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Abstract

Motivation: Protein homology detection, a fundamental problem in computational biology, is an

indispensable step toward predicting protein structures and understanding protein functions.

Despite the advances in recent decades on sequence alignment, threading and alignment-free

methods, protein homology detection remains a challenging open problem. Recently, network

methods that try to find transitive paths in the protein structure space demonstrate the importance

of incorporating network information of the structure space. Yet, current methods merge the

sequence space and the structure space into a single space, and thus introduce inconsistency in

combining different sources of information.

Method: We present a novel network-based protein homology detection method, CMsearch, based

on cross-modal learning. Instead of exploring a single network built from the mixture of sequence

and structure space information, CMsearch builds two separate networks to represent the

sequence space and the structure space. It then learns sequence–structure correlation by simultan-

eously taking sequence information, structure information, sequence space information and struc-

ture space information into consideration.

Results: We tested CMsearch on two challenging tasks, protein homology detection and protein

structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch

is insensitive to the similarity metrics used to define the sequence and the structure spaces. By

using HMM–HMM alignment as the sequence similarity metric, CMsearch clearly outperforms

state-of-the-art homology detection methods and the CASP-winning template-based protein struc-

ture prediction methods.

Availability and implementation: Our program is freely available for download from http://sfb.

kaust.edu.sa/Pages/Software.aspx.
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1 Introduction

Protein homology detection, that aims to identify protein homologs

that share a common ancestry during the course of evolution, is one

of the fundamental open problems in computational biology. For

close homologs, sequence similarity search tends to be sufficient

(Arnold et al., 2006). However, instead of sharing similar sequences,

remote homologs might only share similar tertiary (3D) structures

or similar functions. This is because protein structures and functions

are more conserved than sequences due to the evolutionary pressure

(Marks et al., 2012; Messih et al., 2012). Because of the high cost

and experimental barriers to determine protein structures and func-

tions, biologists frequently stuck in the situation that only the se-

quence is available for the protein of interest. Thus, computationally

detecting remote homologs from a database of proteins with known

sequences and/or structures becomes a challenging and essential

problem (Ben-Hur and Brutlag, 2003).

Generally, existing methods for protein homology detection can

be divided into three categories: alignment-free methods, alignment

methods and network methods. The alignment-free methods refer to

the approaches that represent a protein as a feature vector and then

search for homologs in the protein database by comparing feature

vectors. Early methods, such as Park et al. (1998), conduct direct

comparisons of feature vectors. Later discriminative methods, such

as Liu et al. (2014) which is based on support vector machines, have

been developed to improve the sensitivity. However, a recent study

indicates that the alignment-free methods are usually faster but less

sensitive compared to alignment methods (Ma et al., 2014).

The alignment methods refer to the approaches that search the

query protein against proteins in the database through alignments.

These methods can either rely on sequences only or employ structure

features as well, where the latter is also called threading (Cheng and

Baldi, 2006; Jo et al., 2015; Karplus et al., 1998; Wang et al.,

2012a,b; Wu and Zhang, 2008). The most successful methods that

rely on sequences only include the ones that enrich protein sequence

information by position-specific scoring matrices (PSSMs) (Altschul

et al., 1997), hidden Markov models (HMMs) (Finn et al., 2011) or

Markov random fields (MRFs) (Daniels et al., 2012; Ma et al.,

2014). For threading methods, in addition to the enriched sequence

information, the structure features—such as secondary structures

(Jones, 1999), solvent accessibility (Lee and Richards, 1971) and

residue-residue contacts (Cheng and Baldi, 2007; Gao et al., 2009)—

predicted from the query protein sequence, are compared to the

structure features extracted from the 3D structures in the database.

Neither alignment-free nor alignment methods exploit the net-

work topologies of the protein space because they predict homologs

in a pairwise comparison manner (i.e. either one-to-one or one-to-

family) (Melvin et al., 2011). This motivates network methods to

connect remote homologs through a transitive path in the continu-

ous protein space (Nepomnyachiy et al., 2014). Early network meth-

ods utilize sequence similarities to construct the protein network,

but they show minor improvement over the sequence alignment

methods (Melvin et al., 2011). Recently, ENTS (Enrichment of

Network Topological Similarity) was proposed (Lhota et al., 2015)

which constructs a structure similarity network for proteins in the

Protein Data Bank (PDB) and then links the query protein sequence

to the known structures through sequence similarities. Although

ENTS has demonstrated its outstanding performance, it should be

considered as a structure similarity-based network method except

for the query protein. Specifically, when building the protein net-

work, only structure similarities are used for the proteins in the data-

base, and the sequence similarity is only used to approximate the

structure similarity for the query protein. Thus, ENTS used sequence

and structure similarities in a mixed manner, but it is known that

there is no standard way to combine different similarity metrics in a

unified fashion. As demonstrated later in Section 3.1, this might

introduce inconsistency issues.

In this article, we propose a cross-modal method, CMsearch, for

protein homology detection. As shown in Figure 1, CMsearch em-

ploys not only structure similarities but also sequence similarities. It

then explores the structure and the sequence spaces (networks) sim-

ultaneously by learning sequence–structure correlations (cross-

modal links) between the structure and the sequence spaces. To our

knowledge, CMsearch is the first method that is able to incorporate

sequence information, structure information, sequence space infor-

mation and structure space information simultaneously. Specifically,

as shown in Table 1, CMsearch has several advantages over existing

methods: (i) Instead of exploring a single space built from the mix-

ture of sequence and structure similarities as ENTS (Lhota et al.,

2015), CMsearch builds two separate spaces and explores the two

spaces simultaneously. (ii) CMsearch is completely different from

threading methods because it uses not only sequence and structure

information, but also sequence and structure space information. (iii)

CMsearch is a generic framework such that any sequence similarity

metric and any structure similarity metric can be adopted.

We test the performance of CMsearch on two very challenging

tasks, protein homology detection and protein structure prediction,

by querying all 8332 proteins in the PDB40 dataset. Our results

demonstrate that CMsearch is insensitive to the similarity metric. It

can significantly improve the homology detection performance to

the similar levels no matter which sequence similarity metric is used

to define the sequence space. By using HMM–HMM alignment as

the sequence similarity metric, CMsearch clearly outperforms state-

of-the-art homology detection methods, including HHsearch

(Söding, 2005), RaptorX (Ma et al., 2012) and ENTS (Lhota et al.,

2015). When CMsearch is applied to structure prediction of PDB40,

it outperforms CASP-winning template-based structure prediction

methods. For hundreds of cases, it can predict highly accurate mod-

els (TM-score above 0.6) while the existing methods cannot.

2 Methods

2.1 Problem formulation
CMsearch incorporates sequence information, structure information,

sequence network topologies in the sequence space and structure net-

work topologies in the structure space simultaneously and directly

learns the structure–sequence correlations (as illustrated in Fig. 1).

Specifically, the protein sequence space is defined as a sequence

Fig. 1. Illustration of CMsearch: each yellow box represents a protein struc-

ture; each green line represents a protein sequence; each blue arrow repre-

sents a cross-modal link. CMsearch incorporates sequence information,

structure information, sequence network topologies in the sequence space

and structure network topologies in the structure space simultaneously and

directly learns the structure–sequence correlations (i.e. cross-modal links)
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similarity network, in which each node is a protein sequence and two

sequences have an edge if their pairwise sequence similarity is higher

than a threshold by a certain similarity metric, where the edge weight

is the similarity value. Here, the protein sequence space is denoted as

S ¼ fsigjni¼1, where si is the i-th sequence, and n is the number of se-

quences in this space. Protein structure space is defined in a similar

way, as a structure similarity network, by using a certain structure

similarity metric. Here, the protein structure space is denoted as

T ¼ ftjgjmj¼1, where tj is the j-th structure, and m is the number of the

structures in this space. The terms, space and similarity network, will

be used interchangeably throughout the article.

The problem of cross-modal search is to learn the correlations

between the protein sequences in S and the protein structures in T ,

and the sequence–structure pairs with strong correlations are pre-

dicted to be homologs. Here, the cross-modal link correlation ma-

trix is denoted as X ¼ ½xij�n�m 2 Rn�m, where its (i, j)-th element is

the degree of correlation between si and tj. With matrix X, we can

obtain the cross-modal links, L, as the high correlation values in X.

Moreover, we have an initial cross-modal link set as the input of this

problem, which is denoted as L0. Specifically, if a sequence–structure

pair, (si, tj), is obtained from the same protein, it is included in L0.
More detailed data collection procedures are provide in Section 2.3.

This initial link set is sparse, but it could be a sufficient starting

point to learn the complete and accurate link set, L. To present the

initial link set, we also define an initial correlation matrix,

X0 ¼ ½x0ij�n�m 2 f1;0gn�m, where

x0ij ¼
1; ðsi; tjÞ 2 L0;

0; otherwise:

(
(1)

This way, the problem of cross-modal search is transferred to the

problem of learning X from X0; S and T . To learn an optimal X, we

utilize the existing link information contained in X0, the sequence

similarity information of sequences in S, and the structure similarity

information of structures in T . To this end, we consider the follow-

ing objectives to construct the loss function:

Respecting initial links: To utilize the initial information repre-

sented by X0, we impose the learned matrix X to be close to X0, so

that the learned X can respect the initial links. We use the squared

‘2-norm distance to measure how close X is to X0, and minimize it

to construct the first loss term,

min
X
jjX�X0jj22: (2)

Sequence similarity regularization: To present the sequence infor-

mation of S, we construct a neighborhood graph from S. The graph is

denoted as GS ¼ ðS; E;CÞ, where S is the set of nodes of the graph,

and each node represents a sequence. E is the set of edges of the graph,

and it is defined between each sequence and its neighbors,

E ¼ fðsi; sjÞ : sj 2 N i or si 2 N j or simðsi; sjÞ � SS ;1 � i; j � ng,
where N i is the set of the nearest neighbors of si according to a given

sequence similarity which will be discussed later, simðsi; sjÞ is the se-

quence similarity between si and sj, and SS is a sequence similarity

threshold for highly-confident homologs. The goal of this process is to

make sure that most of the connected neighbors are protein homologs

so that it is safe to learn the complete network from the initial incom-

plete network. C ¼ ½cij�n�n 2 Rn�n is a corresponding symmetric simi-

larity matrix, and its (i, j)-th element is the similarity between si and sj,

cij ¼

simðsi; sjÞ; if simðsi; sjÞ � SS

or sj 2 N i or si 2 N j;

0; otherwise:

8>><
>>: (3)

Note that the i-th row of X (denoted as xr
i ¼ ½xi1; � � � ; xim�) is the

confidence of si being linked to the m structures of T . If sequences si

and sj are similar to each other, i.e., cij is large, we expect that xr
i and

xr
j are close to each other as well. We measure how close xr

i and xr
j are

to each other by a squared ‘2-norm distance, and minimize this dis-

tance between each pair of ðxr
i ; x

r
j Þ weighted by normalized cij,

min
X

1

2

Xn

i;j¼1

cijPn
j¼1 cij

jjxr
i � xr

j jj
2
2

¼ min
X

TrðX>LCXÞ;
(4)

where Tr is the trace function of a matrix, LC ¼ I �D
�1

2

C CD
�1

2

C is the

normalized graph Laplacian (Doyle and Snell, 1984) of the sequence

space, and DC is a diagonal matrix with its (i, i)-th element

ðDCÞii ¼
Pn

j¼1 cij. Thus, if a pair of sequences (si, sj) are similar to

each other, their corresponding rows xr
i and xr

j are also imposed to

be close to each other.

Structure similarity regularization: To incorporate the structure

space information, we construct a neighborhood graph from T in a

similar way, and its corresponding normalized similarity matrix is

denoted as D ¼ ½dij�m�m 2 Rm�m, where

dij ¼

simðti; tjÞ; if simðti; tjÞ � ST

or tj 2Mi or ti 2Mj;

0; otherwise;

8>><
>>: (5)

where Mi is the set of the nearest neighbors of ti according to a

structure similarity metric, simðti; tjÞ is the structure similarity be-

tween ti and tj, and ST is a structure similarity threshold for highly

confident protein homologs. The i-th column of X is the confidence

of ti being linked to the sequences in S (denoted as

xc
j ¼ ½x1j; � � � ; xnj�>). If two structures, ti and tj, are similar to each

other, i.e., dij is large, we expect that xc
i and xc

j are close to each

other. Thus we propose to minimize the following objective,

min
X

1

2

Xm
i;j¼1

dijXm
j¼1

dij

jjxc
i � xc

j jj
2
2

¼ min
X

TrðXLDX>Þ;

(6)

where LD ¼ I �D�1
D DD�1

D is the normalized graph Laplacian of the

structure space, and DD is a diagonal matrix with its (i, i)-th element

ðDDÞii ¼
Pm

j¼1 dij.

Table 1. Input data used by homology detection methods: SEQ

refers to any kind of sequence features extracted from the query

sequence, such as a multiple sequence alignment represented by a

PSSM, an HMM, or an MRF; STR refers to any kind of structure fea-

tures predicted from the query sequence or extracted from the tar-

get structures, such as secondary structures, solvent

accessibilities, and residue-residue contacts; SEQ NET refers to the

network topologies in the protein sequence space; and STR NET

refers to the network topologies in the protein structure space

Method Input data

SEQ STR SEQ NET STR NET

Sequence alignment � � � �
Threading � � � �
ENTS � � � �

CMsearch � � � �
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The final optimization problem is thus a combination of the ob-

jectives in (2), (4) and (6),

min
X

FðXÞ ¼ jjX�X0jj22 þ
CC

2
TrðX>LCXÞ þ CD

2
TrðXLDX>Þ

� �
;

(7)

where CC and CD are trade-off parameters. By solving this problem,

we can obtain X, which simultaneously respects the initial X0, the se-

quence space S, and the structure space T .

2.2 Problem optimization
To solve the problem in (7), we can directly set its derivative with re-

spect to X to zero,

@ FðXÞ
@ X

¼ 2ðX�X0Þ þCCLCXþ CDXLD ¼ 0

) ðI þ CCLCÞXþXðI þCDLDÞ ¼ 2X0:

(8)

This is a Sylvester matrix equation, and it has a unique solution

because both ðI þ CCLCÞ and ðI þCDLDÞ are positive definite

(Bartels and Stewart, 1972). However, solving this equation is very

time-consuming, and we thus adopt an alternate method to optimize

(7) by using an approximate two-step strategy (Lu and Peng, 2013;

Zhou et al., 2004). The objective function is split into two parts:

FðXÞ ¼ FCðXÞ þ FDðXÞ

¼ 1

2
jjX�X0jj22 þ

CC

2
TrðX>LCXÞ

� �

þ 1

2
jjX�X0jj22 þ

CD

2
TrðXLDX>Þ

� �
;

(9)

where FCðXÞ ¼ 1
2 jjX�X0jj22 þ CC

2 TrðX>LCXÞ is the objective of X

regularized only by the sequence similarity, while FDðXÞ ¼
1
2 jjX�X0jj22 þ CD

2 TrðXLDX>Þ is that regularized only by the structure

similarity. In the first step, we minimize FCðXÞ with regard to X, to

obtain a solution X00. In the second step, we use X00 as the initial link

confidence matrix to replace X0 in FDðXÞ, and minimize FDðXÞ with

regard to X to obtain the final solution. The details are as follows:

Step I: We solve the following problem to obtain the intermedi-

ate optimal solution X00,

X00 ¼ argmin
X

1

2
jjX�X0jj22 þ

CC

2
TrðX>LCXÞ: (10)

It has been shown that this optimization problem can be solved

by an iterative label propagation method (Zhou et al., 2004).

Specifically, in each iteration, the current link confidence matrix

Xcur is updated from the previous link confidence matrix Xpre,

Xcur ¼ aL0CX pre þ ð1� aÞX0; (11)

where L0C ¼ D
�1

2

C CD
�1

2

C is the normalized sequence similarity matrix,

and a ¼ CC=ðCC þ 1Þ is a weighting parameter derived from CC.

The label propagation iterations above have been proved to con-

verge (Zhou et al., 2004) to,

X00 ¼ ð1� aÞ I � aL0Cð Þ�1X0: (12)

Step II: We replace X0 in FDðXÞ by X00, and solve the following

problem to obtain the final link confidence matrix X�,

X� ¼ argmin
X

1

2
jjX�X00jj22 þ

CD

2
TrðXLDX>Þ: (13)

Similarly, this optimization problem can be solved by an iterative

label propagation method,

Xcur ¼ bX preL0D þ ð1� bÞX00; (14)

where L0D ¼ D
�1

2

D DD
�1

2

D is the normalized structure similarity matrix,

and b ¼ CD=ðCD þ 1Þ is a weighting parameter derived from CD.

Finally, the above label propagation iterations converge to,

X� ¼ ð1� bÞX00ðI � bL0DÞ�1: (15)

Substituting the solution in (12) to (15), we have the final opti-

mization result of X�,

X� ¼ ð1� aÞð1� bÞ I � aL0Cð Þ�1X0ðI � bL0DÞ�1: (16)

2.3 Dataset
In order to comprehensively evaluate the performance of CMsearch,

we carefully selected a dataset, referred as the PDB40, which con-

sists of 10 288 proteins from the PDB. We downloaded the

CULLPDB subset (Wang and Dunbrack, 2003) of PDB with a se-

quence identity cutoff of 40%, an X-ray crystallography resolution

cutoff of 2.0 Å, and an X-ray crystallography R-factor cutoff of

0.25 on March 14, 2015. Proteins with less than 50 residues or

more than 1000 residues, and proteins formed only by a small num-

ber of a-helices were removed. This yielded a complete, non-

redundant and high-quality protein dataset representing all proteins

in PDB.

To build the structure similarity matrix D for PDB40, we calcu-

lated the TM-score (Zhang and Skolnick, 2004) for each pair of pro-

teins within PDB40 and used the pairwise TM-score matrix as D.

Here, TM-score was selected because it is the most widely used and

acknowledged similarity metric for protein structure comparison

and it has two important properties: (i) TM-score is independent

from the number of residues of proteins; and (ii) TM-score has a

range between zero and one, and a TM-score higher than 0.5 sug-

gests that the two aligned protein structures tend to be within the

same protein fold whereas a TM-score above 0.6 suggests highly

similar structures (Xu and Zhang, 2010). Note that any other struc-

ture alignment and similarity metric can be used instead of TM-

score (Cui et al., 2013, 2015a,b), but finding the optimal structure

similarity metric is out of the scope of this study.

To build the sequence similarity matrix C, we used three differ-

ent popular sequence similarity metrics separately (instead of

combining them together). The first metric is the e-value of

sequence-HMM alignment calculated by HMMER (Finn et al.,

2011), the second one is the homologous probability of HMM–

HMM alignment calculated by HHsearch (Söding, 2005) and the

third one is the MRF–MRF alignment score calculated by MRFalign

(Ma et al., 2014). Specifically, for each pair of proteins (i, j), we set

Cði; jÞ ¼ maxð1� Eði; jÞ;0Þ for the e-value E(i, j) calculated by

HMMER, Cði; jÞ ¼ Pði; jÞ for the homologous probability P(i, j) cal-

culated by HHsearch, and Cði; jÞ ¼ Sði; jÞ=maxkSði; kÞ for the align-

ment score S(i, j) calculated by MRFalign. Consequently, all

sequence similarities have a range between zero and one. Again, any

other sequence similarity metric can be used here.

Finally, we set the initial cross-modal correlation matrix X0 ac-

cording to the one-to-one mapping between S and T . Specifically,

for a sequence i in S and a structure j in T , we set X0ði; jÞ ¼ 1 if they

are from the same protein. Otherwise, X0ði; jÞ ¼ 0. Note that it is

also possible to initialize X0 by incorporating highly confident se-

quence–structure pairs found by existing threading methods, which

is currently under investigation.

Given the sequence similarity matrix C, the structure similarity

matrix D, and the initial cross-modal link matrix X0, CMsearch

learns all cross-modal links between the sequence space and the

CMsearch: exploring protein sequence and structure space by cross-modal learning i335
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structure space. This includes the cross-modal links between the

query protein sequences in the sequence space (without known

structures) and their homologs in the structure space.

3 Results and discussion

3.1 Performance on 32-fold cross-validation

homology detection
3.1.1 Experimental procedure

We performed a 32-fold cross-validation (CV) on PDB40 for each

homology detection method compared in this article. First, the

PDB40 dataset was randomly divided into 32 disjoint subsets, and

the homology detection process was repeated 32 times. For each

time, one subset was used as the query proteins (only sequences

were known), and the remaining ones were used as the database

(with both known sequences and structures) from which each

method tries to identify homologs to the queries. For all methods,

the structures of the query proteins were not used as inputs. For

CMsearch, this was done by removing the rows and the columns

corresponding to the query proteins from the structure similarity

matrix D and the initial cross-modal matrix X0.
In this experiment, protein homologs are defined as structurally

similar proteins with TM-scores (Zhang and Skolnick, 2004) above

0.6. Such a TM-score threshold guarantees that the protein homo-

logs share the same SCOP (Structural Classification of Proteins) fold

and are high-quality structure templates to build 3D structures (Xu

and Zhang, 2010). Actually, other TM-score thresholds between 0.4

and 0.6 have also been tested, and similar conclusions can be drawn

no matter which threshold is used. Thus, due to the page limit, we

focus on the high-confidence threshold of 0.6 in this article. Using

this definition, if a query protein does not have any homolog in the

database, it is not included in the analysis. As a result, 8332 proteins

from the PDB40 dataset were selected for the analysis.

To evaluate the performance of different homology detection

methods, we used three widely used performance measures: preci-

sion, recall and area under the precision-recall curve (AUPRC). For

each query protein in one of the 32 folds, each method was used to

find (i.e. to predict) all protein homologs from the remaining 31

folds, and a confidence score was calculated by this method for each

predicted homolog. Precision and recall for the top K predictions for

each method were calculated, where K was set to 1, 3, 5, 10, 25, 50

and 100. Precision is defined as the number of true homologs among

the top K predictions over K, and recall is defined as the number of

true homologs among the top K predictions over the total number of

homologs of this query. The AUPRC is an overall summary of the

precision–recall curve which is well suited for the homology detec-

tion task because the number of non-homologs is significantly larger

than that of homologs, which will cause the area under the receiver

operating characteristic curve to present an overly optimistic view

(Davis and Goadrich, 2006).

3.1.2 Results and discussion

First, we demonstrate that, given any state-of-the-art sequence simi-

larity metric, CMsearch with the protein sequence space defined by

this similarity metric always outperforms homology detection using

this sequence similarity alone. To this end, we tested CMsearch on

three state-of-the-art sequence similarity metrics, sequence–HMM

alignment by HMMER (Finn et al., 2011), HMM–HMM alignment

by HHsearch (Söding, 2005) and MRF–MRF alignment by

MRFalign (Ma et al., 2014). For each of these methods, it was first

used to score the similarity between a query protein and the

sequences in the corresponding database of the 32-fold CV, and the

top-scored K proteins were used as the predictions of homologs for

this method. The same method was then used to define the sequence

space which was used as the input to CMsearch. CMsearch then

combined sequence space defined by this method and structure

space defined by TM-score to learn the correlation between the

query protein and the proteins in the database, and returned the top-

scored K proteins as the predictions of homologs. Note that no con-

sensus approach was taken in any step. The three sequence similarity

metrics were tried one by one, separately.

As shown in Figure 2, in all three cases of sequence similarity

metrics, CMsearch is able to significantly improve both recall and

precision of the corresponding method regardless of the value of K.

Among the three original methods, MRFalign (Ma et al., 2014)

tends to be the best method and HHsearch (Söding, 2005) is a close

second. However, after incorporating the sequence space informa-

tion and structure space information, the three versions of

CMsearch tend to have similar performance as the precision curves

and the recall curves stay close to each other. In terms of AUPRC,

CMsearch improves the AUPRC of HMMER, HHsearch and

MRFalign from 0.74, 0.76 and 0.78 to 0.86, 0.87 and 0.89, respect-

ively, which demonstrates a relative improvement of at least 14%.

Therefore, CMsearch can substantially improve the homology detec-

tion performance regardless of the input sequence similarity metrics.

Next, we compare CMsearch with CASP-winning protein hom-

ology detection methods, including HHsearch (Söding, 2005),

RaptorX (K€allberg et al., 2012; Ma et al., 2012) and ENTS (Lhota

et al., 2015). We hereinafter fix the sequence similarity metric in

Fig. 2. Precision and recall of homology detection when different numbers of

top predictions are considered by three sequence similarity metrics versus

CMsearch (using the corresponding metric for the sequence space): dashed

lines denote the original sequence similarity methods; solid ones denote the

corresponding versions of CMsearch; and the AUPRC for HMMER, HHsearch

and MRFalign is 0.74, 0.76 and 0.78, whereas that for the corresponding ver-

sions of CMsearch is 0.86, 0.87 and 0.89, respectively

i336 X.Cui et al.

Deleted Text: CV
Deleted Text: Procedure
Deleted Text: cross 
Deleted Text: paper
Deleted Text: high 
Deleted Text: , 
Deleted Text: -
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: ,
Deleted Text: -
Deleted Text: top 
Deleted Text: top 
Deleted Text: ,
Deleted Text: ,
Deleted Text: ; K&hx00E4;llberg <italic>et<?A3B2 show $146#?>al.</italic>, 2012
Deleted Text: ,


CMsearch to be HHsearch because of its excellent balance between

accuracy and speed, and remain using TM-score as the structure

similarity metric. As shown in Figure 3, recall always increases for

different methods when K increases. This is expected because the

number of true homologs does not change when K increases. Thus,

including more predicted homologs (i.e. a bigger K) will cover more

true homologs. Similarly, the precision should be expected to de-

crease when K increases because including more predicted homologs

will more likely cover false homologs. However, such a reasoning

does not necessarily hold, as shown for ENTS when K is smaller

than 10. In general, HHsearch and RaptorX have quite similar pre-

cision, while HHsearch is slightly more sensitive than RaptorX.

Under all settings of K, CMsearch is always the method with the

highest precision and recall.

According to the Continuous Automated Model EvaluatiOn of pre-

dicted 3D protein structures (CAMEO-3D) (Haas et al., 2013),

RaptorX (Ma et al., 2012; K€allberg et al., 2012) is the most accurate

protein structure prediction method based on the results of the second

half of year 2015. Actually, finding protein homologs as structure tem-

plates is critical to the success of the template-based RaptorX method.

Comparing RaptorX and CMsearch in Figure 3, CMsearch achieves

significantly higher precision, recall and AUPRC than RaptorX regard-

less of K. For example, when K¼10, RaptorX achieves a solid per-

formance with a precision of 0.57, a recall of 0.58 and an AUPRC of

0.74, whereas CMsearch obtains a precision of 0.63, a recall of 0.65

and an AUPRC of 0.87. This reflects a 11–18% improvement over

RaptorX. Our results demonstrate that simultaneously combining se-

quence space information and structure space information can signifi-

cantly boost the accuracy of protein homology detection, and thus

potentially improve the accuracy of template-based protein structure

prediction (more evidences shown in Section 3.2).

ENTS (Lhota et al., 2015) is also a network-based method that

tries to perform learning on a single space that is defined by the mix-

ture of both structure similarities and sequence similarities.

However, the heterogeneity of the two types of similarities caused

inconsistency in the network. This can be demonstrated as the prom-

ising performance of ENTS when K is big, but a surprisingly low

precision when K is small. This suggests that performing cross-

modal learning between the two separately defined networks is

more reliable than learning in an arbitrarily combined network.

Similar conclusions can be drawn when we repeated the homology

detection experiments on PDB30 (Supplementary Fig. S1).

3.2 Performance on PDB-wide structure prediction
3.2.1 Experimental procedure

We then tested the performance of protein structure prediction

based on the predicted homologs from the previous experiment over

the entire PDB40 dataset, using the same 32-fold CV. Note that all

8332 proteins were used as queries exactly once. To our knowledge,

this is by far the largest query set used to benchmark protein struc-

ture prediction methods.

For each pair of a query protein sequence and a predicted homo-

log by a method (with a known structure), multiple pairwise

alignments were generated by calling existing alignment methods:

HMMER (Finn et al., 2011), HHalign (Söding, 2005) MRFalign

(Ma et al., 2014) and RaptorX (Ma et al., 2012). For each generated

alignment, the protein homolog was used as a structure template,

and a structure of the query protein was generated by calling

Modeller (Eswar et al., 2006) which is the most widely used model

generation method with proven success (Hildebrand et al., 2009;

K€allberg et al., 2012; Roy et al., 2010). For each query protein, the

best predicted model among all predicted structure models was se-

lected as the one with the highest TM-score to the native structure.

Given the best predicted model among the top 10 predictions by

a method and the native structure of each query protein, we used

several widely-used structure evaluation metrics to measure the

quality of the predicted model, including TM-score (Zhang and

Skolnick, 2004), GDT-HA score (Zemla, 2003), and root-mean-

square deviation (RMSD). For each evaluation metric, an average

score of all query proteins over all 32-fold CV was calculated as the

final result of a method. Here we report the comparison between the

best models among the first 10 returned models by HHsearch

(Söding, 2005), RaptorX (K€allberg et al., 2012), ENTS (Lhota et al.,

2015) and CMsearch by using HHsearch as the sequence similarity

metric.

3.2.2 Results and discussion

The qualities of the protein structures predicted by different meth-

ods are compared in Figure 4. The black points are the easy cases

where both methods can produce high-quality models (TM-score

above 0.6). The red and the blue points are interesting cases, such

that one of the two methods fails to predict high-quality models, but

the other method manages to ‘rescue’ the query proteins by predict-

ing high-quality models. Among these interesting cases (also re-

ported in Table 2), it can be seen that CMsearch has a remarkable

advantage over all the other methods. For example, CMsearch is

able to rescue 13, 2 and 11 times more query proteins than

HHsearch, RaptorX and ENTS, respectively, while the average TM-

score of CMsearch over the red and blue points improves that of the

competing methods by 31%, 14% and 16%. Since all methods com-

pared here call Modeller to build structure models, the only possible

Fig. 3. Precision and recall of homology detection when different numbers of

top predictions are considered by HHsearch, RaptorX, ENTS and CMsearch

(with HHsearch as the sequence similarity metric): for K¼10, the precision

for the four methods is 0.57, 0.57, 0.59 and 0.63, respectively, and the recall

for the four methods is 0.60, 0.58, 0.64 and 0.65, respectively

CMsearch: exploring protein sequence and structure space by cross-modal learning i337

Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: &hx0025;-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw271/-/DC1
Deleted Text: , 
Deleted Text: ,
Deleted Text: ,
Deleted Text: ; K&hx00E4;llberg <italic>et<?A3B2 show $146#?>al.</italic>, 2012
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;


reason for the performance improvement is because of better homo-

logs detected by CMsearch.

The overall structure prediction accuracy is reported in Table 2.

CMsearch always has the best performance no matter which evalu-

ation criterion is used, while RaptorX is the second best one.

Considering that protein structure prediction has been a well-

studied yet challenging problem for more than seven decades, it is

highly unlikely to significantly improve the easy cases that form the

majority of the dataset. Consequently, significant improvement on

hard cases might be averaged out when evaluating the average per-

formance. Meanwhile, our benchmark dataset is much larger and

comprehensive than any previous study, which makes improving the

average performance even more challenging. Despite such difficul-

ties, the Wilcoxon test on the paired TM-scores over the 8332 query

proteins shows that the improvement of CMsearch over the three

methods is significant. Specifically, the P-value for the paired TM-

scores between RaptorX (0.770) and CMsearch (0.774) is 9.17E-87,

whereas those between CMsearch and the other two methods are

even much lower.

3.3 Case studies
Here we describe three representative examples of our results. The

first one is PDB id 2ODA chain A (hereinafter called 2ODAA), a

protein from the plant pathogen Pseudomonas syringae (Peisach

et al., 2008). It is a representative member of a subfamily of the hal-

oacid dehalogenase superfamily. All the top 10 ranked predicted

models by CMsearch have TM-score of 0.6 or above, with TM-

score of the top model being 0.686 (Fig. 5d). The template selected

by CMsearch for this model is alnumycin B (PDB id 4EX6A), which

is an enzyme of the same haloacid dehalogenase superfamily as

2ODAA. In contrast, for HHsearch, ENTS and RaptorX, all of their

top 10 ranked predicted models have TM-score below 0.6. The first

models predicted by the three methods are shown in Figure 5(a–c),

with TM-score of 0.548, 0.132 and 0.519, respectively.

The second example is 3VCXA, a putative glyoxalase/bleomycin

resistance protein from Rhodopseudomonas palustris. Among the

top 10 ranked models of HHsearch, ENTS, RaptorX and

CMsearch, 4, 3, 5 and 8 of them have TM-score of 0.6 or above, re-

spectively. The top model of CMsearch has TM-score of 0.761 (Fig.

5g), which is dramatically more accurate than that of the three other

methods (with TM-score of the top model being 0.385, 0.380 and

0.380, respectively) (Fig. 5(e–f)). 3VCXA has known Gene

Ontology annotations. It is involved in dioxygenase activity as mo-

lecular function (MF) and oxidation reduction process as biological

process (BP). Both HHsearch and ENTS select 3R6AA as the top

template, which has lactoylglutathione lyase activity and lyase activ-

ity as MF, and metabolic process as BP. RaptorX selects 3OXHA as

the top template, which has unknown MF or BP annotation.

CMsearch, on the other hand, selects 4HC5A as the top template,

which has exactly the same function annotation as 3VCXA, and is

also a glyoxalase/bleomycin resistance protein, but from

Sphaerobacter thermophilus.

The third example is 2Q73A, which is a MazG nucleotide pyro-

phosphohydrolase domain (Robinson et al., 2007). Among the top

10 models of the four methods, HHsearch, ENTS and RaptorX each

has one model of TM-score above 0.6, whereas CMsearch has two.

Interestingly, although HHsearch, ENTS and RaptorX all select

4QGPA as the template for the top model (Fig. 5h), CMsearch

Fig. 4. TM-scores of the predicted structure models by using the homologs (i.e. structure templates) found by HHsearch, RaptorX and ENTS versus using those

found by CMsearch: the black points represent the cases where both methods can predict high-quality structures (with TM-scores above 0.6), which should be

considered as the easy cases; the gray points represent the opposite cases where both methods cannot predict high-quality models; the red points represent the

cases where the competing method cannot predict any high-quality models but CMsearch can; and the blue points represent the opposite cases where CMsearch

cannot predict any high-quality models while the competing method can (statistics related to these figures are shown in Table 2)

Table 2. Comparison of the predicted structure models by using the homologs (i.e. structure templates) found by HHsearch, RaptorX and

ENTS versus using those found by CMsearch

Methods All regions Red and blue regions

TM-score GDT-HA RMSD(Å) Count TM-score

Mean Std Mean Std Mean Std Nred Nblue Mean CMsearch Imprv (%)

HHsearch 0.743 0.160 0.481 0.149 4.27 0.92 505 40 0.515 0.675 31.1

RaptorX 0.770 0.142 0.495 0.143 5.31 1.58 203 102 0.547 0.625 14.3

ENTS 0.744 0.160 0.480 0.147 4.17 0.94 401 37 0.549 0.639 16.4

CMsearch 0.774 0.139 0.500 0.142 4.14 0.98 � � � � �

Note: For all 8332 query proteins of the PDB40 dataset, the averages and the standard deviations of TM-score, GDT score and RMSD are reported; for the red

and the blue points in Figure 4, CMsearch is able to increase the number of high-quality models by a factor of 12.6 (505 versus 40) and improve the average TM-

score by 31.1% (0.675 versus 0.515) over HHsearch. The best performance under each performance measure is in bold.
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selects 1VMGA as the top template (Fig. 5i), both of which are also

MazG nucleotide pyrophosphohydrolase domains. However,

1VMGA tends to be a better template because the TM-score of the

final model is 0.747, whereas that for 4QGPA is 0.536. It is worth

noting that there are only two templates in the entire PDB40 that

have TM-score of above 0.6 to the native structure of 2Q73A, and

CMsearch returns them as the first and third ranked templates.

We further look into the reason why CMsearch is able to detect

better homologs and rank them at the top for the three cases. It turns

out that HHsearch, for instance, can detect strong query-sequence

links in the sequence space (solid blue lines in the sequence space in

Fig. 6), follow which it can identify the corresponding sequence–

structure pairs (solid blue lines between the two spaces). Thus, each

prediction of HHsearch is equivalent to finding a path from the

query, through a sequence in the sequence space, to the correspond-

ing structure in the structure space. However, in these cases, the top

homologs selected by HHsearch are ‘inconsistent’. Taking 2ODAA,

for example, the pairwise sequence links (in the sequence space)

among the top three homologs by HHsearch are strong, weak and

weak (relatively), whereas the corresponding pairwise structure links

(in the structure space) are strong, strong and weak. Thus, the top

three homologs by HHsearch do not well support each other because

the true homologs of the query protein tend to be similar to each

other (i.e. strong pairwise links in both the sequence and the structure

spaces). In contrast, CMsearch simultaneously considers the weak

query-sequence links (dashed red lines in the sequence space), the

strong pairwise sequence links (solid red lines in the sequence space),

the strong corresponding sequence–structure links (solid red lines be-

tween the two spaces) and the strong pairwise structure links (solid

red lines in the structure space). This strong consistency compensates

for the relatively weak query-sequence links, and hence CMsearch

ranked these homologs at the top. Note that keeping consistency

does not mean losing diversity of the selected homologs, but it penal-

izes cases such as strong sequence links with weak structure links, or

violations of triangle inequality in the structure space.

4 Conclusion

In this article, we proposed a cross-modal search method,

CMsearch, for protein homology detection. CMsearch is capable of

significantly improving the accuracy of state-of-the-art homology

detection methods, including HMMER (Finn et al., 2011),

HHsearch (Söding, 2005), MRFalign (Ma et al., 2014), RaptorX

(Ma et al., 2012) and ENTS (Lhota et al., 2015). This demonstrates

that combining sequence space information and structure space in-

formation can significantly boost the accuracy of protein homology

detection and improve the accuracy of template-based protein struc-

ture prediction. The success of our method is mainly credited to the

cross-modal propagation that simultaneously explores the protein

sequence space and the protein structure space. The only cost of

applying our method is approximately 10 min of computational

time on an average computer.

Furthermore, our framework is generic and can be straightfor-

ward extended to multiple modals. It thus can be a highly valuable

framework for many computational biology tasks. For example, we

are currently extending our method to predict protein functions by

simultaneously incorporating protein sequence space information,

structure space information and gene ontology space information. It

would also be interesting to investigate the possibility to use the

Fig. 5. Superpositions of the best template model (cyan) to the native model (magenta): the best template model is found by HHsearch, RaptorX, ENTS or

CMsearch for query protein: (a–d) 2ODAA, (e–g) 3VCXA or (h–i) 2Q73A (note that the same template model might be found by different methods); and the models

are superimposed by TM-align and the superimposed models are visualized by PyMOL

Fig. 6. Illustration of why CMsearch is able to detect better homologs and

rank them at the top for the three cases in Figure 5: each triangle represents a

sequence; each pentagon represents the corresponding structure; each solid

line represents a strong link; each dashed line represents a (relatively) weak

link; the top three homologs predicted by HHsearch (in blue) have strong

query-sequence links; the top three homologs predicted by CMsearch (in red)

have weak query-sequence links but strong links among the sequences and

structures of them three; and this demonstrates that CMsearch is capable of

compensating weak links to true homologs that are consistent (i.e. the true

homologs tend to be similar to each other)
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network topologies in the sequence and the structure spaces to de-

tect the number of homologs, or if there exists a homolog in the

database or not. This information could be useful for protein struc-

ture prediction with multiple templates.
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