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Abstract: Octamer transcription factor 1 (OCT1) is a transcriptional factor reported to be a poor
prognostic factor in various cancers. However, the clinical value of OCT1 in breast cancer is not fully
understood. In the present study, an immunohistochemical study of OCT1 protein was performed
using estrogen receptor (ER)-positive breast cancer tissues from 108 patients. Positive OCT1 im-
munoreactivity (IR) was associated with the shorter disease-free survival (DFS) of patients (p = 0.019).
Knockdown of OCT1 inhibited cell proliferation in MCF-7 breast cancer cells as well as its derivative
long-term estrogen-deprived (LTED) cells. On the other hand, the overexpression of OCT1 promoted
cell proliferation in MCF-7 cells. Using microarray analysis, we identified the non-structural main-
tenance of chromosomes condensin I complex subunit H (NCAPH) as a novel OCT1-taget gene in
MCF-7 cells. Immunohistochemical analysis showed that NCAPH IR was significantly positively
associated with OCT1 IR (p < 0.001) and that positive NCAPH IR was significantly related to the poor
DFS rate of patients (p = 0.041). The knockdown of NCAPH inhibited cell proliferation in MCF-7 and
LTED cells. These results demonstrate that OCT1 and its target gene NCAPH are poor prognostic
factors and potential therapeutic targets for patients with ER-positive breast cancer.

Keywords: breast cancer; octamer transcription factor 1 (OCT1); non-structural maintenance of
chromosomes condensin I complex subunit H (NCAPH); cell cycle; proliferation

1. Introduction

Breast cancer is one of the most frequent malignant diseases worldwide. Breast cancer
is the most commonly diagnosed cancer and was the leading cause of cancer deaths in
women in 2020 [1]. The number of patients is expected to increase further in the future [2].
Among them, about 80% of patients are estimated to have estrogen receptor (ER)-positive
breast cancer [3]. In recent years, drug therapy for ER-positive breast cancer has evolved.
In addition to conventional endocrine therapy and chemotherapy, molecular targeted
therapies are under investigation, and some of them are available in clinical settings [4,5].
However, in a certain percentage of patients, the cancer develops endocrine resistance [6].
Therefore, the emergence of new drug therapies that will further prolong the survival of
breast cancer patients is aspired to.

In this study, we investigated the clinical value of Octamer transcription factor 1
(OCT1) in ER-positive breast cancer. OCT1 is a transcriptional factor that is also known as
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POU domain class 2 transcription factor 1 (POU2F1). It binds specifically to the octamer
consensus sequence (ATGCAAAT) in the promoter region of the DNA of the target genes
and regulates their transcription [7]. Acyl-CoA synthetase long chain family member 3
(ACSL3) [8], disks large-associated protein 5 (DLGAP5) [9], anillin actin binding protein
(ANLN) [10], and cyclin D1 (CCND1) [11], which are involved in cell proliferation, were
reported as target genes. In addition to these genes, several genes related to various
functions, such as cellular stress response, metabolic regulation, and cancer metastasis,
have been reported as OCT1-target genes [12–17].

Oct1 has been shown to be a prognostic factor in various carcinomas. We have previ-
ously reported that the high expression of OCT1 is a prognostic factor in prostate cancer
patients [18]. Additionally, in gastric cancer patients [19], colorectal cancer patients [20],
and hepatocellular carcinoma patients [21], the high expression of OCT1 has been reported
as a poor prognostic factor. As far as we know, the effect of OCT1 on the prognosis in breast
cancer patients has not been reported upon so far. In the present study, we showed that
the immunoreactivity of OCT1 is associated with the poor prognosis of ER-positive breast
cancer patients. The function of OCT1 in ER-positive breast cancer cells were also studied.

2. Results
2.1. Positive OCT1 Immunoreactivity Was Associated with the Poor Prognosis of Breast
Cancer Patients

To explore the clinical value of OCT1 expression in ER-positive breast cancer, immuno-
histochemical analysis was performed with 108 female patients with ER-positive breast
cancer who had undergone the surgical resection of primary tumors. Prior to immunostain-
ing, the specific reactivity of the antibody against OCT1 was confirmed by Western blotting
using cell lysate derived from HEK293 cells and MCF-7 cells overexpressing human OCT1
(Figure S1). OCT1 staining was observed in the nucleus (Figure 1A). No significant rela-
tionship was found between OCT1 IR and any clinicopathological parameters that were
analyzed (Table 1). In terms of the relationship between OCT1 IR and clinical prognosis,
positive OCT1 IR was significantly associated with a shorter DFS (p = 0.019) (Figure 1B).
Univariate analysis using the Cox proportional hazard model demonstrated that OCT1
status, invasive tumor size, lymph node status, and nuclear grade were significant prog-
nostic factor for DFS. Multivariate analysis of these factors showed that OCT1 status was
the only independent prognostic factor (Table 2). The present results of OCT1 IR were in
line with the analysis of OCT1 mRNA expression using public databases. High expression
of OCT1 was significantly associated with poor prognosis in KM Plotter [22] (Figure S2A).
According to the expression analysis using Oncomine [23], the OCT1 mRNA expression
level was significantly increased in invasive ductal breast cancer tissues compared to in the
normal breast tissues (Figure S2B). We compared endogenous OCT1 expression in MCF-7
cells, which are ER-positive breast cancer cells, and their derivative LTED cells, a model of
endocrine therapy-resistant breast cancer. Both mRNA and the protein expression levels of
OCT1 were higher in LTED cells compared to those in MCF-7 cells Figures S3A and 1C).
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Figure 1. OCT1 was a poor prognostic factor in ER-positive breast cancer patients. (A) Representative micrographs of 
breast cancer tissues stained with OCT1 antibody. Strong immunoreactivity (IR) was defined as positive IR, whereas weak 
IR or no IR was defined as negative IR. A breast cancer tissue was applied to non-specific rabbit IgG antibody as a negative 
control. The scale bars represent 10 μm. (B) Disease-free survival of breast cancer patients with positive or negative OCT1 
IR is shown by the Kaplan–Meier method. p-value was determined by the log-rank test. The red line represents cases with 
positive OCT1 IR (n = 48), and the blue line represents negative OCT1 IR (n = 60). (C) Western blot analysis for OCT1 
expression in MCF-7 cells and LTED cells. β-actin protein was blotted as a loading control. IB, immunoblot. (D) Western 
blot analysis for OCT1 expression in MCF-7 cells and LTED cells treated with two kinds of siRNAs for OCT1 (siOCT1 #1 
or #2) or siControl (siCont.). β-actin protein was blotted as a loading control. (E) DNA content of MCF-7 and LTED cells 
on indicated days after transfection of indicated siRNAs analyzed by Hoechst 33342 staining. Relative fluorescence inten-
sity (FI) was shown as mean and SEM (n = 4). *** p < 0.001 compared to cells treated with siControl. (F) Western blot 
analysis for OCT1 expression in two clones of MCF-7 cells stably expressing OCT1 (OCT1-OE #1 and #2) and an MCF-7 
clone transfected with empty vector (Vector). β-actin protein was blotted as a loading control. (G) DNA content of the 
OCT1-OE clones (#1 and #2) and the vector clone (Vector) on indicated days after seeding was analyzed by Hoechst 33342 
staining. Relative fluorescence intensity (FI) was shown as mean and SEM (n = 4). *** p < 0.001 compared to the vector 
clone. (H) Proportions of cell populations in G0/G1, S, and G2/M phases of the cell cycle in MCF-7 and LTED cells trans-
fected with indicated siRNAs. The results of flow cytometric analysis shown in Figure S4B were quantified. (I) Proportions 
of cell populations in G0/G1, S, and G2/M phases of the cell cycle in the OCT1-OE clones (#1 and #2) and the vector clone 
(Vector). The results of flow cytometric analysis shown in Figure S4C were quantified. 

Figure 1. OCT1 was a poor prognostic factor in ER-positive breast cancer patients. (A) Representative micrographs of breast
cancer tissues stained with OCT1 antibody. Strong immunoreactivity (IR) was defined as positive IR, whereas weak IR
or no IR was defined as negative IR. A breast cancer tissue was applied to non-specific rabbit IgG antibody as a negative
control. The scale bars represent 10 µm. (B) Disease-free survival of breast cancer patients with positive or negative OCT1
IR is shown by the Kaplan-Meier method. p-value was determined by the log-rank test. The red line represents cases with
positive OCT1 IR (n = 48), and the blue line represents negative OCT1 IR (n = 60). (C) Western blot analysis for OCT1
expression in MCF-7 cells and LTED cells. β-actin protein was blotted as a loading control. IB, immunoblot. (D) Western
blot analysis for OCT1 expression in MCF-7 cells and LTED cells treated with two kinds of siRNAs for OCT1 (siOCT1
#1 or #2) or siControl (siCont.). β-actin protein was blotted as a loading control. (E) DNA content of MCF-7 and LTED
cells on indicated days after transfection of indicated siRNAs analyzed by Hoechst 33342 staining. Relative fluorescence
intensity (FI) was shown as mean and SEM (n = 4). *** p < 0.001 compared to cells treated with siControl. (F) Western blot
analysis for OCT1 expression in two clones of MCF-7 cells stably expressing OCT1 (OCT1-OE #1 and #2) and an MCF-7
clone transfected with empty vector (Vector). β-actin protein was blotted as a loading control. (G) DNA content of the
OCT1-OE clones (#1 and #2) and the vector clone (Vector) on indicated days after seeding was analyzed by Hoechst 33342
staining. Relative fluorescence intensity (FI) was shown as mean and SEM (n = 4). *** p < 0.001 compared to the vector clone.
(H) Proportions of cell populations in G0/G1, S, and G2/M phases of the cell cycle in MCF-7 and LTED cells transfected
with indicated siRNAs. The results of flow cytometric analysis shown in Figure S4B were quantified. (I) Proportions of cell
populations in G0/G1, S, and G2/M phases of the cell cycle in the OCT1-OE clones (#1 and #2) and the vector clone (Vector).
The results of flow cytometric analysis shown in Figure S4C were quantified.
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Table 1. Relationship between OCT1 immunoreactivity and clinicopathological parameters in ER-
positive breast cancer patients.

OCT1 Status
p-ValuePositive IR

(n = 48)
Negative IR

(n = 60)

Age ≤50 years old 26 27
0.344>50 years old 22 33

Stage I 17 25
0.508II, III 31 35

Invasive tumor size ≤20 mm 26 34
0.795>20 mm 22 26

Lymph node status Positive 21 22
0.455Negative 27 38

Nuclear grade 1 24 36
0.2992, 3 24 24

PgR status Positive 40 52
0.628Negative 8 8

HER2 status Positive 6 8
0.898Negative 42 52

Abbreviations: ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; IR, immunoreactivity;
PgR, progesterone receptor.

Table 2. Univariate and multivariate analyses of disease-free survival with clinicopathological
parameters including OCT1 immunoreactivity in ER-positive breast cancer patients.

Variables
Univariate Multivariate

p-Value Hazard Ratio 95% CI p-Value

Age (≤50 vs. >50 years old) 0.186
Invasive tumor size (≤20 vs. >20 mm) 0.012 2.39 0.99–5.75 0.052
Lymph node status (+ vs. −) 0.014 2.09 0.89–4.91 0.091
Nuclear grade (1 vs. 2, 3) 0.007 2.21 0.87–5.62 0.095
PgR status (+ vs. −) 0.628
HER2 status (+ vs. −) 0.656
OCT1 IR (+ vs. −) 0.024 2.38 1.03–5.52 0.043

Note: Significant p-values are expressed in bold. Abbreviations: CI, confidence interval; ER, estrogen receptor;
HER2, human epidermal growth factor receptor 2; IR, immunoreactivity; PgR, progesterone receptor.

2.2. OCT1 Promoted the Cell Proliferation of Breast Cancer Cells

We investigated the biological function of OCT1 in ER-positive breast cancer cells. We
performed the knockdown of OCT1 using siRNAs (siOCT1 #1, siOCT1 #2) in MCF-7 and
LTED cells (Figures S3B and 1D). The fluorescence intensity of Hoechst 33342 on the fourth
day after siRNA transfection was decreased by silencing OCT1 in both MCF-7 and LTED
cells (Figure 1E). Then, the effect of OCT1 knockdown on cell viability was analyzed by
means of 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium (MTS) assay. The absorbance of 490 nm on the fourth day after siRNA trans-
fection was suppressed by OCT1 knockdown in both MCF-7 and LTED cells (Figure S4A).
Then, we established two clones of MCF-7 cells stably expressing OCT1 and an MCF-7
clone transfected with an empty vector (Figures S3C and 1F). The fluorescence intensity
of Hoechst 33342 on the fourth day after seeding was increased by OCT1 overexpression
(Figure 1G). Next, we investigated the effect of OCT1 on the cell cycle of breast cancer cells
using flow cytometry. The percentage of cells in the G0/G1 phase increased and that of
cells in the S phase decreased in the cells treated by siOCT1 (Figures 1H and S4B). Then,
we examined the effect of OCT1 overexpression on the cell cycle. The percentage of cells in
the G0/G1 phase decreased and that in the S phase increased in the OCT1 overexpressing
cells (Figures 1I and S4C).
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2.3. Identification of OCT1-Induced Genes

To further investigate the function of OCT1 in breast cancer cells, microarray analysis
was performed using MCF-7 cells treated with siControl, siOCT1 #1, or siOCT1 #2. We
compared the gene expression of siControl-treated cells with siOCT1 #1-treated cells and
detected 53 genes as genes that are downregulated with an eight-fold change or more. We
compared the gene expression of siControl-treated cells with siOCT1 #2-treated cells and
detected 125 genes as genes that are downregulated with an eight-fold change or more.
Among these genes, 16 genes were extracted in common (Figure 2A and Table S1). A total
of 5 of 16 genes, namely ribonucleotide reductase regulatory subunit M2 (RRM2), cell
division cycle associated 3 (CDCA3), non-SMC condensin I complex subunit H (NCAPH),
centrosomal protein 55 (CEP55), and kinesin family member 20A (KIF20A), were associated
with a poor prognosis of ER-positive breast cancer in a public dataset using KM Plotter
(Figure S5A–E). These are novel candidates of OCT1-induced genes that potentially mediate
the tumor promoting effect of OCT1. Among these genes, we focused on NCAPH, of which
no functional analysis in breast cancer has been reported so far to the best of our knowledge.
NCAPH is one of the subunits of condensin I, which is involved in the condensation and
stabilization of chromosomes during mitosis [24,25]. To confirm the result of the microarray
analysis, we evaluated the change of the NCAPH expression level when the expression of
OCT1 was manipulated. Both mRNA and protein expression levels were suppressed by
silencing OCT1 in MCF-7 and LTED cells (Figures S7A and 2B). On the other hand, the
mRNA and protein expression levels of NCAPH were elevated in the OCT1 overexpressing
MCF-7 cells in proportion to its expression level (Figures S7B and 2C).
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Figure 2. NCAPH was one of the OCT1-regulated genes in MCF-7 cells. (A) The results of microarray analyses were
summarized. Genes downregulated with a fold change ≥8 by silencing OCT1 with siOCT1 #1 (blue oval) or with siOCT1
#2 (red oval) compared to treatment with siControl are shown. The digits indicate the number of genes. Sixteen genes
were downregulated in common. (B) Western blot analysis for NCAPH and OCT1 expressions in MCF-7 cells and LTED
cells treated with two kinds of siRNAs for OCT1 (siOCT1 #1 or #2) or siControl (siCont.). β-actin protein was blotted as
a loading control. IB, immunoblot. (C) Western blot analysis for NCAPH and OCT1 expressions in two clones of MCF-7
cells stably expressing OCT1 (OCT1-OE #1 and #2) and an MCF-7 clone transfected with empty vector (Vector). β-actin
protein was blotted as a loading control. (D) Schema of NCAPH promoter region. A putative octamer consensus sequence
(ATTTAAAA) exists at 26 base pairs upstream from the translation initiation site (ATG) of NCAPH gene. (E) Association of
OCT1 in the promoter region of NCAPH in MCF-7 cells. ChIP assay for OCT1 or normal rabbit IgG was performed. The
fold enrichments relative to IgG in NCAPH promoter and another locus in NCAPH (negative control) were measured by
performing quantitative PCR (qPCR). Relative fold enrichment was shown as mean and SEM (n = 3). * p < 0.05.
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In breast cancer cell lines, it has been reported that OCT1 binds to the promoter
region of ESR1 encoding ERα and induces its transcription [26,27]. To determine whether
the regulation of NCAPH is mediated by ERα, MCF-7 cells were treated with estradiol
(E2). The expression of NCAPH was not affected by E2 treatment in the condition where
GREB1, a typical estrogen-responsive gene, was significantly affected (Figure S7C,D). To
investigate the possibility that OCT1 directly regulates the transcription of NCAPH, we
searched the NCAPH promoter region to determine whether octamer consensus sequences
existed in the region. We found a putative octamer consensus sequence at 26 base pairs
upstream from the translation initiation site (Figure 2D). Then, we performed a chromatin
immunoprecipitation (ChIP) assay to investigate whether OCT1 is associated with the
NCAPH promoter region. In MCF-7 cells, the fold enrichment relative to IgG control in the
NCAPH promoter was significantly higher compared to that in the irrelevant region in the
first exon of the NCAPH gene (negative control) (Figure 2E).

2.4. Positive NCAPH Immunoreactivity Was Associated with the Poor Prognosis of Breast
Cancer Patients

To explore the clinical value of NCAPH expression in ER-positive breast cancer, im-
munohistochemical analysis was performed with the same 108 female breast cancer patients
as in the analysis of OCT1. Prior to immunostaining, the specific reactivity of the anti-
body against NCAPH was confirmed by Western blotting using cell lysate derived from
HEK293 cells and MCF-7 cells overexpressing human NCAPH (Figure S6). NCAPH staining
was observed in both the nucleus and in the cytoplasm. In some cases, the nuclei were
prominently stained (Figure 3A). NCAPH IR was significantly positively associated with
OCT1 status (p < 0.001) (Table 3). In terms of relationship between NCAPH IR and clinical
prognosis, positive NCAPH IR was significantly associated with a shorter DFS (p = 0.041)
(Figure 3B). Univariate analysis using the Cox proportional hazard model demonstrated
that NCAPH status, invasive tumor size, lymph node status, and nuclear grade were
significant prognostic factors for DFS. Multivariate analysis of these factors showed that
NCAPH status and invasive tumor size were independent prognostic factors (Table 4).
These immunohistochemical results were in line with the prognostic analysis conducted
using KM plotter (Figure S5C). According to the expression analysis using Oncomine,
the NCAPH mRNA expression level was significantly increased in the invasive ductal
breast cancer tissues compared to in normal breast tissue (Figure S7E). Then, we compared
endogenous NCAPH expression in the human breast cancer cell line MCF-7 and LTED
cells. Both the mRNA and protein expression levels in LTED cells were higher than those
in MCF-7 cells (Figures S7F and 3C).

Table 3. Relationship between NCAPH immunoreactivity and clinicopathological parameters in
ER-positive breast cancer patients.

NCAPH Status
p-ValuePositive IR

(n = 63)
Negative IR

(n = 45)

Age ≤50 years old 32 21
0.344>50 years old 31 24

Stage I 21 21
0.161II, III 42 24

Invasive tumor size ≤20 mm 35 25
1.000>20 mm 28 20

Lymph node status Positive 28 15
0.245Negative 35 30

Nuclear grade 1 31 29
0.1162, 3 32 16

PgR status Positive 51 41
0.143Negative 12 4

HER2 status Positive 9 5
0.628Negative 54 40

OCT1 status Positive IR 42 6
<0.001Negative IR 21 39

Note: Significant p-value is expressed in bold. Abbreviations: ER, estrogen receptor; HER2, human epidermal
growth factor receptor 2; IR, immunoreactivity; PgR, progesterone receptor.



Int. J. Mol. Sci. 2021, 22, 11505 7 of 15Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 3. NCAPH was a poor prognostic factor in ER-positive breast cancer patients. (A) Representative micrographs of 
breast cancer tissues stained with NCAPH antibody. Strong immunoreactivity (IR) was defined as positive IR, whereas 
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negative NCAPH IR is shown by the Kaplan–Meier method. p-value was determined by the log-rank test. The red line 
represents cases with positive OCT1 IR (n = 63), and the blue line represents negative NCAPH IR (n = 45). (C) Western blot 
analysis for NCAPH expression in MCF-7 cells and LTED cells. β-actin protein was blotted as a loading control. IB, im-
munoblot. (D) Western blot analysis for NCAPH expression in MCF-7 cells and LTED cells treated with two kinds of 
siRNAs for NCAPH (siNCAPH #1 or #2) or siControl (siCont.). β-actin protein was blotted as a loading control. (E) DNA 
content of MCF-7 and LTED cells on indicated days after transfection of indicated siRNAs analyzed by Hoechst 33342 
staining. Relative fluorescence intensity (FI) was shown as mean and SEM (n = 4). *** p < 0.001 compared to cells treated 
with siControl. (F) Proportions of cell populations in G0/G1, S and G2/M phase of cell cycle in MCF-7 and LTED cells 
transfected with indicated siRNAs. The results of flow cytometric analysis shown in Figure S8 were quantified. (G) DNA 
content of MCF-7 cells treated with indicated siRNAs and expression vectors on indicated days after transfection of siR-
NAs was analyzed by Hoechst 33342 staining. On the day 0, transfection with siRNAs (siControl or siOCT1 #1) was per-
formed. On the first day (Day1), transfection with expression vector encoding NCAPH (NCAPH) or empty vector (Vector) 
was performed. Relative fluorescence intensity (FI) was shown as mean and SEM (n = 4). * p < 0.05, *** p < 0.001. (H) 
Proportions of cell populations in G0/G1, S and G2/M phase of cell cycle in MCF-7 cells transfected with indicated siRNAs 
and expression vectors. The results of the flow cytometric analysis shown in Figure S9 were quantified. 

Figure 3. NCAPH was a poor prognostic factor in ER-positive breast cancer patients. (A) Representative micrographs of
breast cancer tissues stained with NCAPH antibody. Strong immunoreactivity (IR) was defined as positive IR, whereas
weak IR or no IR was defined as negative IR. One breast cancer tissue was applied with non-specific rabbit IgG antibody
as a negative control. The scale bars represent 10 µm. (B) Disease-free survival of breast cancer patients with positive or
negative NCAPH IR is shown by the Kaplan-Meier method. p-value was determined by the log-rank test. The red line
represents cases with positive OCT1 IR (n = 63), and the blue line represents negative NCAPH IR (n = 45). (C) Western
blot analysis for NCAPH expression in MCF-7 cells and LTED cells. β-actin protein was blotted as a loading control. IB,
immunoblot. (D) Western blot analysis for NCAPH expression in MCF-7 cells and LTED cells treated with two kinds of
siRNAs for NCAPH (siNCAPH #1 or #2) or siControl (siCont.). β-actin protein was blotted as a loading control. (E) DNA
content of MCF-7 and LTED cells on indicated days after transfection of indicated siRNAs analyzed by Hoechst 33342
staining. Relative fluorescence intensity (FI) was shown as mean and SEM (n = 4). *** p < 0.001 compared to cells treated
with siControl. (F) Proportions of cell populations in G0/G1, S and G2/M phase of cell cycle in MCF-7 and LTED cells
transfected with indicated siRNAs. The results of flow cytometric analysis shown in Figure S8 were quantified. (G) DNA
content of MCF-7 cells treated with indicated siRNAs and expression vectors on indicated days after transfection of siRNAs
was analyzed by Hoechst 33342 staining. On the day 0, transfection with siRNAs (siControl or siOCT1 #1) was performed.
On the first day (Day1), transfection with expression vector encoding NCAPH (NCAPH) or empty vector (Vector) was
performed. Relative fluorescence intensity (FI) was shown as mean and SEM (n = 4). * p < 0.05, *** p < 0.001. (H) Proportions
of cell populations in G0/G1, S and G2/M phase of cell cycle in MCF-7 cells transfected with indicated siRNAs and
expression vectors. The results of the flow cytometric analysis shown in Figure S9 were quantified.
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Table 4. Univariate and multivariate analyses of disease-free survival with clinicopathological
parameters including NCAPH immunoreactivity in ER-positive breast cancer patients.

Variables
Univariate Multivariate

p-Value Hazard Ratio 95% CI p-Value

Age (≤50 vs. >50 years old) 0.186
Invasive tumor size (≤20 vs. >20 mm) 0.012 2.76 1.15–6.67 0.024
Lymph node status (+ vs. −) 0.014 2.22 0.95–5.19 0.066
Nuclear grade (1 vs. 2, 3) 0.007 2.15 0.85–5.44 0.105
PgR status (+ vs. −) 0.628
HER2 status (+ vs. −) 0.656
NCAPH IR (+ vs. −) 0.049 2.61 1.01–6.78 0.048

Note: Significant p-values are expressed in bold. Abbreviations: CI, confidence interval; ER, estrogen receptor;
HER2, human epidermal growth factor receptor 2; IR, immunoreactivity; PgR, progesterone receptor.

2.5. Knockdown of NCAPH Suppressed the Proliferation of Breast Cancer Cells

To investigate the biological functions of NCAPH in breast cancer cells, we performed
the knockdown of NCAPH using siRNAs (siNCAPH #1, siNCAPH #2) in MCF-7 cells and
LTED cells. We confirmed that both the mRNA and protein expression levels of NCAPH
were suppressed by siRNAs (Figures S7G and 3D). The fluorescence intensity of Hoechst
33342 on the fourth day after siRNA transfection was decreased by silencing the NCAPH
in both the MCF-7 and LTED cells (Figure 3E). When the cell viability was assessed using
an MTS assay, an absorbance of 490 nm on the fourth day after siRNA transfection was
suppressed by NCAPH knockdown in both the MCF-7 and LTED cells (Figure S8A). Then,
we examined the effect of the knockdown of NCAPH on the cell cycle using flow cytometry.
The percentage of cells in the G0/G1 phase increased, and the percentage of cells in the S
phase decreased in the cells treated with siNCAPH (Figures 3F and S8B).

Then, we overexpressed NCAPH in the MCF-7 cells where OCT1 was knocked down.
The exogenous NCAPH partially rescued the suppressed fluorescence intensity of Hoechst
33342 on the fourth day after siOCT1 transfection (Figure 3G). When the cell cycle was
analyzed via flow cytometry, NCAPH overexpression reversed the increased percentage of
the cells in the G0/G1 phase and the decreased percentage of the cells in the S phase by
knocking down OCT1 (Figures S9 and 3H).

3. Discussion

In the present study, we demonstrated that positive OCT1 IR was associated with
worse prognosis in ER-positive breast cancer patients. We also demonstrated that positive
OCT1 IR was an independent predictive factor among other clinicopathological prognostic
factors. As far as we know, this is the first report on the clinical value of OCT1 immuno-
histochemistry for breast cancer. We observed increased OCT1 expression in LTED cells.
Considering that LTED cells are assumed as a refractory model for endocrine therapy with
aromatase inhibitor, our clinical results suggest the possible involvement of OCT1 in the
endocrine resistance that might occur in breast cancer.

As a transcription factor, OCT1, is reported to regulate various genes [8–17]. Here,
we added novel target gene candidates including RRM2, CDCA3, NCAPH, CEP55, and
KIF20A. Through an analysis using a public database, we showed that the high expression
of these genes is associated with the poor prognosis of ER-positive breast cancer patients.
It may be assumed that the induction of these genes mediates cancer promotive effects
of OCT1 in breast cancer cells, which is further supported by previous reports on the
functions of these genes [28–31], with the exception of NCAPH. Since information on the
roles of NCAPH in breast cancer was limited, we further analyzed the clinical value of
NCAPH. With immunohistochemical analysis, we demonstrated that positive NCAPH
IR was associated with the poor prognosis of ER-positive breast cancer patients. We
also revealed that positive NCAPH IR was an independent predictive factor among other
clinicopathological prognostic factors. In this analysis, we observed a significant positive
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correlation between OCT1 IR and NCAPH IR, which was in line with NCAPH being an
OCT1-induced gene.

We demonstrated that the knockdown of NCAPH suppressed the proliferation of
breast cancer cells. The growth promoting effect of NCAPH was also reported in several
other cancer cells [32–36]. NCAPH is one of the subunits of condensin I, which is respon-
sible for the condensation and stabilization of chromosomes in the M phase of the cell
cycle [24,25]. In fact, in colorectal cancer cells, the knockdown of NCAPH induced cell
cycle arrest at the G2/M phase [33]. In contrast, our data suggest that NCAPH promotes
the transition from the G1 to the S phase in breast cancer cells. This might indicate that
NCAPH has novel functions in the nucleus during the interphase other than regulating
mitosis in the M phase. In recent years, it has been reported that condensin I may be
involved in gene regulation [37,38], which suggests that an unknown function of condensin
I exists during interphase. Meanwhile, NCAPG, another subunit of condensin I, has been
reported to regulate the G1 phase in gastric cancer [39,40], which may further support
the novel function of condensin I in the interphase. We showed that OCT1 promotes the
proliferation of breast cancer cells by inducing a cell cycle transition from the G1 phase to
the S phase, which was a similar target of action to NCAPH. These observations could be
consistent with the hypothesis that the growth promoting effect of OCT1 is mediated by its
transcriptional induction of NCAPH.

Our data showing a higher expression level of NCAPH in LTED cells compared to
MCF-7 cells may suggest that NCAPH is related to endocrine resistance in breast cancer.
It was reported that OCT1 binds to the promoter region of ESR1 and up-regulates ERα
in breast cancer cells [26,27], which implies that some of the OCT1 induced genes may
be dependent on ERα expression. In the case of NCAPH, the induction of NCAPH by
OCT1 would be independent from ERα expression since we showed NCAPH is not an
estrogen responsive gene. Our results from the ChIP assay showed OCT1 binding in the
NCAPH promoter region, which suggests that the expression of NCAPH could be directly
regulated by OCT1. We could speculate that the high expression of NCAPH predicts poor
prognosis for breast cancer patients because the expression of NCAPH was not suppressed
by endocrine therapy. In the present study, we showed that the silencing OCT1 or NCAPH
suppressed the proliferation of MCF-7 and LTED cells, which suggests that OCT1 and
NCAPH could be potential targets for breast cancer therapy. Our data will provide clue for
developing an effective strategy for patients with ER-positive breast cancer.

4. Materials and Methods
4.1. Collection of Human Tissue Samples and Clinical Data

Tissue samples of ER-positive invasive breast cancer were obtained form 108 Japanese
female breast cancer patients who had undergone surgical resection from 2006 to 2013 at
Toranomon Hospital, Tokyo, Japan. No patients received preoperative endocrine therapy,
chemotherapy, or molecular target therapy. All patients received postoperative standard
adjuvant therapy according to the clinical practice guidelines of the National Compre-
hensive Cancer Network (USA) [41]. The staging of all of the breast cancer cases was
re-evaluated in 2018 according to the “TNM classification of Malignant Tumours” (8th
Edition) [42]. The clinical outcome was evaluated by disease-free survival (DFS). DFS
was determined as the time span from the date of surgery to the first recurrence or last
follow-up. The mean follow-up duration was 99 months (range 19–139 months). Signed
informed consent was obtained from all patients. This study was approved by the Ethics
Committees of Toranomon Hospital (approval number: 845/1327, approval dates: 3 April
2017/22 June 2018) and the Tokyo Metropolitan Institute of Gerontology (approval number:
J48, approval date: 23 January 2019). All procedures performed in this study were in
accordance with the Declaration of Helsinki.
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4.2. Antibodies

Rabbit monoclonal antibodies for estrogen receptor alpha (ERα) (clone: SP1), pro-
gesterone receptor (PgR) (clone: 1E2), and human epidermal growth factor receptor 2
(HER2) (clone: 4B5) were purchased from Roche (Basel, Switzerland). Mouse monoclonal
anti-β-actin antibody (A2228) was obtained from Sigma-Aldrich (St. Louis, MO, USA).
Rabbit polyclonal anti-OCT1 antibody (ab15112) was purchased from Abcam (Cambridge,
MA, USA). Rabbit polyclonal anti-NCAPH antibody (11515-1-AP) was obtained from Pro-
teintech (Chicago, IL, USA). Rabbit polyclonal anti-IgG antibody (#2729) was purchased
from Cell Signaling Technology (Danvers, MA, USA)

4.3. Immunohistochemical Analysis

Immunohistochemical analysis of OCT1 and NCAPH expression was performed using
an EnVision+ visualization kit (Dako, Carpinteria, CA, USA). The tissue sections (4 µm)
were deparaffinized, rehydrated with a graded ethanol series, and rinsed in pure water.
For antigen retrieval, the sections were pretreated by being heated in a water bath at 95 ◦C
for 30 min in 20 mM Envision FLEX Target Retrieval Solution Low pH buffer (Dako).
After blocking the endogenous peroxidase with 3% H2O2, the primary antibodies against
OCT1 (1:1600 dilution) or NCAPH (1:200 dilution) were applied to the sections, and they
were incubated overnight at 4 ◦C. The sections were rinsed in EnVision FLEX Wash Buffer
(Dako) and were incubated with EnVision + Dual Link System-HRP (Dako) for 30 min at
room temperature. The antigen-antibody complex was visualized using the Dako Liquid
DAB + Substrate Chromogen System. For negative controls, normal rabbit IgG was used
instead of primary antibodies. Immunostained slides were evaluated for intensity and
proportion. Staining intensity was classified as none, weak, and strong. Staining proportion
was measured by the percentage of stained tumor cells. The immunoreactivity (IR) of OCT1
was defined as “positive” when the nuclei of over 1/3 of the tumor cells were stained as
strong [43]. The IR of NCAPH was defined as “positive” when the nuclei of more than 1%
of the tumor cells were stained as strong [44]. Two pathologists (T.O. and K.K.) evaluated
the slides, and in case of disagreement between the two pathologists, a third pathologist
(J.S.) evaluated the IR.

Immunostaining of ER, PgR, and HER2 was performed automatically using VEN-
TANA BenchMark GX (Roche). ER and PgR status were judged as positive when nu-
clear staining of more than 1% of the tumor cells was observed according to the guide-
lines of the American Society of Clinical Oncology/College of American Pathologists
(ASCO/CAP) [45]. HER2 status was judged based on the updated guidelines from
ASCO/CAP [46].

4.4. Cell Culture

Human breast cancer cell line MCF-7 was obtained from American Type Culture
Collection (Manassas, VA, USA). The HEK293 cell line was obtained from Clontech (Palo
Alto, CA, USA). Short tandem repeat-based authentication of the cell line was verified by
BEX Co., Ltd. (Tokyo, Japan). Long-term estrogen-deprived (LTED) cells were established
through the long-term (>4 months) culturing MCF-7 cells without estrogen [47]. MCF-7
cells and HEK293 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin (Nacalai
Tesque, Kyoto, Japan) at 37 ◦C with 5% CO2. LTED cells and estrogen-treated cells were
cultured in phenol red-free DMEM containing 5% charcoal-stripped FBS and 1% penicillin-
streptomycin at 37 ◦C with 5% CO2. DMEM was purchased from Nacalai Tesque. Estradiol
(E2) was purchased from Sigma-Aldrich.

4.5. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) Analysis

Total RNA extraction was performed using Sepasol-RNA I super G (Nacalai Tesque)
according to the manufacturer’s protocols and was followed by cDNA synthesis using
PrimeScript (Takara, Kyoto, Japan). The cDNA was subjected to qRT-PCR using Applied
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Biosystems StepOnePlus (Thermo Fisher Scientific, Waltham, MA, USA) based on the
detection of SYBR Green fluorescence (Kapa Biosystems, Wilmington, MA, USA). mRNA
expression levels were normalized with GAPDH using the 2-∆∆Ct method [48]. The se-
quences of the primers were as follows:

GAPDH forward: 5′-TCTAGTAAAGTGGATATTGTTG-3′;
GAPDH reverse: 5′-GATGGTGATGGGATTTCC-3′;
OCT1 forward: 5′-GATGGCACCCTCACAGTTTG-3′;
OCT1 reverse: 5′-GCTCATTAGAGCTGGGCTGA-3′;
NCAPH forward: 5′-CTGATGGAAGTGCTACTGAAATGG-3′;
NCAPH reverse: 5′-TCTGAAACATGGGATCAATCTCAC-3′;
GREB1 forward: 5′-GCTGTCGGAGTTTATTGAATCCAC-3′;
GREB1 reverse: 5′-GCACGAGAACAAAGGTCCTG-3′.

4.6. Western Blot Analysis

Whole-cell lysates were prepared using lysis buffer containing 50 mM 4-(2-hydoroxyethyl)-
1-piperazinly ethane-2-suffonic acid (HEPES), 150 mM NaCl, 10% glycerol, 1% Triton X-100,
1.5 mM MgCl2, and 1 mM ethylene glycol-bis(β-aminoethyl ether)-N,N,N’,N’-tetraacetic
acid (EGTA). A proteinase inhibitor cocktail (Nacalai Tesque) was added before use. The
protein concentration was determined using a Peirce BCA Protein Assay (Thermo Fisher
Scientific). Cell lysates were separated on 10% sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE) and were then transferred to polyvinylidene difluoride
(PVDF) membranes (Millipore, Bedford, MA, USA). The membranes were blocked in Bullet
Blocking One (Nacalai Tesque) for 5 min and were incubated with the primary antibodies
followed by incubation with horseradish peroxidase (HRP)-conjugated secondary antibody
(GE Healthcare, Buckinghamshire, UK). The bound antibodies were visualized using
Chemi-Lumi One Ultra (Nacalai Tesque).

4.7. Small Interfering RNA Transfection

The knocking down the expression of OCT1 and NCAPH was conducted with small
interfering RNA (siRNA) (10 nM) by a reverse transfection method using Lipofectamine
RNAiMAX (Invitrogen, St. Louis, MO, USA) 48 h before harvesting the cells accord-
ing to the manufacture’s protocols, unless otherwise indicated. Two specific siRNAs
targeting OCT1 (siOCT1 #1 and siOCT1 #2), two specific siRNAs targeting NCAPH
(siNCAPH #1 and siNCAPH #2), and one negative control siRNA targeting firefly lu-
ciferase (siControl) were purchased from Sigma-Aldrich. The sequences of the siRNAs
were as follows: siOCT1 #1: 5′-GUGAAGGCUAGGUGAGUAAGC-3′; siOCT1 #2: 5′-
GUGCUAGAUAGGUUUAUAAGU-3′; siNCAPH #1: 5′-UUUUUGAGCAUUCUAUAUACA-
3′; siNCAPH #2: AAAUAACAGAUCAAUUUAGGA; siControl: 5′-GUGGAUUUCGAGUC
GUCUUAA-3′.

4.8. Plasmid Construction and Transfection

We used the same OCT1 cDNA that we have used previously [8]. In brief, OCT1
cDNA was subcloned into mammalian expression plasmid pcDNA3.0 (Invitrogen), which
was modified to generate the N-terminally flag-tagged protein. Expression vector encoding
NCAPH was generated from the cDNA clone purchased from Promega (Madison, WI, USA).
C-terminally flag-tagged NCAPH cDNA was amplified by polymerase chain reaction (PCR)
with the following specific primers: NCAPH forward: 5′- CGGGATCCGCCACCATGGGAC
CTCCCGGCCCAG-3′; NCAPH-reverse: 5′- GCTCTAGATCACTTGTCATCGTCGTCCTTG
TAGTCATCTCCTTGCCTCACAAGAACATC-3′. The generated amplicon was then sub-
cloned into pcDNA3. The transfection of the expression vectors containing flag-tagged
OCT1 or NACPH cDNA and empty vector alone was performed after 24 h using FuGENE
HD (Promega), according to the manufacturer’s protocols. To establish stable transfectants,
MCF-7 clones were selected using G418 (Nacalai Tesque) at a concentration of 600 µg/mL.
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4.9. Cell Proliferation Assay

The cells were seeded at concentrations of 3.0 × 104 cells/well (MCF-7) or 5.0 × 104

cells/well (LTED), with indicated the siRNAs in a reverse transfection method in 96-well
plates. Two kinds of clones stably expressing OCT1 (OCT1-OE #1 and #2) and cells
transfected with empty vector (Vector) were seeded at the concentration of 2.0 × 104

cells/well in 96-well plates. Cells were harvested on the 1st and 4th days, lysed with
freeze-and-thaw, and buffered with 10 mM Tris-HCl, pH7.4, containing 100 mM NaCl and
1 mM EDTA. Extracted DNA was stained with Hoechst 33342 (Dojindo, Tokyo, Japan) at
a final concentration of 20 µg/mL. The measurement of the DNA content in each well
was performed using VICTOR Nivo (Perkin Elmer, Waltham, MA, USA). The wavelength
of excitation was 355 nm, and the emission wavelength was 460 nm. Cell viability was
evaluated by means of MTS assay after culturing the cells for the indicated duration using
The Cell Titer 96 Aqueous One Solution Cell Proliferation Assay (Promega) according to
the manufacturer’s instructions.

4.10. Flow Cytometric Analysis

The cells were harvested and fixed with 70% ethanol at −30 ◦C overnight. Fixed
cells were treated with RNase A (Takara) and were stained with 50 µg/mL propidium
iodide (PI) (Sigma-Aldrich). The cells were analyzed by means of a BD LSRFortessa (Becton
Dickinson, Franklin Lakes, NJ, USA). The proportion of cells in the G0/G1, S, and G2/M
phases of the cell cycle was evaluated using FlowJo software (Becton Dickinson).

4.11. Microarray Analysis

Total RNAs from MCF-7 cells transfected by a reverse transfection method with
siRNAs (siControl, siOCT1 #1 and siOCT1 #2) were extracted by using Sepasol-RNA I
super G (Nacalai Tesque) 48 h after the transfection of the siRNAs. For the gene expression
microarray, the Clariom S Assay, human (Thermo Fisher Scientific) was used according to
the manufacturer’s protocols. Data analysis was performed using Transcriptome Analysis
Console (TAC) 4.0 Software. Data were deposited at Gene Expression Omnibus [49] as
GEO accession number GSE179241.

4.12. ChIP Assay

ChIP and qRT-PCR were performed as previously described [10]. Briefly, for immuno-
precipitation by the anti-OCT1 antibody, chromatin from crosslinked MCF-7 cells was
sonicated and incubated with anti-OCT1 antibody or normal rabbit IgG at 4 ◦C overnight.
The mixture was then incubated with protein G-Sepharose beads (GE Healthcare) at 4 ◦C
for 2 h and were washed with radio-immunoprecipitation assay (RIPA) buffer, lithium
buffer, and tris-EDTA (TE) buffer. The cross-linked DNA-protein complex was reversed
through incubation at 65 ◦C overnight. Immunoprecipitated DNA was ethanol precipitated.
The fold enrichment relative to the IgG control was measured by performing qPCR. The
primer sequences for quantifying rgw OCT1-binding regions were as follows:

NCAPH promoter forward: 5′-CCCAAGAAGCCCAATCAGAC-3′;
NCAPH promoter reverse: 5′-CTTTCCTTGGCGTCTCCTG-3′;
Negative control forward: 5′-ACTGGTTAATGTGGTGACTGG-3′;
Negative control reverse: 5′-GGGTGAGGTATGGGCTAGAG-3′.

4.13. Statistical Analysis

SPSS Statics version 25 (IBM, Armonk, NY, USA) was used for all statistical analyses.
Chi-square tests were used to evaluate the relationship between the immunoreactivity of the
target protein and clinicopathological parameters. Disease-free survival was assessed using
Kaplan–Meier curves, and statistical significance was calculated using the log-rank test.
Univariate and multivariate analyses were evaluated using the Cox proportional hazard
model. The statistical analyses of the qRT-PCR and proliferation assay were performed
using Student’s t-test or one-way ANOVA followed by Dunnett’s test as a post hoc analysis.
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The p-value was based on the two-sided statistical analysis, and a value of p < 0.05 was
considered to indicate a statistically significant difference.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222111505/s1, Table S1: Sixteen genes commonly regulated by siOCT1 #1 and siOCT1 #2
in MCF-7 cells, Figure S1: Specificity of anti-OCT1 antibody, Figure S2: Analysis of OCT1 expression
using public database, Figure S3: OCT1 expression in breast cancer cells, Figure S4: OCT1 promotes
cell proliferation and induces the cell cycle transition from G1 phase to S phase, Figure S5: Kaplan–
Meier survival analysis of breast cancer patients for candidate OCT1-target genes identified in the
present study, Figure S6: Specificity of anti-NCAPH antibody, Figure S7: NCAPH expression in breast
cancer cells, Figure S8: Knockdown of NCAPH inhibited the cell cycle transition from G1 phase to S
phase, Figure S9: Overexpression of NCAPH rescued the suppressed cell cycle transition from G1
phase to S phase by siOCT1.
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