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Throughout Bernard Cohen’s active career at Mount Sinai that lasted over a half century,

he was involved in research on vestibular control of the oculomotor, body postural, and

autonomic systems in animals and humans, contributing to our understanding of such

maladies as motion sickness, mal de débarquement syndrome, and orthostatic syncope.

This review is an attempt to trace and connect Cohen’s varied research interests and his

approaches to them. His influence was vast. His scientific contributions will continue to

drive research directions for many years to come.
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INTRODUCTION

After education and training through Middlebury College, New York University School of
Medicine, internship, residencies in neurology, and psychiatry, 2 years in the U.S. Army, and a
2-year experimental fellowship at Columbia University under Dominick Purpura, Bernard Cohen
arrived at Mount Sinai Hospital in 1962 for good. Throughout his active career at Mount Sinai, he
was involved in research on vestibular control of the oculomotor, body postural, and autonomic
systems in animals and humans (Figure 1), and was continuously supported by grants from the
NIH, NASA, the NSF, and New York City as a principal investigator. Most notably, the NIH grant
entitled “TheOculomotor System and Body PosturalMechanisms” (NB00294, NS00294, EY11812),
initially spearheaded by Morris B. Bender before the arrival of Cohen at Mount Sinai, ran for 50
years through 2009, an NIH record. Despite losing his central vision in both eyes circa 2012, Cohen
pursued research in a full-time capacity until his retirement at the age of 88 years in 2017, thereafter
he continued to be engaged in writing, mentoring, and organizing conferences. Cohen fell ill just
days before the international conference born out of the Frontiers in Neurology Research Topic,
“Vestibular Contributions to Health and Disease” (3), for which he was the main driving force of
organization. Following a month long hospitalization, he passed away peacefully on November 27,
2019, at the age of 90 years.

FOUNDATION

Although only 2 years senior to Cohen, Purpura was already an established neurophysiologist by
the time they crossed paths in 1960, running his own laboratory at Columbia University and having
published some 40 papers by then. For 2 years with Purpura, Cohen recorded activities of thalamic
and extrathalamic pathways in cats and honed his electrophysiological skills (4–6).

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2020.624243
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2020.624243&domain=pdf&date_stamp=2021-01-12
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jun.maruta@mssm.edu
https://doi.org/10.3389/fneur.2020.624243
https://www.frontiersin.org/articles/10.3389/fneur.2020.624243/full


Maruta Bernard Cohen’s Scientific Contributions

FIGURE 1 | A rough navigation guide for Bernard Cohen’s research pursuit as interpreted by the author. Many branches and links are omitted for simplicity of

exposition. Note that the diagram does not depict neural processes involved in the mechanisms that Cohen studied, which are reviewed in depth and

comprehensively elsewhere (1, 2). PPRF, paramedian pontine reticular formation; MdDS, mal de débarquement syndrome.

OCULOMOTOR CONTROL

At Mount Sinai, Cohen began by identifying the eye, head,
and body movements activated by the semicircular canals with
Jun-Ichi Suzuki (7–9). Bender wanted Suzuki, who had just
arrived from Tokyo with Fulbright support, to electrically
stimulate the labyrinths. With Suzuki and Cohen respectively
taking lead in surgery and electrophysiology, and aided by then-
newly-available electronic technologies, the experiments were
completed in 2 years (10). They were the first to demonstrate
couplings of electrical stimulation of individual vestibular
nerve branches to specific motor consequences. Extending
from earlier pioneering studies by Lorente de Nó (11) and
Szentágothai (12), Cohen and Suzuki’s experiments revealed the
machinery by which movement is controlled by the sum of

three orthogonal vectors represented in the geometry of the

semicircular canals, and their results opened a whole field of new
research ranging from basic experimental, theoretical, to applied
clinical (13–17).

This effort was followed by identification of the paramedian
pontine reticular formation (PPRF) as the horizontal saccade
premotor center, particularly in collaboration with Atushi
Komatsuzaki and Volker Henn. Over the prior three decades,
Bender and his colleagues had meticulously tabulated the results
of stimulation and lesioning of essentially every cubic millimeter

in a total volume of some 2,500mm3 in the brainstem ofmacaque
monkeys to identify the origins of bilaterally coordinated
activation of ocularmotor nuclei (18). Following this path, Cohen
and Komatsuzaki, with Bender, succeeded in more precisely
associating PPRF lesions with distinctive conjugate horizontal
gaze palsies (19). Cohen continued to accumulate evidence that
PPRF is responsible for production of the premotor commands
for ipsilateral horizontal saccades, be they for conjugate gaze
shifts or fast phases of nystagmus (20–22). Cohen and Henn then
went on to uncover many of the building blocks of horizontal
saccade generation with single unit recording in PPRF (23,
24). These findings vastly expanded the understanding of the
structure of ocular premotor commands by isolating a distinct
eye movement element and further elucidating its underlying
mechanisms, much akin to a discovery and dissection of a
chemical element.

Cohen and Komatsuzaki also showed that conjugate eye
movements produced by stimulation of PPRF occurred at
a constant velocity, with the amplitude and speed linearly
dependent on the frequency of stimulation pulses delivered up to
that moment (22). This finding significantly advanced not only
oculomotor research but also the field of biomechanics
by providing evidence for neural implementation of a
mathematical integration predicted from control system
theories (25).
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VELOCITY STORAGE

Cohen’s next major contribution was with Theodore Raphan
in quantitatively characterizing optokinetic nystagmus (OKN)
and optokinetic after-nystagmus (OKAN) and formulating a
mathematical model that emulated their characteristics featuring
a leaky integrator (26). As noted by ter Braak as far back
as in 1936 (27), OKAN, i.e., the persistence of nystagmus in
darkness following a visual motion stimulus, indicates storage of
motion-related signals and sustained output from this storage.
Collewijn recognized the usefulness of such a storage mechanism
in characterizing the slow build-up of OKN in the rabbit and
conceptualized it also as a leaky integrator (28), but Cohen
and Raphan put the integrator forth as the focus of the visual-
vestibular interaction (29, 30), as also anticipated by ter Braak
(27). Cohen’s interest in this area was a natural extension of
his earlier effort on saccade generation because understanding
how nystagmus is shaped required ideation of a shared central
processor of visual and vestibular inputs (2, 27). It had been
generally assumed that there existed a brainstemmechanism that
extended the time over which the vestibulo-ocular reflex (VOR)
could compensate for constant-velocity head movement after the
fall of the eighth nerve activity, but the conceived mechanism,
shared between vestibular and visual functions, would provide
a ground that could efficiently attenuate the after-response to
prolonged rotation even when the vision was blocked at the
stop of rotation (27, 29, 30). Cohen and Raphan termed this
mechanism the velocity storage integrator.

A major impetus for this formulation was derived from fresh
evidence by Waespe and Henn of vestibular nuclear activity
that correlated with the strengths of nystagmus of the VOR,
OKN, and OKAN in alert monkeys (31, 32) as well as from
earlier results of labyrinthectomy in monkeys and rabbits, which
degraded OKN and abolished OKAN (33, 34). Not surprisingly,
David Robinson of the Johns Hopkins University also took note
of these observations and simultaneously proposed an alternate
model, which behaved equivalently to the Cohen-Raphan model
but utilized a positive feedback loop in the implementation (35).
While Robinson proposed his model as a demonstration of
the utility of a model-based approach in understanding visual-
vestibular interaction, Cohen, Raphan, and Matsuo elucidated
nuances of velocity storage by testing their model against a
well-defined experimental dataset (26, 29, 30). Both Cohen
and Raphan, and Robinson postulated that velocity storage
contributes to the sensation of self-motion (vection) (36).

Cohen and Raphan continued to characterize velocity storage
as a mechanism that would facilitate ocular and postural
compensation to turning motion—registration of not only the

start and end of rotation but also whether one is continuing

to rotate. They observed activation of velocity storage as,
for example, prolonged nystagmus during the VOR to a
constant velocity rotation in darkness, OKAN, and continuous
unidirectional nystagmus during rotation about a tilted axis
(off-vertical axis rotation, OVAR) or pitching/rolling about
an earth-horizontal axis while rotating about an earth-vertical
axis (pitching/rolling while rotating, PWR/RWR). Of note, the
characterization of velocity storage expression to date still nearly

exclusively relies on changes over time in the direction and
magnitude of eye rotational velocity during slow phases of
nystagmus. Two possible exceptions are subjective reporting of
vection in human experiments (37, 38) and activity levels in
specific classes of neurons in the vestibular nucleus in animal
experiments (31, 39, 40).

Signature characteristics of velocity storage include: 1) stored
rotational velocity can be discharged (“dumped”) by visual
fixation or a tilt, an indication that one is no longer turning
(26, 29, 30, 41, 42); 2) the ability to store velocity is permanently
abolished by labyrinthectomy or vestibular nerve section (33,
43), or by cutting the commissural fibers between the bilateral
vestibular nuclei (44); 3) in contrast to 2), inactivation of the
semicircular canal function by plugging the duct and interrupting
the flow of the endolymph, thus keeping the vestibular nerve
intact, spares the velocity storage function (43); 5) the storage
mechanism can be reversibly and dose-dependently inactivated
by the GABAB receptor agonist baclofen (45); 5) repeated
vestibular stimulation can weaken, i.e., habituate, velocity storage
without affecting the gain of VOR compensation during step
velocity rotation, and once habituated, the state is retained for
months or possibly longer (46, 47); and 6) the gain of VOR
compensation can be changed up or down apparently without
affecting the velocity storage capacity and is more malleable than
habituation (47).

Note that tilt dumping of velocity storage occurs only in
the absence of head rotation—more specifically, in the absence
of head rotation about the axis with which the stored velocity
is associated. In contrast, tilting the head while in rotation
changes the alignment of the semicircular canals with the
plane of rotation, which instead activates the velocity storage
mechanism and, in combination with otolith input, permits
reconstruction of signals related to rotation as demonstrated
with PWR/RWR (41, 48–50). In further contrast, tilting the
axis of rotation relative to gravity, that is OVAR (51, 52), also
activates velocity storage, not through the semicircular canals
but through continuous reorientation of the otoliths relative
to gravity (43, 53). Incidentally, tilting the head while rotating
is historically referred to as a Coriolis/cross-coupling stimulus
(54), but Coriolis acceleration is not considered a significant
contributor to velocity storage activation (48). On the other
hand, sinusoidal translation in the plane of rotation, due to
the combination of Coriolis and centripetal accelerations, tilts
the gravito-inertial acceleration relative to the head without
activating the semicircular canals, such that the stimulus
generates a sweeping movement of linear acceleration around the
head as in OVAR and similarly activates velocity storage (55).

Cohen and Raphan over time realized that velocity storage,
when the head is tilted, undergoes dynamic transformation so
that the axis of the output eye movement tends toward the
spatial vertical as referenced by gravity (56–59). That is, the
velocity storage integrator, a mechanism thought to facilitate
ocular and postural compensation to rotation by representing the
state of self-motion, is also equipped with orienting properties
to act as a “neural gyroscope” (57, 60). This discovery led to an
understanding of the three-dimensional functional configuration
of velocity storage (61, 62) as well as how this configuration
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can contribute to the sense of relationship between self and the
environment, balance, and the production of motion sickness
(63, 64). The postulate that three-dimensional properties of
velocity storage might be coded by vestibular-only neurons in the
medial and superior vestibular nuclei was later substantiated (40).

SPATIAL ORIENTATION AND BODY
POSTURAL CONTROL

The study of velocity storage led Cohen to deeply contemplate the
role of the vestibular system in spatial orientation (60, 65). The
term spatial orientation describes the ability to relate the position
and movement of the body and body parts to spatial cues,
including sensing, establishing, and maintaining connections to
space (66). Simply put, spatial orientation indicates readiness
for spatial interactions. Results from other laboratories indicated
that, in addition to visual or vestibular input, velocity storage
could be activated by somatosensory input, such as with an
extended arm passively following a rotating cylindrical wall in
darkness (67) or walking on a circular treadmill (68). It thus
became clear that velocity storage was a focal point of not just
visual-vestibular but wider multimodal sensory interaction and
played an essential role in spatial orientation by providing a
working memory-like function for self-motion. Earlier, Cohen
with Suzuki had established the specific nature of the reflex
head and postural movements produced by semicircular canal
stimulation across species as a compensatory mechanism for
sudden angular displacements (9), but as Cohen began to
recognize the orientation property of velocity storage, he again
became interested in the vestibular control of body posture
and locomotion.

The seemingly mundane act of holding a stable gaze during
locomotion in fact involves precise coordination of movements
of the torso, limbs, head, and eyes. To achieve this feat,
information about movements of these various body parts must
be coded in the brain using appropriate coordinate frames. It
was from this perspective that Cohen studied various strategies
used by animals and humans to generate compensatory head and
eye movements during circular and linear locomotion, including
both angular and linear vestibulocollic reflexes and velocity
storage (69–71). Furthermore, from the studies of the VOR, it had
become evident to Cohen that both compensatory and orienting
eye movements could be generated by the reflex arc in relation to
either angular or linear acceleration (1, 65, 72, 73). As put forward
by Cohen and Raphan, while compensatory eye movements
support maintenance of a fixed gaze direction or gaze point in
space, orienting eye movements tend to align the eye vertical with
the spatial reference vector of the gravito-inertial acceleration,
with a stipulation that the outcome of the VOR depends on the
temporal frequency of the head movement. It was then found
that corresponding compensatory and orienting head and body
movements were also generated to stabilize gaze during walking,
with slower orienting mechanisms controlling the dynamics
of compensatory movements (74). Thus, compensatory and
orienting responses should be recognized as part of generalized
vestibular functions.

This line of research was also greatly relevant to space
exploration, which may take place in the environment where
gravity, a fundamental parameter that defines one’s relationship
to the environment, is not detectable. In this context, Cohen
et al. focused on characterizing potentially maladaptive changes
in spatial orientation and perception due to exposure to
microgravity as well as whether artificial gravity produced with
centrifugation could provide an effective countermeasure against
these changes (75–80).

AUTONOMIC SYSTEMS

Despite the depths of knowledge in both vestibular and
autonomic systems, still relatively little is known about
vestibular-autonomic/cardiovascular reflexes. Cohen believed
that there were a wide variety of opportunities to fill this gap. By
applying OVAR to human subjects, Cohen et al. first established
that signals that produce constriction of blood vessels in the legs
can come from the vestibular system, namely the otolith organs,
at a latency much shorter than baroreflex (81), a significant
finding in the context where baroreflex is considered rapid
as compared to chemoreceptor- or endocrine-mediated blood
pressure regulation. They then established that trans-mastoidal
electrical stimulation, presumably by activating the otoliths, can
effectively activate sympathetic pathways with a similar short
latency (82). Still, how blood pressure and heart rate might be
affected by such galvanic vestibular stimulation was not known.
When Cohen et al. applied galvanic vestibular stimulation to
anesthetized rats, instead of an anticipated increase, a sudden
decrease in blood pressure and heart rate, i.e., a vasovagal
response, was elicited (83). As the diagnosis of vasovagal syncope
is supported by a tilt-table test, which activates vestibular and
body tilt senses, they hypothesized that the otoliths could
provide significant input to the generation of syncope. Clearly,
insights on otolith-mediated regulation of blood pressure were
available to Cohen from space research as well. Cohen et al.
had earlier suggested that otolith stimulation with centrifugation
could be a countermeasure for post-flight orthostatic intolerance
commonly seen among astronauts returning from space (80).
Cohen forged ahead with studies of mechanisms of vasovagal
response, which also demonstrated the usefulness of the
small-animal model that he and his colleagues developed
in the rat (84–88).

VESTIBULAR-CEREBELLAR INTERACTION

Early on, on the heels of his work with Suzuki on semicircular
canal stimulation, Cohen, in the tradition of Bender, sought
to determine patterns of eye movement represented in the
cerebellum by correlating ocular responses to systematic
stimulation of wide regions of the cerebellum (89). This work
showed that the patterns of cerebellar-evoked eye movements
resembled those produced by semicircular canal stimulation, that
there were topographic separations for different eye movement
planes, and that eye movements could be combined when two
points were stimulated simultaneously. The work also suggested
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the possibility that, had the head not been fixed, postural
movementsmight have been produced in place of eyemovements
at many points of stimulation, as well as paved the way for the
idea that the brain may facilitate sensorimotor transformations
for compensatory ocular and postural reflexes by using a
common coordinate frame consistent with the arrangement of
the semicircular canals (90), a point revisited by many authors
(1, 91–96).

The cerebellar flocculus and nodulus are collectively known
as the vestibulo-cerebellum for their close interactions with
the vestibular system. Between the PPRF and velocity storage
works, Cohen, with Takemori, showed that the flocculus aided
rapid visual adjustment of the VOR (97), making a significant
contribution to the field energized by Ito’s hypothesis that placed
the flocculus at the center of cerebellar motor control in the
context of the VOR performance optimization (98).

With the formulation of velocity storage, the cerebellar
control of the vestibular system fast became an essential
consideration. To this effect, Cohen, with Waespe and Raphan,
showed that the flocculus and the nodulus (together with
the adjacent ventral uvula) have distinctive roles in vestibular
control by demonstrating independent and model-predictable
effects of floccular and nodular lesions on visual-vestibular
interactions during the VOR, OKN/OKAN, and OVAR-
generated nystagmus (42, 47, 99, 100)—in brief, the flocculus
mediates the visual pathway with which the gain of the
compensatory VOR is controlled, while the nodulus controls
velocity storage. Cohen et al. further studied the nodulus
to show that velocity storage dumping can be mimicked
by electrical stimulation in the nodulus (101) and that the
spatial orientation properties of velocity storage may be
supported in relation to the parasagittal organization of the
nodulus (102).

The thusly obtained knowledge had great implications

in the approaches and clinical applications developed by

Cohen and Mingjia Dai to motion sickness and mal de
débarquement syndrome (MdDS). They postulated motion

sickness as originating from a sensory conflict detected in
the velocity storage mechanism, it being a focal point of
multimodal sensory interaction and spatial orientation through
its interactions with the nodulus and uvula (103–107). They then
determined that, while velocity storage may be useful in other
contexts, susceptibility to motion sickness could be reduced by
weakening the velocity storage capacity in a targeted manner—
reversibly by a pharmacological means with baclofen (108) or for
a long-term effect by inducing a change in the VOR (109).

MdDS is still an under-recognized chronic balance disorder,
characterized by persistent perception of oscillating self-motion,
typically after coming off a cruise (110, 111). The condition, with
additional likely secondary cognitive and affective symptoms, is
debilitating. There is, as yet, not a fully effective treatment, but
the approach developed recently at Mount Sinai has resulted
in long-term improvement of symptoms in the majority of the
treated patients (112, 113). The treatment was developed on
the postulates that MdDS was a consequence of maladapted
orientation properties of velocity storage (114) and that proper
orientation properties could be restored through VOR re-
adaptation. The success of the treatment was in many ways the
culmination of Cohen’s career. Interestingly, despite substantial
evidence from Cohen’s work that a change in the nodulus may
have a significant behavioral consequence, the challenge remains
to establish an experimental paradigm to explore plasticity in the
nodulus amenable to cellular-level explanation.

CONCLUSION

Cohen’s scientific style was marked by enthusiasm. Besides
engaging in diverse works related to and extending from the
endeavors outlined above (115–118), he was ready to jump in
whenever a scientific opportunity presented (119–123). At a
tribute symposium held at Mount Sinai in April 2018 following
Cohen’s retirement from his long-held fulltime position asMorris
B. Bender Professor of Neurology, Albert Fuchs of Washington
University succinctly stated, “He was bitten by a science bug
as a young man and never recovered from it.” He enjoyed
good scientific battles like a proud prizefighter and inspired
many with his spirit. Even after retirement, he continued to
be deeply immersed in understanding neural mechanisms of
vestibulosympathetic reflex, motion sickness, and MdDS. His
scientific contributions will continue to drive research directions
for many years to come.
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