the following demographic and clinical
information of all cases were collected: age, sex, follow-up
time, survival status, and tumor grade and stage. The analysis
process used in this study was displayed in the flowchart
(Supplementary Figure 1).

Identification of Differentially Expressed
Antioxidant Genes
We selected four antioxidant gene sets (antioxidant
activity, GO antioxidant activity, GO glutathione catabolic
process, and GO glutathione metabolic process) from the
molecular signatures database for gene set enrichment
analysis.2 These gene sets are composed of genes that
participate in antioxidant-related pathways or biological
processes. Supplementary Table 1 shows the complete
list target antioxidant genes. Then, in the R language
environment, we screened the antioxidant gene expression
data from the TCGA database and used the “limma”
R package to distinguish differentially expressed genes
in patients with KIRC (Ritchie et al., 2015). The cut-
off criteria were set as P < 0.05, and | logFC (fold
change) | > 0.

Establishment and Validation of the Gene
Signature
Univariate Cox regression analysis was used to determine
the genes significantly associated with the overall survival of
patients with KIRC. Subsequently, multivariate Cox regression
analysis was performed to further confirm the independent
prognostic genes. The risk score of each KIRC patient was
obtained according to the expression level of each prognostic
gene and the corresponding coefficient in the multivariate Cox
regression analysis. Its calculation is shown in the following
equation: risk score = h (t, X) = h0(t) × exp (expression of
gene 1 × β1 + expression of gene 2 × β2 + · · · + expression
of gene n × βn). In the formula, X represents the expression
of genes and h0(t) is a constant during the multivariate
Cox regression analysis. n and βn, respectively, represent the
number of independent prognostic genes and the regression
coefficient value. Exp () represents an exponential function
with e as the base. Among them, With the median risk
score as the cutoff, we separated KIRC patients into high-

1https://portal.gdc.cancer.gov/
2https://www.gsea-msigdb.org/gsea/index.jsp

and low-risk subgroups and studied the correlation between
these two risk subgroups and clinicopathological features.
By using the “Survminer” R package, we performed the
Kaplan-Meier survival analysis and log-rank test to assess
the survival difference between high- and low-risk subgroups.
Meanwhile, ROC analysis was performed with the “survivalROC”
package to further evaluate the accuracy of the prognostic
model. Then, the overall survival was compared among age,
sex, stage, and grade. Finally, the overall survival between
high- and low-risk subgroups was studied in the stratified
subgroup to further investigate the predictive ability of
the gene signature.

Analysis of the Relationship Between
Risk Score and Immune Infiltration
Taking the median risk score of six-gene signature as the
cutoff, KIRC patients were separated into high- and low-
risk subgroups. Then, the “estimate” software package and
unsupervised consensus cluster analysis were used to investigate
the tumor microenvironment of the two risk groups. Parameters
including the stromal scores, immune scores, estimate scores, and
tumor purity were analyzed and studied (Yoshihara et al., 2013).
Based on CIBERSORT algorithm, 22 immune cells included in
the gene sets of myeloid cells, B cells, T cells and NK cells
were studied to assess the immune infiltration of the high- and
low-risk subgroups (Newman et al., 2015). Then, single sample
gene set enrichment analysis (ssGSEA) containing the “GSVA”
R software package was applied by following research (Barbie
et al., 2009). Further studies were carried out on the relationship
between human leukocyte antigen (HLA) gene expression,
immune cells, related pathway types, immune checkpoint genes
and risk scores.

Establishment and Assessment of the
Nomogram
In order to evaluate the survival probability of KIRC patients,
the nomogram model was constructed by using “rms” package
in R language environment combined with clinicopathological
features and six-gene signature. After Cox regression analysis,
all variables were given a certain score, and then the total score
was added to the nomogram to predict 3- and 5-years survival
rates. The higher the total score, the worse the prognosis. The
efficiency of the nomogram was evaluated using the generated
calibration diagrams, the area under the ROC curve (AUC), and
C-index. The C-index is positively correlated with the accuracy
of the nomogram, and the ideal calibration chart should be close
to the 45-degree dotted line. These activities were resampled
using bootstrapping.

Statistical Analysis
This study analyzed the data and generated charts based
on R software (version 4.0.2) and Excel software (Microsoft
Corporation, California). Flexible statistical methods were used
for the statistical analysis. When P-value was less than 0.05, the
difference had a statistical significance.

Frontiers in Genetics | www.frontiersin.org 3 August 2021 | Volume 12 | Article 721252

https://portal.gdc.cancer.gov/
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-721252 August 13, 2021 Time: 17:21 # 4

Ren et al. Antioxidant Gene Signature in KIRC

RESULTS

Features of Patients With KIRC Enrolled
in This Study
In the TCGA database, we extracted the transcription and
clinical data of 539 KIRC and 72 normal samples and then
matched the data with the sample ID for subsequent analysis.
In our study, a total of 530 matched patients were enrolled,
and their clinical data were collected, including survival status,
grade of tumor, American Joint Committee on Cancer (AJCC)
stage, classification of tumor, lymph node, and metastasis.
Table 1 presents the detailed clinical pathological parameters
included in this study.

Differentially Expressed Antioxidant
Genes in KIRC and Normal Tissues
Based on four antioxidant gene sets (antioxidant activity, GO
antioxidant activity, GO glutathione catabolic process, and GO
glutathione metabolic process gene sets), we estimated the gene
expression levels of all samples in the TCGA database. The
findings displayed that there were 92 differentially expressed
antioxidant genes in KIRC tissues compared with normal
controls, of which 57 were down-regulated and 35 were up-
regulated (Supplementary Table 2). Details of fold-change

TABLE 1 | Clinicopathological parameters of KIRC patients in this study.

Clinical pathological parameters N %

Age (years)

≤ 65 348 65.66

> 65 182 34.34

Gender

Male 344 64.91

Female 186 35.09

Grade

G1-2 241 46.17

G3-4 281 53.83

T classification

T1-T2 340 64.15

T3-T4 190 35.85

N classification

N0 239 93.73

N1-3 16 6.27

M classification

M0 420 84.34

M1 78 15.66

UICC stage

I-II stage 322 61.1

III-IV stage 205 38.9

Survival status

Alive 364 68.68

Dead 166 31.32

KIRC, kidney renal clear cell carcinoma; UICC, Union for International Cancer
Control; T, tumor; N, node; M, metastasis.

and p-value for differentially expressed genes are shown in
Supplementary Table 3.

Determination of the Antioxidant Genes
Correlated With the Survival of Patients
With KIRC
The first step was to determine the antioxidant genes remarkably
correlated with the survival of patients with KIRC by univariate
Cox regression analysis. We obtained 13 statistically significant
genes (APOM, CAT, DPEP1, GLO1, GSTM3, IYD, KDM3B,
NFE2L2, PRDX2, PRDX3, PRXL2A, S100A9, and UBIAD1).
Except for S100A9, other genes were down-regulated in tumor
tissues (Table 2). Next, using multivariate Cox regression
analysis, we further probed genes with independent prognostic
value from these 13 genes. Finally, it was determined that
DPEP1 (HR = 0.97, P< 0.05), GSTM3 (HR = 0.97, P< 0.05), IYD
(HR = 0.33, P < 0.05), KDM3B (HR = 0.96, P < 0.05), PRDX2
(HR = 0.99, P < 0.05), and PRXL2A (HR = 0.96, P < 0.05) could
independently predict the prognosis of KIRC. The unpaired t-test
was used to analyze the expression differences of six core genes
in 539 KIRC patients and 72 normal samples. The findings
suggested that compared with normal tissues, the expression of
DPEP1, GSTM3, IYD, KDM3B, PRDX2, and PRXL2A were all
downregulated in KIRC patients (Figure 1).

Establishment of an Antioxidant Gene
Signature as a Risk Model
According to the multivariate Cox regression analysis,
independent prognostic antioxidant genes were obtained.
To evaluate the prognosis of patients, the coefficient was assigned
to the formula to calculate the comprehensive risk score of six
genes. Patients in high- and low-risk subgroups were grouped
according to the median risk score (Figure 2A). As shown in
the scatter plot, the high risk scores were mainly distributed in
the poor survival interval (Figure 2B). The heatmap showed the
expression chart of the six genes (Figure 2C). Additionally, the

TABLE 2 | The antioxidant genes correlated with prognosis of KIRC in
univariate cox analysis.

Gene HR Lower 95%CI Upper 95%CI Cox P-value

PRDX3 0.984 0.973 0.994 0.002

KDM3B 0.924 0.893 0.956 <0.001

IYD 0.188 0.082 0.430 <0.001

CAT 0.981 0.974 0.989 <0.001

DPEP1 0.951 0.918 0.985 0.005

GSTM3 0.959 0.922 0.996 0.033

PRXL2A 0.949 0.929 0.970 <0.001

GLO1 0.988 0.976 0.100 0.046

S100A9 1.002 1.000 1.004 0.043

PRDX2 0.990 0.984 0.995 <0.001

NFE2L2 0.974 0.954 0.995 0.015

APOM 0.989 0.978 0.999 0.028

UBIAD1 0.808 0.696 0.939 0.005

HR, hazard ratio; CI, confidence interval.
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FIGURE 1 | Different expression of the six genes in KIRC (n = 539) and normal (n = 72) samples with unpaired t-test. The solid line represents the median
expression of independent prognostic antioxidant genes. The expression of the six genes was all down-regulated in KIRC patients. (A) DPEP1, (B) GSTM3, (C) IYD,
(D) KDM3B, (E) PRDX2, and (F) PRXL2A (*P < 0.05 and ***P < 0.001).

ROC curve showed that AUC was 0.713 (Figure 2D), suggesting
that the prognosis evaluation of the six gene signature of patients
with KIRC had good specificity and sensitivity. Similarly, the
negative correlation between risk score and prognosis was
affirmed by the logarithmic rank method and Kaplan-Meier
survival curve (P < 0.001, Figure 2E).

Relativity Between Risk Score and
Clinicopathological Features
We further explored whether there was a relationship between the
gene signature-based risk score and clinicopathological features,
consisting of age, sex, tumor grade, stage of T, N, M, and
pathological stage. Our findings suggested that patients at tumor
grade 3–4, stage III-IV (AJCC stage), T3-4, N1-3, and M1 stages
had higher risk scores (P < 0.001) (Figures 3C–G). Nevertheless,
the correlation of risk score and age or gender was not significant
(Figures 3A,B).

Correlation Between Risk Score and
Characteristics of Immune Infiltration
SSGSEA was used to analyze 29 immune cell subtypes and
immune-related pathways in each KIRC patient to study the
relevance between risk score and immune infiltration profiles.
The immune infiltration profiles of the risk subgroup were
composed of the stromal scores, immune scores, estimate
scores, and tumor purity, which were evaluated by unsupervised
consistent clustering analysis (Figure 4A). Our results indicated
that compared to the low-risk group, the high-risk group

had higher stromal scores, immune scores, and corresponding
estimate scores, as well as lower tumor purity (Figure 4B). This
study also proved the significant relevance between risk score and
the expression of several HLA-related genes, including HLA-F,
HLA-DRB6, HLA-DRB1, HLA-DRA, HLA-DQA1, HLA-DPB1,
HLA-DPA1, HLA-DMA, HLA-DMB, HLA-DOB, and HLA-E.
Among the above genes, except HLA-E, the expression of all
other HLA-related genes in the high-risk group was higher
than that in the low-risk group (Figure 4C). The box plots
intuitively showed the difference in immune cell infiltration
between different risk subgroups (Figure 4D). We observed
that the expressions of resting mast cells, resting dendritic
cells, and M2 macrophages in the low-risk group were higher
than those in the high-risk group. However, the expressions
of regulatory T cells (Tregs), follicular helper T cells, and M0
macrophages in the low-risk group were lower than those in
the high-risk group. The above results showed that the risk
model could assess the immune condition of KIRC patients to
a certain extent.

Besides, our study analyzed the expression levels of 12
immune checkpoint genes in different risk subgroups. The study
on the relationship between risk score and gene expression of
immune checkpoint provided a new idea for immunotherapy.
Compared with the low-risk group, the expressions of BTLA,
CD137, CD27, CD276, CD28, CTLA4, HCVCR2, LAG3, PD1,
TNFRSF4, TNFRSF18, and TNFSF14 increased in the high-risk
group (Figure 5), indicating that the development of potential
immune checkpoint inhibitors might have an effect on high-risk
patients with KIRC.
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FIGURE 2 | Antioxidant gene signature predicts overall survival in patients with KIRC. (A) The distribution of risk scores for each patient. With the median risk score
as the cutoff, KIRC patients were divided into high- and low-risk subgroups. (B) Relationship between survival time (years) and survival status for each patient. (C) A
heatmap of the expression profiles of six antioxidant genes in high-and low-risk subgroups. The gene expression was scaled by log2 (original expression of gene+1).
(D) ROC curve of antioxidant gene signature in prognosis prediction for KIRC. The AUC was 0.713. (E) Kaplan-Meier curve of patients in the high- and low-risk
subgroups to validate the predictive value of antioxidant gene signature. The difference between the high- and low-risk subgroups was measured by the log-rank
test, with a P-value < 0.05. ROC, receiver operating characteristic; AUC, area under the ROC curve.

Verification of the Predicting Power of
the Six-Gene Signature
We continued to use univariate and multivariate analyses
to investigate the predictive power of clinicopathological
parameters, consisting of age, sex, grade, and stage, as well as the
six-gene signature of KIRC patients for prognosis. The outcomes
of the univariate analysis suggested that age [HR = 1.032,
95% confidence interval (CI): 1.018 −1.046, P < 0.001], grade
(HR = 2.319, 95% CI: 1.877−2.863, P< 0.001), stage (HR = 1.904,
95% CI: 1.665 −2.178, P < 0.001), and risk score (HR = 1.662,
95% CI: 1.478 −1.869, P < 0.001) impacted the prognosis in
a significant way (Figure 6A). Likewise, multivariate analysis
revealed that age (HR = 1.032, 95% CI: 1.017−1.047, P < 0.001),

grade (HR = 1.361, 95% CI: 1.069 −1.732, P = 0.012),stage
(HR = 1.618, 95% CI: 1.386 −1.890, P < 0.001), and risk
score (HR = 1.318, 95% CI: 1.147 −1.514, P < 0.001) were
independent prognostic factors (Figure 6B). Survival curves
showed that patients with age >65 years old, grade 3−4, stage
III-IV, T3-4, positive lymph nodes, and distant metastasis had
a poor prognosis, and sex was not significantly correlated with
prognosis (Figures 7A–G). To further confirm the accuracy of the
analysis in different subgroups, we conducted stratified analysis.
The Kaplan-Meier curve showed (Figures 8A–N) that only in the
N1-3 subgroup, risk parameters were not independent prognostic
factors, and other stratifications showed that lower risk scores
were associated with better outcomes.
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FIGURE 3 | Association between risk score and clinicopathological features. (A) Age. No significant difference of risk scores in different age. (B) Sex. No significant
difference of risk scores in different sex. (C) Grade. Risk scores were higher in KIRC patients with grade 3–4. (D) AJCC stage. Risk scores were higher in KIRC
patients with stage III–IV (AJCC stage). (E) Stage T. Risk scores were higher in KIRC patients with T3–4. (F) Stage N. Risk scores were higher in KIRC patients with
N1–3. (G) Stage M. Risk scores were higher in KIRC patients with M1.

Construction and Validation of a
Nomogram Model Combining the
Antioxidant Gene Signature
The nomogram model combining clinicopathological
characteristics (age, sex, tumor grade, pathological stage,
stage of T, N, M) with the risk score based on the gene signature
was used to evaluate the survival probability of patients with
KIRC (Figure 9A). The C-index of the survival prediction was
0.766. Additionally, the survival rate between the two risk groups
based on the nomogram model was significantly different with
P < 0.001 (Figure 9B). The calibration plots were drawn to
forecast the 3- and 5-years survival rates of KIRC patients, which
proved that the predicting power of the nomogram was highly
concordant with the actual observation (Figures 9C,D).

DISCUSSION

Recently, multiple studies have shown that traditional
clinicopathological characteristics, such as sex, age, stage of
pathology, size of the tumor, are not high enough to predict
the prognosis of patients (Zhao et al., 2019). Attention should
be paid to building new models to predict the prognosis of
cancer patients more effectively and accurately. With the
continuous exploration of the clinical significance of molecular
markers, increasing studies believe that molecular markers could
predict the prognosis of tumors, and an increasing number of
predictive indicators and therapeutic targets are also constantly
being determined. For example, IGFLR1 has been proved to
independently predict prognosis in KIRC, and the risk was
higher in KIRC patients with increased IGFLR1 expression
(Song et al., 2020). Based on five mRNAs and one miRNA
(ANK3, GTPBP2, hsa-mir-374a, INTS8, LIMCH1, SLC16A12),
Chang et al. (2018) established a good gene signature model to

conduct prognosis prediction of patients with KIRC, and the
results showed that the prognosis of the high-risk group was
better than that of the low-risk group. In summary, although
some studies have explored the molecular markers related to
the prognosis of KIRC and built an available prognostic risk
model, there is no study on constructing an effective prognostic
model of KIRC based on antioxidant genes. The antioxidant
system controls ROS production by altering metabolic and
signal transduction pathways to maintain redox homeostasis
in normal cells (Snezhkina, 2019). Cancer cells maintain high
levels of ROS production compared to normal cells and are
increasingly dependent on antioxidant defense systems (Prasad
et al., 2017). It is worth noting that the role of antioxidants in
tumors may change due to the development stage of tumors
(Harris and DeNicola, 2020). On one hand, when the level of
ROS surpasses the antioxidant defense mechanism, cells will
experience oxidative stress, causing the destruction of molecules,
cell structure, and function, thereby promoting the occurrence
and development of tumors (Kumari et al., 2018). However,
with the development of tumors to a certain extent, the level
of ROS continues to rise. Cancer cells actively upregulate a
variety of antioxidant systems to buffer the level of ROS, so that
ROS in the tumor cells reach a new balance, which is limited
to a range that is conducive to promoting tumor progression
(Moloney and Cotter, 2018). Although some previous studies
have proven that certain antioxidants can prevent cancer
(Sakumi et al., 2003; McLoughlin and Orlicky, 2019), other
studies have shown that tumors can also occur in similar
situation (Müller et al., 2013; Mishra et al., 2018). These results
indicate that antioxidants and ROS are closely correlated with
the development of cancer, and further research is required to
analyze these seemingly contradictory findings. In addition, there
is an increasing number of studies on antioxidant genes, which
may be involved in the signaling pathway of the antioxidant
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FIGURE 4 | Analysis of correlation between risk score and immune infiltration profiles by ssGSEA. (A) The 29 immunocyte subtypes and immune-related pathways
were enriched in different high- and low-risk subgroups by unsupervised consistent clustering analysis. The tumor purity, ESTIMATE score, immune score, and
stromal score were calculated and are shown in the heatmap. (B) The violin plots showed a higher immune score, stromal score, and corresponding ESTIMATE
score, and lower tumor purity in the high-risk group than the low-risk group (***P < 0.001). (C) The expression levels of HLA-related genes in high- and low-risk
subgroups (ns, not significant, *P < 0.05, **P < 0.01, and ***P < 0.001). (D) The fractions of six immune cell infiltration in high- and low-risk subgroups (ns, not
significant, *P < 0.05, **P < 0.01, and ***P < 0.001). ssGSEA, single sample gene set enrichment analysis; HLA, human leukocyte antigen.

system (Wang Z. et al., 2020). The expression of these genes may
be of great significance for early diagnosis, precise treatment, and
prognosis evaluation of KIRC, which is worthy of further study.

In this study, the antioxidant genes were studied using
bioinformatics methods, and their prognostic ability on KIRC
was demonstrated. We collected antioxidant genes, analyzed the
data of the KIRC and normal samples from TCGA, and discerned
differentially expressed genes between them. Six independent
prognostic genes (DPEP1, GSTM3, IYD, KDM3B, PRDX2, and
PRXL2A) were determined through univariate and multivariate
Cox regression analyses, and the six-gene signature was built
to forecast the prognosis of patients with KIRC. This signature
may be a more effective and targeted prognostic marker for
patients with KIRC than other prognostic indicators. Meanwhile,
our study found that high risk scores and late tumor stages
were significantly associated with poor prognosis. Our study
on the correlation between tumor infiltrating immune cells

and the risk score in KIRC patients showed that the levels of
Tregs, follicular helper T cells, M0 macrophages were higher
in the high-risk group, while the levels of resting mast cells,
resting dendritic cells, and M2 macrophages were higher in the
low-risk group, which is generally similar to recent research
on KIRC patients (Zhang et al., 2019; Hua et al., 2020; Fan
et al., 2021). It has been suggested that overexpression of
immunosuppressive molecules (e.g., CTLA4, LAG3, and PD1)
and immunosuppressive cells (e.g., Tregs) are involved in tumor
immune escape and contribute to tumorigenesis and progression
(Liu and Cao, 2016; Saleh and Elkord, 2019). Inhibition of
immune checkpoints has recently received much attention as
a promising immunotherapeutic strategy in cancer (Sanmamed
and Chen, 2018). Therefore, we investigated the relationship
between several important immune checkpoint genes and risk
scores generated from the antioxidant gene signature in KIRC.
The results indicated that the expressions of gene checkpoints
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FIGURE 5 | The green and red boxplots represent the expression levels of immune checkpoint genes in the low- and high-risk subgroups, respectively. The solid line
represents the median expression of immune checkpoint genes. The expressions of (A) BTLA, (B) CD27, (C) CD28, (D) CD137, (E) CD276, (F) CTLA4,
(G) HAVCR2, (H) LAG3, (I) PD1, (J) TNFRSF18, (K) TNFSF14, and (L) TNFRSF4 were significantly higher in the high-risk group (**P < 0.01 and ***P < 0.001).
The gene expression was transformed by log2 (original expression of gene+1).

FIGURE 6 | Univariate and multivariate Cox regression analyses were used to explore the impact of clinicopathological features and the gene signature on survival of
patients with KIRC. (A) Univariate Cox regression analysis. (B) Multivariate Cox regression analysis. Age, grade, stage, and risk score were independent prognostic
factors.

such as BTLA, CTLA4, CD27, CD28, LAG3, and PD1 were higher
in the high-risk group in a significant way, which may help
to interpret the poor outcome of KIRC in the high-risk group.
And our antioxidant gene signature may also provide evidence
for the appliance of immune checkpoint inhibitors in KIRC by
identifying patients with positively expressed targets. Moreover,
the Kaplan-Meier curve showed that the risk score was negatively
related to the prognosis of patients. And a nomogram with good

clinical and prognostic value was established in combination with
clinical features and antioxidant gene signatures. The evidence
indicates that the model based on the antioxidant gene signature
is feasible in the prognosis prediction in KIRC. But our study
still has some shortcomings. As shown in the stratified analysis,
the risk parameters of the N1-3 subgroup could not predict the
prognosis of patients with KIRC (P = 0.643). Insufficient samples
may explain the negative results for N1-3 (n = 15). In addition,
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FIGURE 7 | Kaplan-Meier curves for the overall survival of patients with KIRC were drawn according to the clinicopathologic features. (A) Age, (B) Sex, (C) Grade,
(D) Stage, (E) Stage T, (F) Stage N, and (G) Stage M.

FIGURE 8 | Kaplan–Meier curves for stratified survival analyses between high- and low-risk subgroups were drawn to assess the prognostic ability of gene signature.
(A) Age ≤ 65, (B) Age > 65, (C) Female, (D) Male, (E) G1–2, (F) G3–4, (G) Stage I–II, (H) Stage III–IV, (I) T1–2, (J) T3–4, (K) N0, (L) N1–3, (M) M0, and (N) M1.

owing to the deficiency of recurrence data in the TCGA database,
we only used OS to predict the patient’s outcomes, which may
lead to the loss of some important information and affect the
comprehensive application of this model.

These six genes (DPEP1, GSTM3, IYD, KDM3B, PRDX2, and
PRXL2A) involved in the construction of the model have been
studied by some researchers. Dipeptidase 1 (DPEP1) is situated
on chromosome 16q24.3 and is a zinc-doped metalloprotease,
which has a great effect on the metabolism of glutathione
and leukotrienes (Nakagawa et al., 1992). Nevertheless, the

molecular mechanism of cancer depends on the type and stage
of cancer, and the role of DPEP1 expression in cancer is
still controversial. Studies have shown that the expression of
DPEP1 is reduced in invasive and in situ lobular carcinoma
of the breast and pancreatic ductal adenocarcinoma (Green
et al., 2009; Zhang et al., 2012) and is highly expressed in
colorectal cancer and hepatoblastoma (Toiyama et al., 2011;
Tachibana et al., 2017; Cui et al., 2019). Glutathione S-transferase
mu3 (GSTM3) belongs to the phase II enzyme family of
xenobiotic detoxification, which is related to the detoxification
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FIGURE 9 | Construction and validation of nomogram model combining the antioxidant gene signature with clinicopathological factors. (A) The nomogram to predict
3- and 5-year survival probability of patients with KIRC. (B) The Kaplan-Meier curve of survival rate between two different risk groups based on the nomogram.
(C,D) The calibration plots to estimate the 3- and 5-year predictive performance of the nomogram. Nomogram-predicted probability of survival is plotted on the
x-axis; actual survival is plotted on the y-axis. The dotted line represents ideal predictive ability.

of carcinogens and metabolism of exogenous electrophiles (Li
et al., 2017; Wang S. et al., 2020). Studies have shown that
GSTM3 has different polymorphisms in various tumor cells and
participates in the regulation of tumorigenesis, cell invasion,
metastasis, chemical resistance, and oxidative stress (Hammers
et al., 2017). Studies have revealed that GSTM3 obviously affects
the susceptibility of individuals to cancer, such as esophageal
cancer, hepatocellular carcinoma, colorectal cancer, urinary
bladder cancer, breast cancer, and prostate cancer (Loktionov
et al., 2001; Mitrunen et al., 2001; Jain et al., 2007; White
et al., 2008; Kesarwani et al., 2009; Mitra et al., 2009). An
in-depth study of the regulatory mechanism related to the
abnormal expression of GSTM3 and the effect of GSTM3 in
various cancers may help prevent cancers and promote targeted
treatment. Iodotyrosine deiodinase (IYD) is expressed in thyroid
cells and plays an essential effect in thyroid cells and thyroid
hematopoietic stem cells, which catalyze the iodide cycle and
promote iodine retention in thyroid follicular cells (Olker et al.,
2018; Han et al., 2020). Currently, research on the IYD function
is slow. Recently, Lu et al. (2020) suggested that IYD inhibits
the growth of hepatocellular carcinoma cells and tumorigenesis.
KDM3B is an H3K9me1/me2-specific demethylase (Xu et al.,
2018). As it is located on the chromosome 5q31 region, it
has been initially suspected to inhibit malignant tumors of
the hematopoietic system (Xu et al., 2018). Some studies have

shown that KDM3B has potential tumor-suppressive activity
in myelodysplastic syndromes, acute myeloid leukemia, acute
promyelocytic leukemia, and breast tumors (MacKinnon et al.,
2011; Paolicchi et al., 2013; Xu et al., 2018; Wang X. et al., 2019).
However, another study showed that KDM3B was located at
the promoter area of the lmo2 gene and drove the occurrence
of leukemia (Kim et al., 2012). Peroxiredoxin 2 (PRDX2), a
member of the peroxiredoxin family, is a 2-Cys antioxidant
enzyme that makes a valuable contribution to the scavenging
of H2O2 and ROS, thus preventing oxidative stress in cells
(De Franceschi et al., 2011). As a tumor suppressor, PRDX2 is
expressed in normal melanocytes, but its expression is lost in
methylated melanomas (Zhao et al., 2019). In contrast, PRDX2
overexpression is related to the development of several malignant
tumors, consisting of cancers of the colon (Lu et al., 2014),
cervix (Lomnytska et al., 2011), lung (Stresing et al., 2013),
prostate (Ummanni et al., 2015), liver (Zhou et al., 2016),
and esophagus (Feng et al., 2020). The peroxiredoxin-like 2A
(PRXL2A) gene acts as an antioxidant protein to prevent cells
from oxidative stress (Chen et al., 2019). It has been confirmed
that overexpression of PRXL2A and lymph node metastasis
is related to poor outcomes in oral squamous cell carcinoma
(OSCC) patients, suggesting that downregulation of miR-125b
inhibitory molecules is the basis for the upregulation of PRXL2a
in OSCC (Chen et al., 2019).
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In conclusion, an antioxidant gene signature was developed
and verified to accurately forecast the prognosis of patients with
KIRC in our study. The risk model based on antioxidant gene
signature may also contribute to selecting potential patients and
targets for immunotherapy in KIRC. The nomogram established
by combining the gene signature and clinical factors can be used
as a useful tool for prognosis evaluation in clinical management
of patients with KIRC.
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