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Abstract: Cadherins are calcium-binding proteins with a pivotal role in cell adhesion and tissue
homeostasis. The cadherin-dependent mechanisms of cell adhesion and migration are exploited
by cancer cells, contributing to tumor invasiveness and dissemination. In particular, cadherin
switch is a hallmark of epithelial to mesenchymal transition, a complex development process vastly
described in the progression of most epithelial cancers. This is characterized by drastic changes in cell
polarity, adhesion, and motility, which lead from an E-cadherin positive differentiated epithelial state
into a dedifferentiated mesenchymal-like state, prone to metastization and defined by N-cadherin
expression. Although vastly explored in epithelial cancers, how these mechanisms contribute to
the pathogenesis of other non-epithelial tumor types is poorly understood. Herein, the current
knowledge on cadherin expression in normal development in parallel to tumor pathogenesis is
reviewed, focusing on epithelial to mesenchymal transition. Emphasis is taken in the unascertained
cadherin expression in CNS tumors, particularly in gliomas, where the potential contribution of
an epithelial-to-mesenchymal-like process to glioma genesis and how this may be associated with
changes in cadherin expression is discussed.
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1. Cadherins: The Main Regulators of Cell-Cell Adhesion

Cell-cell contact and adhesion are indispensable mechanisms for tissue-specific tasks
and homeostasis by defining cell polarity and tissue compartmentalization [1,2]. Amongst
the several families of adhesion molecules, the major one is the superfamily of cadherins
(named for “calcium-dependent adhesion”), which are transmembrane proteins involved in
the formation of adherens junctions (AJ) [3]. Cell-cell adhesion is mediated by extracellular
cadherin domains, which function in a calcium-dependent way. In contrast, the intracellular
cytoplasmic tail associates with numerous adaptor and signaling proteins collectively
referred to as the cadherin adhesome [3]. The cadherin superfamily includes classical
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cadherins, protocadherins, desmogleins, desmocollins, and others [3], which structurally
share extracellular cadherin repeats.

Classical cadherins include epithelial (E-), neuronal (N-), placental (P-), and retinal
(R) cadherins, which were the first members of the superfamily to be identified (CDH1,
CDH2, CDH3, and CDH4, respectively). They are calcium-binding proteins, characterized
by an ectodomain containing five extracellular cadherin repeats, a transmembrane domain,
and a cytoplasmic domain with highly conserved binding sites for p120-catenin and β-
catenin [4]. The cytoplasmic domain also participates in cell-cell adhesion by stabilizing
the cadherin/catenin complex at the membrane and binding this complex to the actin cy-
toskeleton. Moreover, the diversity of cadherin-binding molecules potentiates the crosstalk
between cadherins and other cellular systems, pointing to their key role as regulators of
cellular behavior. Indeed, although the cytoplasmic tails of different classical cadherins
bind the same cytosolic proteins, and cadherin/catenin complexes appear to be similar in
different cellular contexts, cadherin-mediated signaling is nevertheless highly dependent
on the cellular context. It regulates a wide range of normal physiological processes, includ-
ing embryo development, apoptosis, gene expression, cell proliferation, differentiation,
and migration [5–7].

Cadherins assemble into strong adhesive intercellular junctions with subtype specifici-
ties, mainly through homophilic connections. Cells expressing a given cadherin are thought
to preferentially adhere to those expressing the same cadherin subtype since the expression
of distinct cadherins is involved in cell sorting [8]. However, cadherins’ expression in cells
can also be heterogeneous, with cells expressing multiple cadherin subtypes, which leads
to cadherin-mediated heterotypic adhesion [9,10]. Cadherin complexes are perceived as
dynamic, undergoing cycles of assembly and disassembly [11,12]. It is the combination
of qualitative and quantitative cadherin expression differences that most likely confers
tissue-specific characteristics. These characteristics also include the number of shearing
forces on cells [13], pointing to a biophysical basis for morphogenetic phenomena [14].

Cadherins play crucial roles during embryonic development and during the mainte-
nance of adult tissues’ normal architecture [15,16]. Thus, several human diseases result
from compromised cadherin expression and function, including skin, cardiovascular and
neuronal disorders, and cancer, as recently reviewed by Vestweber and colleagues [17].

2. Cadherins Expression in Normal Adult Tissues

The paradigm for cadherin function stems mostly from studies concerning E-cadherin,
with a vast amount of literature documenting E-cadherin’s impact on tissue architecture
and morphogenesis [18,19]. Dynamic expression of E-cadherin was found to be a prerequi-
site for cell migration and morphogenesis during embryonic development [15]. A decrease
in E-cadherin expression is observed, for instance, during gastrulation when mesoderm
is formed [20] and in ectoderm during neurulation [21], while its re-expression is indis-
pensable for skin or kidney organogenesis [17,18]. In many cases, dynamic E-cadherin
expression takes place in the context of an Epithelial-to-Mesenchymal Transition (EMT),
a developmental process characterized by loss of cell polarity and adhesion (character-
istic of epithelial cells), with vast morphological changes and acquisition of cell motility
(mesenchymal state) [18]. EMT is to a large extent coordinated by so-called classical EMT
transcription factors: Snail, Slug, Twist, ZEB1, and ZEB2. These are well-characterized
transcriptional repressors, all of which can directly bind to and repress E-cadherin promoter
and other cell-cell adhesion and epithelial genes [22,23].

Less is known about the physiological roles of the other previously referred classical
cadherins. N-cadherin has a broader expression profile, present in nervous, fibrous, and
musculoskeletal tissues [24–27], and is considered a cell-cell adhesion molecule expressed
by mesenchymal cells. Similar to E-cadherin, N-cadherin is critical in cell attachment [28],
differentiation into specialized tissues [24–27], and influence signaling in various cellular
processes, such as cell proliferation and apoptosis [29]. Although N- and E-cadherin
share structural and functional characteristics, they usually show a mutually exclusive
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expression pattern during embryonic morphogenesis [30]. Notably, N-cadherin adhesion
properties appear to be strongly tissue-specific. It mediates strong cell-cell adhesion in
cardiomyocytes, but it is also expressed in migratory fibroblastic cells [24,31]. Concerning
P-cadherin expression in human tissues, it partially overlaps with E-cadherin expression,
possibly reflecting partial redundancy. The two proteins have high homology and differ
mainly in their extracellular portions. P-cadherin is co-expressed with E-cadherin in
embryonic stem cells and several adult epithelial tissues, including the breast, prostate,
several organs of the digestive tract and urinary tract, lung, and endometrium (reviewed
in [19,32]). Concerning R-cadherin in normal tissues, it is found to play an important role in
brain segmentation and neuronal outgrowth and in lens, muscle, and kidney development.

2.1. Epithelial Tissues

Epithelia are robust tissues formed by sheets of cells organized as mono or multilayers
that serve as effective barriers that support the structure and regulate functionally diverse
organs, such as lung, gut, kidney, and epidermis (reviewed by [33]). Epithelia characteristi-
cally show strong cell-cell adhesion mediated by specialized adhesive sites, mainly tight
junctions (TJ), adherens junctions (AJ), and desmosomes.

E-cadherin is expressed in all mammalian epithelia, being mainly co-expressed and
located at the cell membrane and organizing the adherens junctions. Adherens junctions
are located between the apical and basolateral membrane domains of epithelial cells and
are linked to a circumferential actomyosin belt, a dynamic structure that participates in
epithelial sheet remodeling and regulates epithelial tissue integrity [34–36]. Moreover, the
interplay between E-cadherin complexes and the actin cytoskeleton enables resistance to
cell deformation, granted by cell-cell adhesion; or otherwise triggers cellular remodeling,
which tolerates epithelial plasticity [37,38].

Although a key component in epithelial polarization, E-cadherin is crucial to preserve
epithelial tissue integrity and homeostasis through the stabilization of cell-cell interfaces
and plays an important role in epithelial cell proliferation and migration control [39–41].
Accordingly, disruption of epithelial polarity has been shown to cause a wide range of
human diseases [15,42–44]. Likewise, many studies have pointed to E-cadherin as a central
protein in human epithelial cancers [45,46]. The loss of E-cadherin-mediated cell-cell
adhesion is a prerequisite for tumor cell invasion. Reestablishing E-cadherin function in
cultured tumor cells has been shown to reverse an invasive mesenchymal phenotype to a
more benign and epithelial phenotype [45,47,48]. Furthermore, in several human cancer
types, in parallel to E-cadherin loss, the de novo expression of mesenchymal cadherins,
such as N-cadherin and cadherin-11, is observed during tumor progression [49–51]. These
observations led to the concept of “cadherin switch” in cancer, parallel to what is observed
during delamination and migration of epithelial cells during embryonic development.

P-cadherin expression is restricted to the basal layers of stratified epithelial tissues,
including breast, skin, prostate, and lung [8,52,53]. When expressed, P-cadherin appears
crucial for normal epithelial architecture [54] and cellular migration [55]. Furthermore, in
addition to its role as an adhesion molecule, P-cadherin has been hypothesized to play
an important role in cell differentiation and proliferation [56,57]. In the mouse mammary
gland, P-cadherin knockout has been associated with abnormal mammopoiesis and in-
creased risk for the development of preneoplastic lesions [58]. CDH3/P-cadherin mutations
have been associated with abnormal development syndromes, including hypotrichosis
with juvenile macular dystrophy (HJMD) and ectodermal dysplasia, ectrodactyly and
macular dystrophy (EEM syndrome) [59,60].
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2.2. Central Nervous System (CNS)

Cadherins are also highly expressed in the nervous system promoting cell-cell interac-
tions within neural networks and dynamically contributing to neural development and
function [61–65].

Various cadherins are widely expressed in neural tissues, including N-cadherin,
cadherin-11, cadherin-6, cadherin-8, or M-cadherin [61,63,64,66]. Initially, E-cadherin
is also expressed in embryonic ectoderm, being replaced by N-cadherin after neural induc-
tion, which leads to the formation of the neural plate [67]. As cell differentiation proceeds in
the neural tube, cadherin expression becomes restricted to specific brain subdivisions. For
instance, in the mouse developing brain, R-cadherin expression is distributed throughout
the telencephalon and hindbrain, while cadherin-8 expression is restricted to the cerebellum
and ventral thalamus [64].

In the adult brain, cadherins’ expression decreases and often remain localized to
synapses or perisynaptic areas [65,68]. However, past observations suggest that cadherins
are involved in various aspects of neural development and function, including organi-
zation of neuroepithelial layers [9,67], regulation of neuronal migration [69], complex
functional subdivision, and early compartmentalization [70] by modulating region-specific
adhesiveness. Furthermore, an important role in synaptic function and plasticity has been
pointed out for cadherin-catenin complexes [65,68]. In particular, N-cadherin has been
shown to play a similar role in neural tissues as E-cadherin in epithelia. This protein grants
cell polarity and the maintenance, proliferation, and differentiation of neural progenitor
cells [71].

In normal glial cells, N-cadherin is also thought to be the key cadherin. Although with
scarce literature, it was identified in oligodendrocytes and their precursors [72], as well as
in astrocytes [73,74]. Neural phenotypes associated with cadherin loss of function include
defects in neural tube formation and cortical organization, cognitive and synaptic dysfunc-
tion, failure of sensory neurogenesis, CNS malformations, and craniofacial development.
In addition, cadherin-catenin complexes are involved in CNS developmental steps and
synapse formation and functions. It is thus not surprising that defects and alterations in
the cadherin-catenin complex impair high-order neural functions. In particular, it has been
associated with addiction-related phenotypes, schizophrenia, and bipolar disorder [75–77].

3. Cadherins Expression in Neoplastic Disease
3.1. Systemic Cancer

During oncogenesis in epithelial tissues, organized cell-cell adhesion and normal cell
polarity are disrupted by genetic, epigenetic, and microenvironmental changes, leading
to abnormal signaling, loss of contact inhibition, altered stromal interactions, and cell
migration (reviewed in [19]). E-cadherin was investigated in seminal studies regarding its
role in carcinomas, which are tumors of epithelial origin. Since then, various studies have
proposed the CDH1/E-cadherin coding gene as a tumor suppressor gene by enabling com-
plex mechanisms to promote tissue organization and apoptosis blockade [5,49,78]. These
mechanisms include both biophysical cell-cell adhesion processes and intracellular signal-
ing coupled to inhibition of proto-oncogenic molecules, such as βcatenin and epidermal
growth factor receptor (EGFR) [18,79]. Moreover, suppression of E-cadherin function has
been linked to increased cell migration and invasion and induction of a mesenchymal cel-
lular morphology [80]. E-cadherin loss was demonstrated in a variety of cancers, including
lobular breast carcinomas [78], gastric adenocarcinoma [81], hepatocellular carcinoma [82],
melanoma [83], squamous cell carcinomas of the skin [84], as well as esophagus [85], and
head and neck carcinomas [86,87]. More recently, data from other cancers have questioned
the loss of E-cadherin expression as a ubiquitous marker of disease aggressiveness [88,89].
In later stages, invasive and poorly differentiated breast and ovarian carcinomas, for ex-
ample, still express E-cadherin, which marks the existence of a mesenchymal to epithelial
transition during tumor progression or a hybrid or mixed epithelial-mesenchymal phe-
notype [90,91]. Since the initial reports, the role of other cadherins in cancer, including
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its actions as synergists or antagonists with E-cadherin, has been sought. Importantly,
the structural diversity of cadherins and, particularly, their tissue-specific expression
profiles and actions were indicators that cadherins’ role in oncogenesis was most likely
heterogeneous. Initial studies in carcinomas have labeled N-cadherin as a “mesenchymal”
biomarker; and tied it to the end-stage of a pathological, cancer-related EMT [92]. Indeed,
cadherins frequently exhibit a homotypic binding pattern across cells. For N-cadherin,
frequently expressed in stromal and endothelial cells, this leads to epithelial heterotypic
cell-cell adhesion, facilitating local invasion and dissemination of carcinoma cells [93].
Various studies have elicited the role of N-cadherin in tumor progression [94]; however, in
others, N-cadherin loss has been linked to a worse prognosis [95]. As for E-cadherin and
N-cadherin, P-cadherin cancer-related function seems to be context-dependent [96,97]. In
breast cancer, expression of P-cadherin is characteristically observed in tumors with high
proliferative rates and decreased cell differentiation, strongly associated with poor patient
survival [57,98,99]. By contrast, in colon carcinomas, P-cadherin is strongly expressed
in well-differentiated, while mostly absent in poorly differentiated colon tumors [100].
P-cadherin overexpression with E-cadherin suppression and N-cadherin induction are
considered components of the cadherin switch found in cancer-associated EMT responsible
for tumor differentiation and progression [101]. Nevertheless, rising evidence points to
the importance of considering the cancer-dependent role of these proteins, as much as the
putative interactions between them. In a model of breast cancer, co-expression of P- and
E-cadherin was associated with aggressive high-grade breast carcinomas by P-cadherin-
mediated disruption of functional cadherin-catenin complexes, thereby obstructing the
E-cadherin tumor-suppressive role [97,102–104]. Considering R-cadherin impact on tu-
morigenesis, its role is still controversial. Conflicting data points R-cadherin as either
promoting tumor progression [105] or inhibiting it [106,107].

3.2. CNS Tumors

As mentioned before, N-cadherin is the most commonly expressed cadherin in the
CNS. E-cadherin expression, in particular, is rare and localized to arachnoid cells, choroid
plexus, and anterior pituitary [108]. Peripheral nervous system cells, including Schwann
cells, were also found to express E-cadherin. This protein plays an important role in cell
adhesion and maintenance of peripheral nervous system architecture [109–111]. Conse-
quently, the role of E-cadherin expression in tumors derived from these locations has been
studied and described in meningiomas, choroid plexus papilloma, schwannomas, and
pituitary adenomas [108,112–116].

3.2.1. Pituitary Adenomas

Pituitary adenomas are epithelial tumors with neuroendocrine differentiation, im-
munohistochemically subdivided according to the presence of pituitary hormones and
transcription factors. Variable E-cadherin and N-cadherin staining has been described in
these tumors [114,117–119]. In particular, loss of E-cadherin expression has been linked
to increased tumor dimensions and invasive behavior in growth hormone and prolactin-
producing pituitary adenomas [114,120–122]. In addition, response to pharmacological
treatment with somatostatin analog was worse for somatotroph adenoma without E-
cadherin expression [114]. In a surgical series of 52 patients, E-cadherin loss and N-cadherin
expression accompanied morphological changes suggestive of an EMT-like process, unique
to a subset of invasive pituitary adenomas [123].

3.2.2. Meningiomas

Various studies have found E-cadherin to be expressed in diverse subtypes of menin-
giomas, tumors derived from arachnoid cap cells [108,112,116]. Furthermore, E-cadherin
downregulation has been described as one of the main molecular events responsible for
meningioma development, and alterations within the CDH1 gene have been found in this
neoplastic disease, namely loss of heterozygosity (LOH) and genomic instability [112,124].
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Loss of E-cadherin expression has been associated with tumor proliferation, invasiveness,
and dedifferentiation [116,125,126]. In addition, E-cadherin expression is less frequently
observed in atypical (WHO grade II) meningiomas and is commonly absent in anaplas-
tic meningiomas (WHO grade III), which are considered malignant [124,126]. Moreover,
one study found that E-cadherin loss of expression was a significant predictor of tumor
recurrence in meningioma patients [126].

In contrast to meningiomas and pituitary adenomas, the role of classical cadherins in
other CNS tumors remains to be clarified, as published data remain limited and conflictive.
For instance, leptomeningeal dissemination has been associated with increased N-cadherin
expression in medulloblastoma [127], while lower expression levels were identified in
disseminated neuroblastoma [95] and ependymoma [128]. Importantly, a recent study
showed frequent positivity for N-cadherin in ependymoma and identified increased N-
cadherin levels as a predictor of earlier tumor recurrence, arguing a contrary role for
N-cadherin as a marker of worse prognosis in ependymoma [129]. Studies on E-cadherin
expression show that this adhesion protein is mostly absent in neuro-epithelial tumors,
such as ependymoma and medulloblastoma [113,125,127].

3.2.3. Gliomas

The expression patterns of classical cadherins in gliomas have been evaluated by sev-
eral, yet contradicting, studies. Gliomas characteristically diffusely infiltrate the underlying
cerebral parenchyma, which has normal N-cadherin expression. This behavior reflects a
higher tendency toward tumor invasion and migration, which rely on cell-cell adhesion
mechanisms.

N-cadherin expression in gliomas has been described in various patient cohorts, with
approximately 60–80% of positive cases in glioblastoma series [130,131]. However, these
studies are discordant regarding the correlation between N-cadherin immunoreactivity
with patient prognosis. In 1995, Shinoura et al. studied the differences in N-cadherin
expression in the normal brain parenchyma and different gliomas, including pilocytic
astrocytomas, low-grade oligodendrogliomas or astrocytomas, anaplastic astrocytomas,
and glioblastomas. Although mRNA levels for N-cadherin were significantly higher in
glioblastomas, protein expression was similar among high-grade and low-grade gliomas
and normal brains. Moreover, no consistent association between invasiveness capacity and
N-cadherin expression was found [132]. As for Shinoura et al., other studies have found dis-
crepant results between N-cadherin mRNA and protein expression levels [133,134]. These
results point to the importance of protein stability in the tumor microenvironment. Indeed,
a study showed that N-cadherin cleavage by ADAM-10 occurred at a significantly higher
rate in glioblastoma cells than in normal brain [135], and it has been further suggested that
N-cadherin cleavage is a prerequisite for glioblastoma cell migration [5,135].

Other studies have supported a protective role for N-cadherin in gliomas. In glioma
models, N-cadherin down-regulation has been associated with altered cell polarization
and abnormal motile behavior [136], with a significant increase in tumor cell migration and
invasive capacity [136,137]. In surgical specimens, expression levels evaluation pointed
to a decrease in N-cadherin immunoreactivity upon glioblastoma recurrence [138,139]
and association to tumor cerebrospinal fluid (CSF) dissemination [139]. In line with this,
another report described how even redistribution of N-cadherin at the cell membrane is
induced by cleaving its intracellular anchorage to the cytoskeleton by ROBO1, promoting
invasiveness of glioblastoma cancer stem cells [140].

Nevertheless, contradictory results have questioned the role above of N-cadherin in
glioma genesis. N-cadherin protein expression levels were also shown to increase according
to pathological glioma grade [130,141] and correlate with Ki-67 labeling index [130], sug-
gesting a role for cell adhesion signaling in tumor cell proliferation and dedifferentiation.
Importantly, a trend towards decreased survival with increased expression of N-cadherin
has also been described in different cohorts [131,141]. In a very recent publication, Grit-
senko et al. studied the mechanisms of brain infiltration by glioma cells. They proposed an
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AJ-mediated mechanism for glioma migration and progression, dependent on N-cadherin
and p120-catenin complex [142]. Similarly, Osuka et al. showed an N-cadherin expression
increase among the population of radioresistant glioma stem cells (GSC), with increased
stemness and reduced proliferation [143].

E-cadherin expression has been more commonly described as scarce or absent in
gliomas [120,125,131,141] while contradicting results regarding its role in disease pro-
gression have been hypothesized. Motta et al. analyzed E-cadherin mRNA levels in
81 neuroepithelial tumors, including 62 astrocytic tumors and those from WHO grade I to
IV. Low-grade astrocytomas (grades I-II) showed higher mRNA levels than did high-grade
astrocytomas [144]. Likewise, Bar et al. reported E-cadherin staining to be more commonly
positive in grade II (43%) over grade IV gliomas (23%) [145]. These results suggest that a
decrease in E-cadherin gene expression underlies astrocytoma progression. Moreover, in a
series of low-grade gliomas, CDH1 promoter methylation status was found to be frequent
(65% astrocytomas, 66% oligodendrogliomas, and 57% oligoastrocytomas) and hyperme-
thylation status associated with shorter progression-free survival [146]. In the same study,
negative immunoreactivity for E-cadherin correlated with shorter patient progression-free
and overall survival [146]. Despite these results, the assumption that E-cadherin plays
the same protective role in gliomas as in most systemic cancers remains highly dubious.
Opposing data documented E-cadherin expression to be higher in high-grade gliomas
than in low-grade gliomas [147]. Furthermore, in particular subtypes of glioblastoma, with
epithelial and pseudo-epithelial differentiation and high E-cadherin positivity, E-cadherin
expression correlated with a worse prognosis [148,149]. In glioma cell models, E-cadherin
expression was confirmed to be a rare event but to significantly influence in vitro growth
and invasion capacity [148]. All this information is summarized in Table 1.

Table 1. Summary of cadherin’s expression and prognosis in different published patient glioma series. NA (not assessed).

Author/Year Cadherin and Method Result Prognosis

Howng et al. 2002
[120]

E-cadherin
expression by RT-PCR in 16 astrocytomas

and 29 other SNC tumors
Ecad staining in 2/16 NA

Schwechheimer
et al. 1998

[125]

E-cadherin
Immunohistochemistry of 42 gliomas

(7 grade I astrocytoma, 6 grade II
astrocytima, 5 grade II oligodendroglioma,
14 grade III astrocytoma, 8 GBM) and other

105 SNC tumors

No Ecad staining in gliomas NA

Utsuki et al. 2004
[127]

E- and N-cadherin
Immunohistochemistry of 45 gliomas

(18 GBM, 16 grade III anaplastic
astrocytomas, 11 grade II diffuse gliomas).

No Ecad staining
Ncad staining in GBM (81%) and

anaplastic astrocytoma (31%)-Ncad
staining increases with WHO grade.

Ncad staining
associated with a
worse prognosis

Noh et al. 2017
[131]

E- and N-cadherin
Immunohistochemistry of 92 gliomas

Ecad expression in 8.7%
Ncad expression in 88.0%

No significant difference in OS, PFS
increased in low Ncad expression.

Tendency for
worse prognosis

with Ncad
expression

Shinoura et al.
1995
[132]

N-cadherin
mRNA and protein level in 21 gliomas
(one pilocytic astrocytoma, 4 grade II
astrocytomas, 3 grade III anaplastic

astrocytoma, 9 GBM, 2 mixed gliomas,
2 grade II oligodendroglioma)

Ncad expression equal (protein) to higher
(mRNA) in GBM No prognosis

Asano et al. 1997
[138]

N-cadherin
Immunohistochemistry of 22 astrocytomas

(13 GBM and 9 anaplastic grade III
astrocytoma)

No Ecad expression
Ncad expression in all primary tumors.

Ncad loss associated with tumor
dissemination.

Ncad staining
better prognosis.
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Table 1. Cont.

Author/Year Cadherin and Method Result Prognosis

Wu et al. 2013
[141]

E- and N-cadherin
Immunohistochemistry of 40 brainstem

gliomas (30 low grade and 10 high-grade)
and RT-PCR of 18 brainstem gliomas

(10 low grade and 8 high grade)

No Ecad staining, weak mRNA level.
N-cad expression increased with WHO

grade and showed a trend toward
shorter survival.

Ncad expression
associated with a
worse prognosis

Motta et al. 2008
[144]

E-cadherin
RT-PCR in 62 astrocytomas (21 grade I
astrocytomas, 10 grade II astrocytomas,
10 grade III astrocytomas, and 21 GBM)

and 19 other SNC tumors

Ecad expression is higher in low-grade
astrocytomas than high-grade

astrocytomas. Ecad expression decreases
with WHO grade.

Ecad expression
associated with a
better prognosis

Bar et al. 2014
[145]

E-cadherin
Immunohistochemistry of 92 gliomas

(23 grade I pilocytic astrocytoma, 23 grade
II astrocytoma, 7 grade II

oligodendroglioma, and 39 GBM.

Ecad staining in 28.8% of gliomas, no
differences with WHO grade. No prognosis

D’Urso et al. 2011
[146]

E-cadherin
Ecad gene (CDH1) promoter methylation

and E-cad expression by
methylation-specific polymerase chain

reaction (MSP) and immunohistochemistry
in 84 low-grade gliomas (43 diffuse

astrocytomas, 27 oligodendrogliomas, and
14 oligoastrocytomas)

CDH1 promoter hypermethylation in
65% of astrocytomas, 66%

oligodendrogliomas, and 57%
oligoastrocytomas correlated with a

worse prognosis.
Ecad expression positive in 15/43

astrocytomas, 9/27 oligodendrogliomas,
and 6/14 oligoastrocytomas. Loss of

immunoreactivity for E-cadherin
correlated with worse survival

Loss of Ecad
expression worse

prognosis

Lewis-Tuffin et al.
2010
[148]

E-cadherin
Immunohistochemistry of TMAs of

83 cases of GBM or anaplastic astrocytoma
and 31 gliomas and immunohistochemistry

of 27 GBM with epithelial/
pseudo-epithelial differentiation

No Ecad expression in TMA
Ecad staining in 33% of GBM with

epithelial/pseudo-epithelial
differentiation.

Worse overall survival in patients with
Ecad expression.

Ecad staining
associated with a
worse prognosis.

Rodriguez et al.
2008
[149]

E-cadherin
Immunohistochemistry of 58 GBM with
adenoid, epithelioid, or true epithelial

features

Ecad staining in 82% of GBM. NA

Darweesh et al.
2016
[150]

N-cadherin
Immunohistochemistry of 60 GBM

Ncad expression in 88.3% cases. Ncad
expression associated with tumor

histological variant-more common in
cases of Gliosarcoma than in

glioblastoma with oligodendroglioma
component.

NA

Almost inexistent literature can be found for the other two classical cadherins in
glioma genesis. Nonetheless, contradicting data for R-cadherin has been described. On the
one hand, R-cadherin increased expression has been shown at the cell-cell junctions after
PDGF-B-induction in an experimental model of high-grade oligodendrogliomas [151], thus
suggesting a role in glioma genesis. On the other side, it has been demonstrated that it is
upregulated after autophagy induction, promoting a more epithelial and less aggressive
phenotype of glioblastoma cell lines [152].
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4. EMT and Cadherin Switch in Gliomas

Glioma capacity to grow, invade and resist conventional therapy, akin to systemic
cancer, relies on EMT-like cellular programs [153]. However, the significance of the EMT
and MET (mesenchymal to epithelial transition) programs in cancer progression and
metastasis remains to be fully elucidated. In particular, how the concept of EMT applies to
glioblastoma and other factors tumors with non-epithelial origin.

In 2010, transcriptomic analysis of glioblastoma established the presence of a molecu-
lar classification into four subtypes: proneural, neural, classical, and mesenchymal [154].
Since then, the mesenchymal subtype of glioblastoma has been thoroughly investigated
and suggested to associate with an invasive phenotype, increased aggressiveness, and ro-
bust treatment resistance [153,155–157]. The mesenchymal phenotype in glioblastoma has,
in addition, been correlated with worse overall survival [154]. Moreover, the mesenchymal
transformation has been documented in glioblastoma upon tumor recurrence [155,156], as
well as a response to various insults, including temozolomide [158] and radiation treat-
ments [159]. Perhaps the strongest evidence for an EMT-like process in glioblastoma is the
activity of classical EMT transcription factors and other well-described EMT-promoting
pathways, such as ZEB1/ZEB2 [140,160–163], TWIST1 [164–166], WNT/β-catenin path-
way [167,168] and SNAI2/SLUG [159,169] (Figure 1). An EMT-like program in gliomas is
thus increasingly recognized and correlated to the phenomenon of glioblastoma progres-
sion and invasion. However, the canonical EMT-related E- to N-cadherin switch is unlikely
to be an essential process. Increasing evidence suggests that cadherins may not be restric-
tive to have a specific role in tumorigenesis but instead can work as tumor suppressors or
promotors depending on the tissue and tumor-associated context [170–173].
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Figure 1. Cadherins and EMT factors expression during glioma progression. The progression of low-
grade to high-grade glioma is commonly accompanied by an increase in the activity of classical EMT tran-
scription factors and other well-described EMT-promoting pathways, such as ZEB1/ZEB2 [140,160,161],
TWIST1 [164,165], WNT/β-catenin pathway [167], and SNAI2/SLUG [159,169]. According to current
data available, N-cadherin is generally expressed in low-grade glioma, but its expression has been
described to be increased in high-grade gliomas [130,141]. On the contrary, E-cadherin is fairly absent
in gliomas. Still, its expression is more frequent in low-grade gliomas than in glioblastoma [144,145].
Notwithstanding, in aggressive glioblastoma subtypes, with epithelial and pseudo-epithelial differen-
tiation, E-cadherin is found to be overexpressed [148]. Upward row represents increased expression,
whereas downward row indicates decreased patient survival rate.

Taken together, published data point for a broad N-cadherin expression in glioblas-
tomas, with a likely increase from low grade to high-grade gliomas [130,141]. The tu-
morigenic result of such expression is disputed, as it spans from decreased invasiveness
and dissemination capacity [136,137,139] to a worse prognosis with decreased overall
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survival in clinical series [131,141] (Figure 1). Data on E-cadherin, whose expression
is, on the contrary, fairly absent in gliomas, proposes E-cadherin loss as a potential
step in glioma genesis, as the expression is more frequent in low-grade gliomas than
in glioblastoma [144,145]. Notwithstanding, important contradictory data in apparent
aggressive glioblastoma subtypes, with epithelial and pseudo-epithelial differentiation
and high E-cadherin expression, questions such a proposed benign role for E-cadherin in
gliomas [148] (Figure 1). It is nevertheless misleading to simply interpret these results in
the context of a systemic EMT. They emerge from a collection of small sampled patient
series [120,125,130,132,138,141,145,146,149], in which E-cadherin expression is substan-
tially lower and N-cadherin expression considerably higher than in published carcinomas
series [57,174–177]. Importantly, no key reciprocal or concomitant down and upregulation
for these proteins was explored or suggested, as the role of cadherin co-expression was
not explored. Moreover, data on P-cadherin expression in glioblastoma is at the moment
inexistent Figure 1.

Caution is therefore mandatory when interpreting results for cadherin expression
and its role as EMT biomarkers in glioblastoma, as proof of a cadherin switching process
remains elusive in glioblastoma and cadherin expression contribution to glioma progression
is still unclear.

5. Conclusions

Cadherins are key proteins in normal development, and tumor pathology and data on
cadherin expression in gliomas point to a distinct pattern of expression when compared to
classical epithelial cancers, in which the prognostic significance of each cadherin remains
elusive. In order to understand how cadherin expression reflects EMT and differentiation
status in gliomas, as well as propensity to invade and migrate, it is crucial to develop
large-scale studies in low-grade to high-grade gliomas, with the concomitant evaluation of
both epithelial and mesenchymal cadherins.
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