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Genetic and non-genetic factors are responsible for the high interindividual variability in

the response to SARS-CoV-2. Although numerous genetic polymorphisms have been

identified as risk factors for severe COVID-19, these remain understudied in Latin-

American populations. This study evaluated the association of non-genetic factors and

three polymorphisms: ACE rs4646994, ACE2 rs2285666, and LZTFL1 rs11385942,

with COVID severity and long-term symptoms by using a case-control design. The

control group was composed of asymptomatic/mild cases (n = 61) recruited from a

private laboratory, while the case group was composed of severe/critical patients (n

= 63) hospitalized in the Hospital Universitario Mayor-Méderi, both institutions located

in Bogotá, Colombia. Clinical follow up and exhaustive revision of medical records

allowed us to assess non-genetic factors. Genotypification of the polymorphism of

interest was performed by amplicon size analysis and Sanger sequencing. In agreement

with previous reports, we found a statistically significant association between age,

male sex, and comorbidities, such as hypertension and type 2 diabetes mellitus

(T2DM), and worst outcomes. We identified the polymorphism LZTFL1 rs11385942

as an important risk factor for hospitalization (p < 0.01; OR = 5.73; 95% CI = 1.2–

26.5, under the allelic test). Furthermore, long-term symptoms were common among

the studied population and associated with disease severity. No association between

the polymorphisms examined and long-term symptoms was found. Comparison of

allelic frequencies with other populations revealed significant differences for the three

polymorphisms investigated. Finally, we used the statistically significant genetic and

non-genetic variables to develop a predictive logistic regression model, which was

implemented in a Shiny web application. Model discrimination was assessed using the

area under the receiver operating characteristic curve (AUC = 0.86; 95% confidence

interval 0.79–0.93). These results suggest that LZTFL1 rs11385942 may be a potential

biomarker for COVID-19 severity in addition to conventional non-genetic risk factors.
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A better understanding of the impact of these genetic risk factors may be useful to

prioritize high-risk individuals and decrease the morbimortality caused by SARS-CoV2

and future pandemics.
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INTRODUCTION

SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2)
is a novel coronavirus, first identified in China in late December
2019 (1). The disease caused by this virus, named COVID-19,
rapidly spread across the globe being declared a pandemic by the
WHO in March 2021 (2). Up to the first week of March 2022,
more than 450 million confirmed cases and 6 million deaths were
reported worldwide, from which ∼6 million confirmed cases
and 139.000 deaths occurred in Colombia (3, 4). The clinical
course and severity of COVID-19 disease are highly variable
among individuals, ranging from asymptomatic cases to severe
respiratory failure and death (5).

Different clinical risk factors, including aging, male sex
and comorbidities such as cardiovascular disease, hypertension,
diabetes mellitus, chronic obstructive pulmonary lung disease,
immunosuppression and obesity have been linked to more
severe courses of COVID-19 (6, 7). Importantly, numerous
studies have shown that host genetic factors also play a critical
role in SARS-CoV-2 disease progression and severity (8–10).
Early works suggested a potential role of genes related to
the renin-angiotensin-aldosterone system (RAAS) (ACE1 and
ACE2), the ABO blood group system and the human leukocyte
antigen (HLA) (11–13). The RAAS pathway is a physiological
system that plays an important role in the homeostatic control
of blood pressure and body water-electrolyte balance (14).
Angiotensin I converting enzyme and angiotensin converting
enzyme 2, coded by the genes ACE and ACE2, respectively,
are critical regulators of this pathway and may also contribute
to multiple organ injuries in COVID-19. In lung vascular
endothelium, ACE catalyzes Angiotensin I conversion into
Angiotensin II, an active peptide that promotes vasoconstriction,
inflammation and thrombosis (15). Conversely, ACE2 converts
Angiotensin II into angiotensin-(1–7), molecules that counteract
the effects of Angiotensin II, including vasodilatation and
vascular protection (16). Polymorphisms that increase ACE
expression have been associated with more severe COVID-19
infections. The ACE insertion(Ins)/deletion(Del) polymorphism
(rs4646994) is of particular interest as the resulting decrease
in ACE activity has been linked to a protective effect in Ins
allele carriers (17). Moreover, ACE2 has a dual role as the
SARS-CoV-2 receptor, allowing virus internalization, and as
RAAS regulator, catalyzing angiotensin II degradation (16, 18).
Whole exome studies (WES) have identified more than 30
variants in the ACE2 gene, potentially interfering with protein
structure, stabilization and expression, and contributing to the
high interindividual variability and susceptibility to COVID-
19 (19). Among these variants, NM_001371415.1:c.439+4G>A
(rs2285666) polymorphism is related to an increase of 50% of
ACE2 expression, compared to wild-type G/G genotype carriers,

and decreases the risk of severe SARS-CoV2 infection (20). In
addition, two large genome-wide association studies, oriented to
find genetic susceptibly locus, identified an association signal at
chromosome 3p21.31 (rs11385942 and rs10490770) as the one
with the most significant association with respiratory failure and
mechanical ventilation requirement amongst severe COVID-19
patients (21, 22). This locus contains several genes related to
cell signaling and solute transportation, including CCR9, CXCR6,
LZTFL1, and SLC6A20. LZTFL1 gene, the most promising
candidate, codifies for a protein involved in the primary cilia
function and the immunological synapse between T-cells and
antigen-presenting cells (23).

Despite their relevance, genetic host factors related to
COVID-19 severity remain understudied in Latin-American
populations, limiting their potential use as predictive biomarkers
and the development of predictive models. Furthermore, the
study of these factors is particularly relevant considering
that Latin-American countries have been severely affected by
the COVID-19 pandemic. In this study, we performed an
ambispective case-control analysis to evaluate the association
between non-genetic factors and genetic factors, including
the polymorphisms rs4646994 (ACE), rs2285666 (ACE2), and
rs11385942 (LZTFL1), and COVID-19 severity and long-term
symptoms in Colombian population. The results of this study
support a positive association between the LZTFL1 rs11385942
locus variant and an increased risk of severe SARS-CoV-
2 infection. Furthermore, we developed a predictive model
integrating non-genetic and genetic factors, potentially useful
to identify high-risk individuals and prioritize prevention and
mitigation efforts.

METHODS

Study Population and Sampling
This study enrolled 145 patients between 18 and 60 years
with confirmed diagnosis of COVID-19 by positive RT-PCR
(reverse transcriptase polymerase chain reaction), antigens
or antibodies (IgG and/or IgM for SARS-CoV-2) tests. The
control group consisted of 71 patients who were classified as
asymptomatic or mild COVID-19, group non-hospitalized. The
case group was composed of 74 patients with severe or critical
disease, group hospitalized. Subcategorization of the case group
was made with patients critically ill who required intensive
care unit (ICU), group hospitalized-ICU. Clinical severity was
determined according to national guidelines for COVID-19
by the Colombian Health Ministry (24). Cases were recruited
among hospitalized patients at the Hospital UniversitarioMayor-
Méderi (Bogotá, Colombia). Controls were enrolled from a
private laboratory (Genética Molecular de Colombia, Bogotá,
Colombia). Cases and controls were invited to participate in this

Frontiers in Medicine | www.frontiersin.org 2 June 2022 | Volume 9 | Article 910098

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Angulo-Aguado et al. LZTFL1 rs11385942 and COVID-19 Severity

study and those who accepted signed an informed consent and
underwent buccal swap or peripheral blood sampling. Patients
were enrolled between December 2020–July 2021 and all subjects
were unvaccinated at the time of recruitment.

The sample size was calculated with a p (sample proportion)
of 7% according to the minimum allele frequency (MAF) for
the allele with the reported lowest frequency, in our case the
polymorphism rs11385942, a confidence level of 95% (α =

0.05, z = 1.96), a margin of error (e) of 5%, and a population
size N = 8,000,000 for Bogotá city. Using the formula n =

Nz2∗p(1-p)/α2(N-1)+z2∗p(1-p), implemented in the OpenEpi
web-tool, we estimated that the minimum sample size was
101 (25). This value was approximated to 145 individuals
considering possible clinical follow up lost. Given this is the
first study to assess allele frequency for the polymorphisms of
interest in Colombian population, MAF were obtained from the
GnomAD database for Latino-American individuals (26). This
study followed the guidelines of the Declaration of Helsinki
and all experimental procedures were approved by the Ethics
Committee of Universidad del Rosario (DVO005 1543-CV1334).

Clinical Data Collection and Follow Up
Data collection and clinical follow up were conducted through
phone calls at least 21 days after the diagnosis. Data was obtained
through a standardized format that included the following
clinical and demographical information: sex, age, blood type,
medical history, comorbidities, drugs use, symptoms, long-term
symptoms, and any change in disease severity. Furthermore,
we performed an exhaustive revision of clinical records of
hospitalized patients to validate the information collected
previously and verify the clinical classification and severity
criteria according to the clinical guidelines mentioned before.
One hundred and twenty four patients, 61 cases and 63 controls,
completed the clinical follow up and continued in the study.

DNA Extraction and Genotyping
Total genomic DNA was obtained from buccal swab or blood
samples using either the Quick-DNATM Miniprep Plus Kit
(Zymo Research) or the Buccal Swab DNA Kit (Promega).
The buccal swab samples were collected in a cotton swab
and the blood samples were collected in EDTA tubes, 5mL
for patient. Genomic DNA was quantified using a nanodrop
spectrophotometer. All samples were aliquoted and stored at
4◦C until analysis. Polymerase chain reaction (PCR) was used
to amplify and genotype three polymorphisms of interest:
ACE 289bp ALU Ins/Del (rs4646994), ACE2 c.439+4G>A
(rs2285666), and LZTFL1 c.323+621dup (rs11385942). Primers
were designed using PrimerBlast (27). Primers sequences and
PCR conditions are listed in Supplementary Table 1. For ACE
rs4646994 genotyping, PCR products were run on a 1% agarose
gel stained by ethidium bromide and amplicon sizes were used
to determine individual genotypes. Fragments obtained were
191 bp for the Del allele and 480 bp for the Ins allele. For
ACE2 rs2285666 and LZTL1 rs11385942, PCR products were
purified and sequenced through Sanger method. Sequences were
analyzed with the software Geneious Prime v2021.2 (Biomatters)
(28). Genotypes were assigned in batches of 20 samples by

two independent researchers. In case the results were in
disagreement, a third researcher reassessed the results and a final
consensus was achieved. These researchers were blind to the case-
control status of the individuals. Genotypification was attempted
in 125 individuals, being successful in 124 (99.2%).

Statistical Analysis and Predictive Model
A bivariate analysis was performed between clinical and
demographic variables with the severe COVID-19 outcome
(non-hospitalized vs. hospitalized, including UCI and non-UCI
patients) or the presence of long-term COVID-19 symptoms
using the χ

2, Mann-Whitney and OR statistics. All the
analyses were conducted using this case-control definition
unless otherwise stated. Significant thresholds were set as p
< 0.05, and a 95% confidence interval for the OR. Long-term
COVID-19 symptoms were defined as persistent symptoms
beyond 3 weeks from initial symptoms onset (29). An extended
analysis of long-term symptoms was performed grouping
symptoms into the following categories: (1) frequent (fatigue,
headache, attention deficit, alopecia, dyspnea), (2) organ
system affected (neurological, psychiatric, osteomuscular,
respiratory, and cardiovascular), and (3) others including the
ones with low sample and literature prevalence (dysphagia,
otorhinolaryngological, ophthalmological and cutaneous
manifestations) according to Lopez-Leon et al. (30).

Population genetic statistics, including allelic frequencies,
genotypic frequencies andHardy–Weinberg equilibrium (HWE),
were calculated using the SNPStats software (31). The deviation
of the HWE was established using a χ

2 goodness-of-fit test with
1◦ of freedom (df) except for the SNP in ACE2 rs2285666 located
in the X chromosome, for which HWE was determined using the
R package “HWadmiX” (32). Allelic frequencies obtained from
the study were compared to other populations using the χ

2 and
Fisher’s exact test statistics (21, 26, 33–46). p-values <0.05 were
considered statistically significant.

The bivariate association analysis between genetic
polymorphisms and severity outcome or the presence of
long-term symptoms was performed with the PLINK software
(47). Different genetic models, including allelic, genotypic,
dominant and recessive, were assessed with the Cochran-
Armitage trend, genotypic (2df), dominant gene action (1df),
and recessive gene (1df) tests. In addition, a subgroup analysis
between control (non-hospitalized) and ICU-hospitalized
patients (n = 26) was conducted under the allelic model. The
clinical and genetic variables with a significant correlation
were used to build a multivariate logistic regression model in
order to develop a predictive risk model for severe disease.
Different combinations of variables were tested to construct the
models, and these were compared using the Akaike Information
Criterion (AIC) and the Coefficient of Discrimination D (Tjur’s
R2) parameters. This last method, Tjur’s R2, is used for binomial
logistic models and a value approaching 1 indicates that there is
a clear separation between the predicted values for the response
outcomes (48). For the model construction we evaluated and
handled the potentially cofounding and interacting variables. We
assessed the variation inflation factor (VIF) to protect our model
to be inflated by multicollinearity, all the variables included had
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FIGURE 1 | Flowchart of the study participants.

a VIF value of 1. Model comparison was assessed by calculating
the area under the receiver operating characteristic curve
(AUC), direct comparison between the scores obtained from
the models, integrated discrimination improvement (IDI) and
cross-validation parameters, including concordance, sensitivity,
specificity, and net benefit at different cutoff probabilities.
Concordance was defined as the correctly estimated outcomes
using several cutoff values for the predicted affection probability.
The IDI score and cross-validation parameters were calculated
with the R packages PredictABEL and rmda, respectively (49, 50).
Finally, an open-source and online application was developed for
users to easily access and test the model. The predictive model
was constructed using R v4.1.2 and the online application was
built using the Shiny package for R (51).

RESULTS

Clinical and Demographic Data
In total 145 patients, 71 controls and 74 cases were enrolled
in the study. Nine patients from the control group and six
patients from the cases group were excluded from the study
by loss to follow up. One control was excluded due to familial
relationship, one case was excluded by insufficient DNA and
four cases were excluded due to direct request from the family.
The final number of patients included was 61 controls and 63
cases. Two patients from the cases group died due to COVID-
19 complications; nevertheless, clinical follow up was completed
with help of relatives. A summary of the study participants is
presented in Figure 1. For the control group, 29.5% (n = 18)
diagnoses were made by RT-PCR, 63.9% (n = 39) by antigen
test, and 6.6% (n = 4) by antibodies. The sampling methods for
this group were 67.2% (n = 41) by buccal swabs and 32.8% (n =

20) from peripheral blood. For the case group, 98.4% (n = 62)
diagnoses were made by RT-PCR and 1.6% (n = 1) by antigen
test and 100% samples were taken from peripheral blood.

Demographic and clinical characteristics of our study
population are summarized in Table 1. The mean age for the
control group was 36.6 ± 10.8 years and that for the case
group was 47.3 ± 9.53 years. Men accounted 42.6% (n = 26)
of controls and 65% (n = 41) of the case group. Among the
most common comorbidities in our study population were type
2 diabetes mellitus (T2DM) 11.3% (n = 14), hypertension 16.1%
(n = 20) and obesity 21.8% (n = 27). Most patients (56.5%,
n = 70) presented no comorbidities, 27.4 (n = 34) patients
had 1 comorbidity and 16.1% (n = 20) had two or more
comorbidities. The different signs and symptoms observed in
the patients are presented in Table 2. Respiratory symptoms
were the most common, these included dyspnea 55.6% (n =

69) and cough 64.5% (n = 80), followed by systemic symptoms,
including fever 52.4% (n = 65), fatigue 81.5% (n = 101) and
osteomuscular pain 70.2% (n = 87). Long-term symptoms were
frequent (57.3%, n = 71), these included common symptoms
(39.5%, n = 49), respiratory (15.3%, n = 19), osteomuscular
(8.9%, n = 11), neurologic (22.6%, n = 28) and psychiatric
(19.4%, n = 24). Demographic and clinical characteristics in
patients with and without long-term COVID-19 symptoms are
presented in Table 3.

Clinical Association Analysis
Our study revealed a significant statistical correlation between
SARS CoV-2 severity and multiple clinical variables reported
previously, including age (p < 0.01), male sex (p = 0.01; OR
= 2.51; 95% CI = 1.21–5.18), hypertension (p < 0.01; OR
= 7.14; 95% CI = 1.97–25.88) and T2DM (P < 0.01; OR
= 15.6; 95% CI = 1.97–123.42). Interestingly, other clinical
variables, including blood group, cardiovascular, pulmonary, and
other systemic diseases, such as cancer and obesity, were non-
statistically significant in our sample (p > 0.05). Additionally,
presence of no comorbidities was a protective factor (p < 0.01;
OR = 0.17; 95% CI = 0.08–0.38) and presence of two or
more comorbidities conferred an increased risk of severe disease
(p < 0.01; OR = 11.8; 95% CI = 2.6–53.5). Symptoms who
exhibited significant association with severe disease were mainly
respiratory, systemic, and neurological, and included dyspnea (p
< 0.01, OR = 29.54; 95% CI = 10.91–80.01), cough (p < 0.01;
OR = 4.69; 95% IC=2.1–10.49) and fever (p < 0.01; OR = 4.41;
95% CI = 2.08–9.38) and mental status disturbance (p = 0.04;
OR = 2.63; 95% CI = 1–6.93). In contrast, anosmia (p < 0.01;
OR = 0.2; 95% CI = 0.09–0.42), ageusia (p < 0.01; OR = 0.30;
95% CI = 0.14–0.63), and headache (p = 0.02 OR = 0.42; 95%
CI = 0.2–0.9) were more frequent in patients with mild disease
(Table 2).

Presence of long-term symptoms was associated with disease
severity (p < 0.01; OR= 3.37; 95% CI= 1.6–7.1). 42.6% patients
in the control group developed these symptoms, in contrast to
the 71.4% in the case group. Categories significantly different
were common long-term symptoms (p < 0.01; OR = 6.91; 95%
CI = 3.03–15.77), psychiatric (p < 0.01; OR = 34.5; 95% CI =
4.48–265.78) and respiratory (p = 0.01; OR = 4.45; 95% CI =
1.39–14.32), whereas cardiovascular long-term symptoms were
present only in cases (p < 0.01). Multiple acute symptoms were
associated with long-term symptoms, such as presence of fatigue
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TABLE 1 | Demographic and clinical characteristics of the study population.

Variable Controls (n = 61) Cases (n = 63) p-value CI95% OR

Age 36.6 (±10.8) 47.3 (±9.53) <0.01*

Male sex 26 (42.6%) 41 (65.0%) 0.01* 1.21–5.18 2.51

Blood group

O 38 (62.3%) 42 (66.7%) 0.61 0.58–2.53 1.21

A 20 (32.8%) 12 (19.0%) 0.08 0.21–1.10 0.48

B 2 (3.3%) 2 (3.2%) 1 0.13–7.09 0.97

AB 1 (1.6%) 0 (0%) 0.98 – –

Comorbidities

Arrhythmia 0 (0%) 1 (1.58%) 1 – –

Asthma 2 (3.27%) 1 (1.58%) 0.97 0.04–5.39 0.48

Autoimmune disease 0 (0%) 2 (3.17%) 0.49 –

Cancer 1 (1.63%) 3 (4.76%) 0.63 0.30–29.66 3.00

Chronic kidney disease 5 (8.2%) 1 (1.58%) 0.22 0.59–45.63 5.17

COPD 0 (0%) 2 (3.2%) 0.49 – –

Coronary disease 0 (0%) 2 (3.2%) 0.49 – –

T2DM 1 (1.63%) 13 (20.6%) <0.01* 1.97–123.42 15.6

Hypertension 3 (4.91%) 17 (26.9%) <0.01* 1.97–25.88 7.14

HIV/Immunodeficiency 0 (0%) 2 (3.2%) 0.49 – –

Obesity 9 (14.7%) 18 (28.5%) 0.09 0.95–5.65 2.31

No comorbidities 47 (77%) 23 (36.5%) <0.01* 0.08–0.38 0.17

One comorbidity 12(19.7%) 22 (34.9%) 0.05 0.97–4.96 2.19

Two or more Comorbidities 2 (3.27%) 18 (28.5%) <0.01* 2.60–53.50 11.80

Chronic use of steroids 1 (1.63%) 1 (1.58%) 1 0.06–15.83 0.97

Smoking history 28 (45.9%) 18 (28.5%) 0.05 0.23–1.02 0.48

*Statistical significant, p-value < 0.05; COPD, Chronic obstructive pulmonary disease.

(p < 0.01; OR= 5.12; 95% CI= 1.85–14.13), osteomuscular pain
(0.04; OR = 2.26; 95% CI = 1.03–4.94), dyspnea (p < 0.01; OR
= 4.96; 95% CI = 2.30–10.69), ageusia (p = 0.01; OR = 2.53;
95% CI = 1.22–5.27) and brain fog (p = 0.02; OR = 3.26; 95%
CI 1.12–9.46).

Genetic Variants and Association Analysis
The ACE rs4646994 genotypic distribution in the total sample
was 0.35 (43/124), 0.45 (56/124) and 0.2 (25/124) for Ins/Ins,
Ins/Del and Del/Del, respectively. The allele frequency for the
Del allele was 0.43 (106/248). For ACE2 rs2285666, an X-
linked SNP, the distribution was 0.5 (29/58), 0.4 (23/58) and
0.1 (6/58) for G/G and G/A and A/A genotypes, respectively,
and 0.53 (35/66) and 0.47 (31/66) for G and A genotypes in
hemizygous individuals, respectively. The allele frequency for
the allele A was 0.36 (66/180). Finally, for LZTFL1 rs11385942,
the distribution was 0.9 (111/124) and 0.1 (13/124) for the
genotypes WT/WT and WT/Ins, respectively. We did not
observe homozygous individuals for the allele Ins. The allele
frequency for this allele was 0.05 (13/235). Genotypic and
allelic frequencies are presented in Table 4. All genotypes
were found to be in HWE (ACE rs4646994 p = 0.46, ACE2
rs2285666 p = 0.25 and LZTFL1 rs11385942 p = 1). Genotype
frequencies by clinical subgroups (controls, cases hospitalized

no ICU and cases hospitalized in ICU) are presented in
Supplementary Table 2.

Bivariate analysis between the genetic polymorphisms and
COVID-19 severity revealed a statistically significant association
between the LZTFL1 rs11385942 polymorphism with severe
COVID-19 and severe COVID-19 requiring hospitalization in
ICU (p = 0.01; OR = 5.73; 95% CI = 1.24–26.46 and p =

0.02; OR = 6.12; 95% CI = 1.14–32.63, respectively, under the
allelic genetic model). No association was found between theACE
rs4646994 and ACE2 rs2285666 polymorphisms, and COVID-19
severity under any of the models tested (Table 5). Nevertheless,
an association between ACE rs4646994 Del and neurological
long-term symptoms (e.g., ageusia, anosmia, and vertigo) was
identified under the Cochran-Armitage test (p< 0.01; OR= 0.32;
95% CI= 0.16–0.63).

Population Genetic Analysis
Next, we compared the allelic frequencies obtained in this study
with those of other datasets including populations of European,
Asian, African, North American, and Latin-American ancestries
(Supplementary Table 3). We found significant statistical
differences for the three systems assessed. For ACE rs46469949,
East Asia allelic frequencies were the only population with no
statistical differences. For ACE2 the rs2285666 allelic frequency
found in our study was similar to those reported in Mexican
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TABLE 2 | COVID-19 symptoms in the studied population.

Variable Controls (n = 61) Cases (n = 63) p-value CI 95% OR

Acute symptoms

Ageusia 40 (65.5%) 23 (36.5%) <0.01* 0.14–0.63 0.30

Anosmia 42 (68.8%) 19 (30.1%) <0.01* 0.09–0.42 0.20

Cough 29 (47.5%) 51 (80.9%) <0.01* 2.10–10.49 4.69

Diarrhoea 11 (18%) 20 (31.7%) 0.07 0.91–4.90 2.11

Dyspnea 13 (21.3%) 56 (88.8%) <0.01* 10.91–80.01 29.54

Fatigue 42 (68.8%) 59 (93.6%) <0.01* 2.12–21.04 6.67

Fever > 38◦C 21 (34.4%) 44 (69.8%) <0.01* 2.08–9.38 4.41

Haemoptysis 2 (3.2%) 6 (9.52%) 0.29 0.60–16.03 3.11

Headache 44 (72.1%) 33 (52.3%) 0.02* 0.20–0.90 0.42

Mental status disturbance 7 (11.4%) 16 (25.3%) 0.04* 1.00–6.93 2.63

Odynophagia 29 (47.5%) 29 (46%) 0.86 0.46–1.91 0.94

Osteomuscular pain 39 (63.9%) 48 (76.1%) 0.13 0.83–3.94 1.81

Rhinorrhea 33 (54%) 24 (38%) 0.07 0.26–1.07 0.52

Long-term symptoms

Presence 26 (42.6%) 45 (71.4%) <0.01* 1.60–7.09 3.37

Common 11 (18%) 38 (60.3%) <0.01* 3.03–15.77 6.91

Cardiovascular 0 (0%) 8 (12.6%) 0.01* – –

Neurologic 16 (26.2%) 12 (19%) 0.33 0.28–1.55 0.66

Osteomuscular 4 (6.55%) 7 (11.1%) 0.56 0.49–6.42 1.78

Psychiatric 1 (1.63%) 23 (36.5%) <0.01* 4.48–265.78 34.50

Respiratory 4 (6.55%) 15 (23.8%) 0.01* 1.39–14.32 4.45

Other long-term symptoms 0 (0%) 2 (3.2%) 0.49

*Statistical significant, p-value < 0.05.

and American populations. Finally, for LZTFL1 rs11385942,
the comparison was made against COVID-19 patients obtained
from a previous study. We found significant differences with
Italian controls but not with Italian cases or Spanish population
(Table 6).

Predictive Model and App Development
Genetic and non-genetic significant variables obtained from
the previous analyses were entered into a logistic regression
model. Different combinations of variables were tested, and
the models obtained were compared by Akaike’s Information
Criterion (AIC) and Coefficient of Discrimination D (Tjur’s R2).
The best model had the lowest AIC and highest Tjur’s R2 values.
This model incorporated sex, age, number of comorbidities and
the polymorphism LZTFL1 rs11385942. The resulting predicting
score that includes these variables was:

Adjusted score

=
1

1+ e−(−2.88+(0.077∗age)+0.81(male)+(0.99∗comorb)+1.44(WT/Alt))

(1)

Where the adjusted score is a number between 0 and 1, “age” the
age in years, “male” male sex, “comorb” represents the number

of comorbidities and “WT/Alt” the risk allele for the LZTFL1
rs11385942 polymorphism.

Score distribution using this model for cases and controls
is presented in Figures 2A,B. The model achieved good
discrimination power (AUC = 0.857; 95% confidence interval
0.79–0.93) (Figure 2C) (Supplementary Table 4). Comparison
between the clinical (Age + Sex + Comorbidities) and complete
models (Age + Sex + Comorbidities + risk allele) showed
a slight increase in the AUC, 0.846 vs. 0.857, respectively.
Model comparison was assessed by three additional methods.
First, direct comparison between the scores obtained from
the clinical and complete model showed a high correlation,
nevertheless, for several individuals, the risk scores changed
noticeably when the risk allele is included in the model
(Figure 2D). Next, we compared the models using the IDI
score (52). This method is defined as the difference in the
discrimination slopes between two models, the discrimination
slopes are calculated as the difference of predicted probabilities
for events and non-events (53). We obtained a positive IDI score
(0.026; confidence interval 95% 0.001–0.051, p-value: 0.039)
supporting a significant improvement for the complete model.
Third, we calculated cross-validation parameters including
concordance, sensitivity, specificity and net benefit for different
probability cutoffs (54). Net benefit is a decision analytic
measure, which puts benefits and harms on the same scale

Frontiers in Medicine | www.frontiersin.org 6 June 2022 | Volume 9 | Article 910098

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Angulo-Aguado et al. LZTFL1 rs11385942 and COVID-19 Severity

TABLE 3 | Demographic and clinical characteristics in patients with and without long-term COVID-19 symptoms.

Variables Patient with no

long-term

symptoms

(n = 53)

Patients with

long term

symptoms

(n = 71)

p-value CI 95% OR

Hospitalized 18 (34%) 45 (63.4) 0.00 1.60–7.10 3.37

Age 40 (±12.1) 43.5 (±10.8) 0.095

Male sex 32 (60.3%) 35 (49.2%) 0.22 0.31–3.22 0.64

Blood group

O 30 (56.6%) 50 (70.4%) 0.11 0.87–3.84 1.83

A 15 (28.3%) 17 (23.9%) 0.58 0.36–1.79 0.80

B 1 (1.88%) 3 (4.22%) 0.82 0.23–22.69 2.29

AB 0 (0%) 1 (1.40%) 1 – –

Comorbidities

Coronary disease 0 (0%) 2 (2.81%) 0.60 – –

Arrhythmias 0 (0%) 1 (1.40%) 1 – –

Hypertension 8 (15.0%) 12 (16.9%) 0.98 0.43–3.03 1.14

COPD 0 (0%) 2 (2.81%) 0.60 – –

Asthma 1 (1.88%) 2 (2.81%) 0.97 0.04–5.39 0.48

T2DM 6 (11.3%) 8 (11.26%) 1 0.32–3.06 0.99

Chronic kidney disease 4 (7.54%) 2 (2.81%) 0.42 0.06–2.02 0.36

Cancer 1 (1.88%) 3 (4.22%) 0.82 0.23–22.69 2.29

Obesity 10 (18.8%) 17 (23.9%) 0.49 0.56–3.26 1.35

HIV/Immunodeficiency 1 (1.88%) 1 (1.40%) 1 0.05–12.15 0.74

Autoimmune disease 0 (0%) 2 (2.81%) 0.60 – –

No comorbidities 34 (64.1%) 36 (50.7%) 0.13 0.28–1.19 0.57

One comorbidity 13(24.5%) 21(29.6%) 0.53 0.58–2.90 1.29

Two or more comorbidities 6 (11.3%) 14 (19.7%) 0.31 0.69–5.40 1.92

Chronic use of steroids 0 (0%) 2 (2.81%) 0.60 – –

Smoking history 14 (26.4%) 32 (45.0%) 0.05 1.03–4.81 2.23

Acute symptoms

Ageusia 20 (37.7%) 43 (60.5%) 0.01* 1.22–5.27 2.53

Anosmia 21 (39.6%) 40 (56.3%) 0.07 0.95–4.05 1.97

Cough 31 (58.4%) 49 (69.0%) 0.23 0.75–3.32 1.58

Diarrhoea 10 (18.8%) 21 (29.5%) 0.17 0.77–4.25 1.81

Dyspnoea 18 (33.9%) 51 (71.8%) <0.01* 2.30–10.69 4.96

Fatigue 36 (67.9%) 65 (91%) <0.01* 1.85–14.13 5.12

Fever > 38◦C 21 (39.6%) 44 (61.9%) 0.01* 1.20–5.15 2.48

Haemoptysis 1 (1.88%) 7 (9.8%) 0.15 0.68–47.72 5.69

Headache 30 (56.6%) 47 (66.1%) 0.28 0.72–3.12 1.50

Odynophagia 23 (43.3%) 35 (49.2%) 0.51 0.62–2.59 1.27

Osteomuscular Pain 32 (60.3%) 55 (77.4%) 0.04* 1.03–4.94 2.26

Rhinorrhea 20 (37.7%) 37 (52.1%) 0.11 0.87–3.71 1.80

Brain fog 5 (9.43%) 18 (25.3%) 0.02* 1.12–9.46 3.26

*Statistical significant, p-value < 0.05; COPD Chronic obstructive pulmonary disease.

to be compared (55). The results of this analysis showed
that the concordance and net benefit were better for most
of the probability cutoffs tested (Supplementary Table 5). This
improvement was particularly noticeable at probabilities between
0.3 and 0.4.

Finally, the complete model was used to design a web-based
application using the R package Shiny. The application is
open-access and is accessible through a shinyApp server (https://

oscarortega.shinyapps.io/COVID19_UR_Shiny/). The source
code of the shiny app is publicly available on Github at https://
github.com/OscarOrt/COVID_19_risk.

DISCUSSION

During the last 2 years, the COVID-19 pandemic has caused
vast disruptions in almost any sphere of human activity. Despite
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TABLE 4 | Allelic and genotypic frequencies for cases and controls.

Gen SNP Allele frequency controls Allele frequency cases Genotype controls Genotype cases HWE

WT Alt WT Alt WT/WT WT/Alt Alt/Alt WT/WT WT/Alt Alt/Alt

ACE rs4646994 0.6 0.4 0.55 0.45 0.39 0.41 0.2 0.3 0.49 0.21 0.46

ACE2 rs2285666 0.63 0.37 0.65 0.35 0.47 ♀ 0.39 ♀ 0.14 ♀ 0.55 ♀ 0.41 ♀ 0.04 ♀ 0.25

0.52 ♂ – 0.48 ♂ 0.54 ♂ – 0.46 ♂

LZTFL1 rs11385942 0.98 0.02 0.91 0.09 0.97 0.03 0 0.83 0.17 0 1

ACE WT allele (Ins), ACE2 WT allele (G), LZTFL WT allele (no dup); Alt, alternative; WT, Wild Type; ♀ Genotype frequencies in females; ♂ Genotype frequences in males (hemizygous).

TABLE 5 | Genetic association analysis for severe COVID-19.

SNP Model Genotypes/alleles

in cases

Genotypes/alleles

in controls

χ2 df p-value OR IC 95%

ACE rs4646994 Genotypic (2 df) test 13/31/19 12/25/24 1.23 2 0.54 – –

Cochran-Armitage

trend test

57/69 49/73 0.60 1 0.43 – –

Allelic 57/69 49/73 0.65 1 0.41 1.23 0.74–2.03

Dominant 44/19 37/24 1.15 1 0.28 – –

Recessive 13/50 12/49 0.01 1 0.89 – –

ACE2 rs2285666 Genotypic (2 df) test 1/9/12 5/14/17 – – – – –

Cochran-Armitage

trend test

11/33 24/48 0.85 1 0.35 – –

Allelic 11/33 24/48 0.90 1 0.34 0.92 0.50–1.69

Dominant 10/12 19/17 – – – – –

Recessive 1/21 5/31 – – – – –

LZTFL1 Genotypic (2 df) test 0/11/52 0/2/59 – – – – –

rs11385942 Cochran-Armitage

trend test

11/115 2/120 6.64 1 <0.01* – –

Allelic 11/115 2/120 6.27 1 0.01* 5.73 1.24–26.46

Dominant 11/52 2/59 – – – – –

Recessive 0/63 0/61 – – – – –

*Statistical significant, p-value < 0.05; df degrees of freedom; Genotypic (2 df) test: Alt/Alt vs. WT/Alt vs. WT/WT; Cochran-Armitage trend test: Alt vs. WT; Allelic: Alt vs. WT; Dominant:
Alt/Alt + WT/Alt vs. WT/WT; Recessive: Alt/Alt vs. WT/Alt + WT/WT; ACE WT allele (Ins), ACE2 WT allele (G), LZTFL WT allele (no dup); Alt, alternative; WT, Wild Type.

TABLE 6 | Population case-control analysis of allele frequencies.

SNP Region Total case

alleles

Cases WT

alleles/AF

Cases Alt

alleles/AF

p-value cases Total controls

alleles

Controls WT

alleles/AF

Controls Alt

alleles/AF

p-value

controls

Source

LZTFL1
rs11385942

Present study 126 115/0.91 11/0.09 122 120/0.98 20/0.02

Italy 1,670 1,436/0.86 234/0.14 0.12 2,510 2,284/0.91 226/0.09 <0.01* (21)

Spain 1,550 1,410/0.91 140/0.09 0.96 1,900 1,805/0.95 9/0.05 0.14 (21)

*Statistical significant, p-value < 0.05; AF, Allele frequency; Alt, alternative; WT, Wild Type.

the growing knowledge about the biology and clinical features
of this disease, many aspects of its physiopathology and clinical
progression remain to be understood. Of particular interest in
this process are host risk factors that could contribute to severe
courses of COVID-19 and presence of long-term symptoms.
These factors include non-genetic and genetic variables. In this

study, we aimed to characterize the impact of these variables
on COVID-19 outcomes in a sample of Colombian population.
We identified several risk factors including the polymorphism
LZTFL1 rs11385942 and incorporated these variables into a
predictive model. To the best of our knowledge, this is the first
study to evaluate the association between genetic risk factors and
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FIGURE 2 | Adjusted score distribution for cases and controls and ROC curve. (A) Box plot of the adjusted scores categorized by cases and controls. (B) Distribution

and regression model for adjusted scores. Clinical outcome 0 corresponds to non-hospitalization and 1 to hospitalization. (C) Receiver operating characteristic (ROC)

curve. (D) Score comparison clinical model vs. complete model. Dashed lines cutoff value ±0.05.

COVID-19 severity in a Latin-American population using a case-
control design and illustrates the importance of host genetics in
SARS-CoV-2 clinical outcomes.

Several non-genetic factors have been associated with
poor COVID-19 prognosis, including age, male sex and
comorbidities (56). In agreement with such reports, we
found a significant association between age, male sex,
hypertension and T2DM. Both hypertension and T2DM
had been previously identified as independent risk factors
for increased morbimortality in COVID-19 patients (57–61).
The mechanism by which hypertension is a risk factor has
been attributed to hyperactivation of the RAAS pathway,
which increases the inflammatory response, cytokine storm,
myocardial remodeling, acute lung injury, and endothelial
damage (62). Similarly, it has been proposed that T2DM
contributes to thromboembolic complications and organ
damage through glucotoxicity, oxidative stress, and increased
cytokine production (63). Interestingly, hyperglycemia in non-
diabetic patients had a negative impact on patient outcomes (64),
highlighting the importance of adequate metabolic control in
the management of these patients. Other comorbidities analyzed
did not show a statistically significant association individually,
probably because the sample size was not large enough to detect
such associations. Nonetheless, when grouped, the presence
of two or more comorbidities conferred an increased risk of
severe COVID-19, an effect possibly explained by the additive
effect of risk factors to determine the clinical progression of

the disease. The second point worth mentioning about clinical
features in the studied population was the prevalence of acute
symptoms. Among the most common symptoms reported in
the literature are generalized weakness, dry cough, headache,
dyspnea, and myalgias (65). In our sample, respiratory and
systemic symptoms, including dyspnea, cough, fever and
fatigue, were associated with severe disease, whereas flu-like
symptoms, such as ageusia, anosmia and headache, were more
frequent in patients with a mild form of the disease. Other
studies, that included, populations have reported similar findings
(66, 67). Lower respiratory tract symptoms are often related
to severe COVID19, as they are a manifestation of underlying
lung compromise.

Another element included in our analysis was the incidence of
long-term COVID-19 symptoms, a phenomenon also reported
in other viral infections including Spanish Flu SARS CoV-
1 and MERS (68). Our findings are consistent with global
literature, in which the most common long-term symptoms
were fatigue (50–72.8%), joints pain (31.4%), headache (28.9%),
chest pain (20–28.9%), dyspnea (28.2%) and palpitations (9%)
(68–70). Remarkably, growing evidence suggests that psychiatric
illness is an important COVID-19 sequel, affecting particularly
specific populations such as Hispanic and African patients (71,
72). Psychiatric long-term symptoms were highly prevalent in
hospitalized patients in our study (36.5%). Despite our study
being limited by the absence of a standardized mental health
scale for patient follow up, our data support these observations
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(73). The mechanistic basis for these symptoms is attributed
to the ability of the virus to infect the central nervous system
via the blood-brain barrier and the olfactory bulb, affecting
thereafter neurons on the hypothalamus, cortex and brainstem,
which could explainmany of the neuropsychiatric manifestations
(71, 74). On the other hand, the absence of association between
comorbidities and long-term symptoms has been also observed
in the literature (75). Demographic variables such as sex are
of much debate, as there is contradictory evidence of higher
rates of long-term symptoms in female individuals (76). Finally,
several acute symptoms associated with long-term compromise
found in this study have been previously reported in the
literature and include fatigue, dyspnea and osteomuscular pain
and myalgias (77).

Regarding our genetic findings, our study identified the
LZFTL1 rs11385942 as a significant genetic factor associated
with disease severity, conferring risk for severe/critical clinical
outcomes. This polymorphism is located in the 3p21.31 locus,
a region previously described as an important risk factor for
severe respiratory disease in several studies (21, 78). There
are six candidate genes in this locus potentially involved in
the disease progression presumably by viral entry or clearance
and immunological response, these are SLC6A20, LZTFL1,
CCR9, FYCO1, CXCR6, and XCR1 (78). The rs11385942
polymorphism is located at intron 5 of LZFTL1 and recent
studies have assessed its functional significance in SARS-
CoV-2 infection, suggesting a regulatory role. A CRISPRi
analysis using lung epithelial cell lines showed that LZTFL1
expression is severely affected by this polymorphism (79).
LZTFL1 (leucine zipper transcription factor like 1) protein
is highly expressed in lung cells and regulates airway cilia
and epithelial-mesenchymal transition, a developmental process
critical for the innate immune and inflammatory response.
Remarkably, the rs11385942 polymorphism has been associated
with higher levels of C5a and soluble terminal complement
complex C5b-9 (SC5b-9) plasma levels during SARS-CoV-
2 infection, suggesting that enhanced immune system and
complement activation might be important pathways in the
deleterious effect of this variant (80). Moreover, it has been
described that complement activation and membrane attack
complex (MAC) formation leads to upregulation of pro-
inflammatory proteins and inflammasomes causing severe lung
injury and, in parallel, endothelial cells death, platelet activation
and induction of the coagulation cascade leading to thrombus
formation, well-known physiopathological findings in severe
COVID-19 (81, 82). The results of another recent study suggest
that rs11385942 is in genetic linkage with the polymorphism
rs17713054G>A, the gain-of-function risk A allele upregulates
the expression of LZTFL1 by generating a CCAAT/enhancer
binding protein beta motif (23). Despite other molecular
mechanisms cannot be discarded, this evidence supports LZTFL1
as a candidate effector and provides further support to our
findings. Additional studies have found supporting evidence
for this association (79, 83). In line with these observations,
genotypification of the risk allele in this gene could be useful as
a molecular predictive biomarker for COVID-19 severe/critical
clinical outcomes.

Since the beginning of the pandemic, numerous studies
have explored the role of host genetic variability in COVID-
19 severity and susceptibility. These studies have included
genome-wide association studies (GWAS), which have identified
multiple reproducible associations (21, 22, 84–86). Given
the underrepresentation of Latin American population in
these initiatives, our study allowed us to reproduce the
association of the 3p21.32 locus in an ethnically different
cohort and suggests that the variation in this region
modulates the disease outcome (21). Importantly, detailed
exploration of “expanded” phenotypes, other than clinical
severity, including symptomatic/paucisymptomatic and
Exposed_Positive/Exposed_Negative phenotypes have identified
a much larger proportion of protective minor alleles (85). These
results suggest that using additional phenotype definitions
can identify protective associations. Our patients classified as
asymptomatic-mild/severe-critical are more likely enriched for
risk alleles conferred by loci such as those analyzed in our study.

It is important to highlight that case-control association
studies are potentially influenced by population stratification due
to undetected population substructure produced by differences
in ancestry generating spurious associations (87). To avoid
confounding due to population stratification, analysis using
ancestry markers (AIMs) are useful to estimate variability
between cases and controls (88). Although our study did not
carry out this evaluation, we estimate that sampled population
shares a similar gene pool without the influence of factors such
as geographic isolation or non-random mating. Additionally, the
individuals analyzed come from the Colombian Andean region,
a geographical area where high inter-individual variation has
not been identified (89), which supports the ethnic similarity
of the cases and controls included. Here, LZFTL1 rs11385942
was identified as a significant genetic factor associated with
severe COVID-19 (p = 0.01; OR = 5.73; 95% CI = 1.24–26.46)
supporting an important genetic effect. Previously, it has been
suggested a need for approaches such as family-based designs or
genomic control when the identified genetic effects are very small
(OR < 1.20) (90). Finally, although stratification may be less of
a concern than originally anticipated and the evidence against a
large effect of population stratification, hidden or otherwise, it is
important to consider it in false positive or negative association
arising from differences in local ancestry (87, 88, 91).

Two polymorphisms analyzed in our study, ACE rs4646994
and ACE2 rs2285666, are important regulators of the RAAS
pathway, a physiological system implicated in COVID-19
susceptibility and severity (92). Despite we did not find evidence
of association between these polymorphisms and COVID-19
severity, numerous studies support a biological basis for such
relationship (92–94). The ACE2 rs2285666 T allele is associated
with a significant increase in ACE2 expression (95). Interestingly,
association studies of this polymorphism with COVID-19
severity have had contradictory results and similar findings
to ours have been reported by several authors (43, 96, 97).
Among these, next-generation sequencing analysis in patients
hospitalized for COVID-19 indicated no association between
ACE2 variants and COVID-19 severity (97). Such discrepancies
might be explained by population-specific differences, the
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additive role of other genes interacting with risk alleles or
other mechanisms not assessed such as epigenetic modifiers
(98–100). Concerning ACE rs4646994 the Del allele has been
associated with increased ACE expression, higher enzyme
activity and elevated production of angiotensin II (101). Despite
ACE Del/Del genotype and Del allele have been associated
with increased COVID-19 patient severity (101–103), our
results failed to replicate these findings in the Colombian
population. In agreement with our results, other studies have
reported no association between ACE rs4646994 and COVID-
19 severity (43, 96). Collectively, current evidence contains
conflicting results about the role of this polymorphism in
SARS-CoV-2 infections. The reasons for these discrepancies
are unclear and similar to the ACE2 rs2285666 polymorphism
require further exploration. Interestingly, a recent meta-
analysis evaluating several polymorphisms related to COVID-
19 outcomes found a significant association between the
polymorphism ACE rs4646994 and COVID-19 severity (104).
Results of individual association studies must be considered
carefully and discrepancies in the findings may be the result
of underpowered sample sizes, therefore replicates and more
robust studies should be considered to validate these associations.
On the other hand, we identified ACE rs4646994 Del allele
as a protective factor for neurological long-term symptoms,
we hypothesize this could be related to an increased catalytic
activity resulting in vasoconstriction that counterbalances the
intracerebral vasodilation and brain edema due to the anaerobic
metabolism in cerebral cells in response to SARS-CoV-2 induced
hypoxia (105, 106). Whereas, interesting, this hypothesis requires
experimental and clinical validation.

Comparison of allelic frequencies obtained in our study
with other populations revealed important differences. For ACE
rs4646994, Asia was the only region with a similar allele
frequency to our studied population (40). This may reflect the
ancestral origin of Native American population in Colombia
or the admixture between an ancestral population with a
higher frequency and Europeans, where allele frequencies are
considerably lower (107, 108). For the ACE2 polymorphism, the
allelic frequency was similar to Mexican population, probably
due to a common ancestry and admixture history (44). For
the variant LZTFL1 rs11385942, no differences were found with
Spanish, European and African populations. Remarkably, Zeberg
and Pääbo (109) described that the 3p21.31 region, the locus
where the variant is located, was inherited from Neanderthals.
The mixture of native Americans and Europeans probably
modified the ancestral genetic pool leading to the current allele
frequencies. Additionally, it has been proposed that differences
in allelic frequencies for the 3p21.31 risk haplotype are produced
by natural selection in response to pathogens (109).

Another important determinant of COVID-19 severity is
viral genetics (10). It has been identified that specific SARS-
CoV-2 variants are associated with differences in severity
and mortality, for example, the alpha and gamma variants
are related to increased hospitalization, ICU admission
and mortality risk (110–112). While our study did not
assess variant differences in cases and controls, genomic
surveillance studies conducted during the sample collection

period (December 2020–July 2021) in Bogotá, showed
that the predominant variants were B.1.621 (Mu) 57.3%
(469/819), P.1 (Gamma) 14% (114/819) and B.1.1.7 (alpha)
2.8% (23/819) (113). The most common variant found in
this interval of time, Mu, was classified as a variant being
monitored (VBM) by the Centers for Disease Control and
Prevention (CDC U.S.) without reported major effects on
infectivity, transmissibility or severity (114). The coexistence
of several variants during this period constitutes a source
of variation and might reflect a more complex dynamics of
host-pathogen interactions.

Our clinical and genetic association analysis allowed us to
identify several risk factors related to disease severity. These
factors were incorporated into a predictive risk model using a
multivariate logistic regression including demographic, clinical,
and genetic traits. To date, ∼50 prediction models and scoring
systems, have been published (115). These models are useful
tools to facilitate decision-making in healthcare services and
rely mostly on clinical features such as age, sex, number
of comorbidities, hypertension, T2DM, chronic obstructive
lung disease, cancer, cardiovascular disease. However, it is
noteworthy that COVID-19 severity is influenced by viral
and host genetic factors (10). Recent models, which like ours
incorporate a multifactorial approach (genetic and non-genetic
factors), included several single nucleotide variants (SNVs) (116).
These models have achieved good results in discriminating
COVID-19 severity groups and highlighted the role of integrated
approaches to predict clinical outcomes. Furthermore, other
models aiming to predict adverse outcomes are based on detailed
clinical features during diagnosis, admission and hospitalization
have been developed, nevertheless, its accessibility and clinical
implementation have been limited (117, 118). We propose
our model as a useful tool to estimate a priori severe or
critical illness risk. Notably, despite the minor increase in the
AUC when the clinical and complete models were compared,
detailed analysis of the discrimination performance and cross-
validation parameters suggest that the incorporation of the
risk allele improves the risk prediction model. Further studies
involving larger sample sizes might be useful to validate
these findings. Likewise, the implementation of our model
into a web application might facilitate its usage by healthcare
providers in limited-resource settings during the current SARS-
CoV-2 pandemics and future health emergencies caused by
similar pathogens.

In summary, our study explores the relation between non-
genetic and genetic factors, with COVID-19 outcomes in
Colombian population, demonstrating a positive association
between the LZTFL1 rs11385942 polymorphism and severe
disease. By establishing such association, we point up the
importance of genetic host factors in SARS-CoV-2 infection.
In addition, our work identified previously known non-
genetic factors and developed a predictive model which was
implemented in a web application, providing a useful tool for
risk prediction. Integrative approaches, like ours, may be helpful
to better understand COVID-19 clinical progression, refine
healthcare efforts and reduce the morbimortality of patients with
this disease.

Frontiers in Medicine | www.frontiersin.org 11 June 2022 | Volume 9 | Article 910098

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Angulo-Aguado et al. LZTFL1 rs11385942 and COVID-19 Severity

Study Limitations
Our study has potential limitations. First, the sample size was
calculated in order to have 80% statistical power based on
previous association reports for the variant with the lower allele
frequency (LZTF1 rs11385942.), nevertheless, it could have been
limited to detect potential small effect sizes for the rs4646994 and
rs228566 SNPs in our population. Second, some clinical variables
assessed in the clinical follow-up interview were self-reported.
Even though most of this information was confirmed in the
clinical record, this could have been a potential source of bias.
Third, we did not match the case-control groups by age or sex for
the statistical analysis. Considering these variables are known risk
factors, we aimed to assess their impact on COVID-19 outcome.
Fourth, as previously mentioned, analysis of potential population
stratification was not performed. In addition, COVID-19 severity
is a multifactorial trait and other important variables, including
environmental factors, SARS-CoV-2 variants, and additional host
genetic polymorphisms, described as risk or protective factors
were not evaluated. Assessment of such variables in future studies
could help to improve discriminative models and medical risk
assessment. Finally, we should highlight that our proposed risk
model constitutes a proof-of-concept of the feasibility of this
integrative approach and further studies with larger sample sizes
and independent replications are required to validate the model.
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