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Abstract

Representing and analyzing complex networks remains a roadblock to creating dynamic network models of biological
processes and pathways. The study of cell fate transitions can reveal much about the transcriptional regulatory programs
that underlie these phenotypic changes and give rise to the coordinated patterns in expression changes that we observe.
The application of gene expression state space trajectories to capture cell fate transitions at the genome-wide level is one
approach currently used in the literature. In this paper, we analyze the gene expression dataset of Huang et al. (2005) which
follows the differentiation of promyelocytes into neutrophil-like cells in the presence of inducers dimethyl sulfoxide and all-
trans retinoic acid. Huang et al. (2005) build on the work of Kauffman (2004) who raised the attractor hypothesis, stating
that cells exist in an expression landscape and their expression trajectories converge towards attractive sites in this
landscape. We propose an alternative interpretation that explains this convergent behavior by recognizing that there are
two types of processes participating in these cell fate transitions—core processes that include the specific differentiation
pathways of promyelocytes to neutrophils, and transient processes that capture those pathways and responses specific to
the inducer. Using functional enrichment analyses, specific biological examples and an analysis of the trajectories and their
core and transient components we provide a validation of our hypothesis using the Huang et al. (2005) dataset.
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Introduction

Our understanding of the molecular basis of a wide range of

biological processes, including development, differentiation, and

disease, has evolved significantly in recent years. Increasingly, we

are coming to recognize that it is not single genes, but rather

complex networks of genes, gene products, and other cellular

elements that drive cellular metabolism and cell fate, and when

perturbed, can lead to development of disease phenotypes.

Representing and analyzing such complex networks, encompass-

ing thousands or tens of thousands of elements, presents signifi-

cant challenges. One approach that has begun to be applied is

the representation of transcriptional changes as transitions that

occur with the ‘‘state space’’ defined by the expression states of all

genes within the cell [1,2]. This approach has a number of

advantages, including providing a framework for predictive mode-

ling and the incorporation of stochastic components in the

biological process.

The underlying assumption in such an analysis is that each

cellular phenotype can invariably be traced back to a particular

class of genome-wide gene expression signatures representing a

specific region of the gene expression state space. As described in

Huang et al. [3], this signature for a particular cellular state at a

particular instant in time is represented by a multidimensional

gene expression vector in a high dimensional space where each

coordinate represents the expression level of a particular gene. By

considering all possible configurations that this signature can take,

we create a multidimensional landscape that is referred to as the

expression state space [1]. Each observed phenotype can be

represented as a single point in the state space. When cells

transition through successive phenotypes, for example, during the

different stages of hematopoietic differentiation, specific sets of

genes alter their expression levels as dictated by an underlying

transcriptional program and these changes can be represented by

a continuous trajectory in expression state space; ultimately these

represent the transcriptional program being played out by the

cell’s collection of gene networks and complex pathways.

Kauffman [1] first proposed the idea that stable cell fates, the

cellular phenotypes we observe, correspond to ‘‘attractors’’ in the

expression state space, stable points to which the system would

return to if subjected to a small perturbation. He points out that in

principle cells could adopt any permutation of gene expression

states (as many as the number of genes and as infinite as the

number of expression level states) however this is not what we

observe in nature. According to Kauffman, since there are about

250 different cell types, there must be approximately that number

of attractors in state space, either valleys or peaks in the landscape,

that represent the stable cell fates or cell types that cells will

ultimately converge to in the presence of an inducer or

perturbation. While this is an interesting model, direct experi-

mental evidence supporting it and its overall utility in explaining

cellular mechanism remain to be seen.
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Huang et al. [3] reported evidence they claim demonstrated the

existence of an attractor. They conducted a gene expression time-

course experiment on the differentiation of human HL-60

promyelocytic cells into neutrophils using two different inducers,

dimethyl sulfoxide (DMSO) and all-trans retinoic acid (ATRA).

Time-course data was collected using Affymetrix U95Av2

GeneChips and analyzed to provide gene expression level

measures necessary to create a state-space model. Using principal

components analysis, they develop a two-dimensional state space

representation in which DMSO and ATRA induce initially

divergent trajectories that, over time, converge on a common

trajectory leading to a final expression state representing the

neutrophils. They argue that instead of observing trajectories that

explore the state space, the trajectories display convergence to a

single point and that this therefore provides empirical proof that

attractive states exist in nature.

Here, we propose an alternative interpretation of this

convergent behavior that does not appeal to the attractor

hypothesis but rather explores this observation in the context of

a superposition of components that reflect the pathways activated

by the applied perturbations. To this end, we extend the work of

Huang et al. [3] by decomposing the state space trajectories into

components comprising two sets of genes, a core group and

transient group that capture the stimulus-independent and

stimulus-dependent effects, respectively. The superposition of

these components reflect the observation that both sources of

effects independently influence the overall shape of the trajectory

taken during the cell fate transition. We show how this division

allows us to look at functional behavior of genes and their

contribution to the cell fate transitions in a more enlightening way.

Using regression models, we isolate core genes that are common to

both stimuli and represent those critical to the differentiation

process. The genes outside the core represent the transient

component of the trajectory corresponding to the perturbation

effects. To illustrate our ideas, we apply our method to the same

published dataset generated by Huang et al. [3].

The HL-60 cell line has long been used as a model to

understand the molecular mechanisms driving the progression and

pathogenesis of acute promyelocytic leukemia (APL) [4]. In

normal promyelocytes, proliferation and differentiation are tightly

coupled processes. However this balance comes unstuck in APL

cells and as a result cells proliferate in a disregulated fashion. The

discovery that inducers like RA and DMSO could reprogram APL

cells to overcome this block and resume differentiation, led to the

emergence of a class of therapeutics known as differentiation

therapy [5].

DMSO is an organic solvent but also functions as a

cryoprotective agent for tissue cell culture [4]. Although it is

widely used in veterinary medicine in the treatment of pain and

inflammation, it is not generally used in humans because it is

known to be hepatotoxic. The hormone ATRA is a derivative of

vitamin A and belongs to a class of molecules called retinoids [6].

ATRA is currently used in differentiation therapies that treat

human patients with APL. Current complete remission rates for

APL patients on ATRA-based differentiation therapy in combi-

nation with chemotherapy have been reported to be as high as 90–

95% [7]. At the molecular level, both DMSO and ATRA arrest

the cell cycle at the G1-S phase transition point, and induce

terminal differentiation of HL-60 cells, resulting in neutrophil-like

cells.

ATRA and DMSO are biochemically distinct molecules that

activate slightly different sets of pathways in HL-60 cells. Huang

et al. [3] explain that this is the reason why the trajectories initially

diverge and explore different parts of the expression state space.

They argue that it is the presence of an attractor that then causes

the trajectories to converge from different directions to eventually

arrive at a common endpoint, and discount the possibility of a

‘‘specific, unique differentiation pathway’’ that may be triggered

by both inducers.

While this argument may seem conceptually appealing, upon

further inspection the attractor hypothesis greatly limits our ability

to develop mechanistic interpretations or to build predictive

models of cell fate transitions. We believe that there exists an

alternative, more plausible interpretation that Huang et al. [3] and

Kauffman [1] have not considered. Our interpretation is based on

the recognition that there are two types of processes that

contribute to cell fate transitions: one, a core biological process

inherent to the transition-specific event and two, a transient

process related to the direct effects that the particular inducing

agent exerts on the cell. The early divergence seen in the state

space trajectories described by Huang et al. [3] is reflective of the

cells’ response to specific perturbation and the compound-specific

response that follows. We expect these transient processes to

dominate only at the initial period of the time-course since most

drugs are metabolized quickly by the cell. Once this disorder has

subsided, the targeted effects of each inducer are expected to have

begun triggering the core processes and as this occurs, the

directions that both trajectories adopt become more and more

convergent because the overlap in activated pathways in DMSO-

induced cells and ATRA-induced cells is growing larger as the cells

transition towards their common endpoint. The source of this

convergence therefore is not necessarily due to the existence of an

attractor but instead can be explained by the combination of these

two types of processes exerting their temporal effects on cells.

Indeed, if such an attractor existed, then there should be a whole

class of perturbations that would cause transitions from the initial

to the final state, rather than a small number that activate a single

core pathway. If one adopts the attractor hypothesis as the basis

for cell-fate transitions, then our interpretation is much closer to

that of Conrad Waddington, in which he argued for the

‘‘canalization’’ of state space through the existence of defined

paths, or canals, between attractor states [8–10].

Author Summary

Understanding how cells differentiate from one state to
another is a fundamental problem in biology with
implications for better understanding evolution, the
development of complex organisms from a single fertilized
egg, and the etiology of human disease. One way to view
these processes is to examine cells as ‘‘complex adaptive
systems’’ where the state of all genes in a cell (more than
20,000 genes) determines that cell’s ‘‘state’’ at a given
point in time. In this view, differentiating cells move along
a path in ‘‘state space’’ from one stable ‘‘attractor’’ to
another. In a 2005 paper, Sui Huang and colleagues
presented an experimental model in which they claimed to
have evidence for such attractors and for the transitions
between them. The problem with this approach is that
although it is intuitively appealing, it lacks predictive
power. Reanalyzing Huang’s data, we demonstrate that
there is an alternative interpretation that still allows for a
state space description but which has greater ability to
make testable predictions. Specifically, we show that these
abstract state space trajectories can be mapped onto more
well-known pathways and represented as a ‘‘core’’
differentiation pathway and ‘‘transient’’ processes that
capture the effects of the treatments that initiate
differentiation.

Decomposition of State Space Trajectories
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Results

Preprocessing of the Gene Expression Time-Course
Dataset

The Affymetrix U95Av2 GeneChips used by Huang et al. [3]

gave an original dataset with approximately 12, 600 genes,

measured at twelve time points: two hours, four hours, eight

hours, twelve hours, eighteen hours, one day, two days, three

days, four days, five days, six days, seven days post-stimulation

with ATRA and DMSO. Filters were applied to this dataset to

remove genes that were associated with low expression or did

not show significant expression changes across the time points

measured. 3841 genes were retained by this filtering process.

The expression measures in the dataset provided by Huang

et al. [3] are represented as normalized log2 expression ratio

values where each gene’s ratio is formed by comparing its

expression measure in the stimulated time-course to its

corresponding expression in a non-stimulated control sample

of HL-60 cells.

In addition to the preprocessing steps already taken by Huang et

al. [3], it was necessary to remove genes that were considered flat,

that is genes that showed no change in their expression profiles

across the entire duration of the experiment for both inducers.

Since these genes clearly do not play a regulatory role in the

differential transcriptional program, it was necessary to remove

them from our analyses because their inclusion would only dilute

out meaningful results. Given that there were twelve time points

available, we fitted a cubic polynomial regression model separately

for each gene’s expression profile under each stimulus. For

example, for a single gene:
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where YATRA,t and YDMSO,t are the expression measures at time t

under ATRA and DMSO respectively; t1 ::: tNð Þ corresponds

to the measured time points (N = 12 for the Huang et al. dataset)

and e1 ::: eNð Þ and e
0

1 ::: e
0

N

� �
represent random Normal

residual error terms.

A gene was discarded if both models (under DMSO and ATRA)

were not significant at the 0.05 level. Using this approach, 951

genes were filtered out from a starting total of 3841 genes.

It is worth nothing that the model fit for some expression

profiles might be improved by using polynomial regression models

of higher order than the cubic model we have adopted. However

this also represents an additional layer of parameter estimation,

and for reasons of parsimony we have applied only the cubic

model for all genes in our dataset.

Dividing Genes into Mutually Exclusive Groups Based on
their Role in the Cell Fate Transitions

Our analysis is based on the simple hypothesis regarding the

state space trajectories governing the observed cell fate

transition, namely that any observed trajectory can be

decomposed into two independent parts (see Figure 1); one

component represents the changes inherent to the specific

biological process driving the cell fate transitions (e.g. differen-

tiation of promyelocytes) and the other component captures the

transient effects of the cell’s direct response to the perturbation

(e.g. metabolism of DMSO or ATRA). We use the terms core

group and transient group to distinguish these two sets

respectively.

Based on this hypothesis, one should be able to define the set of

core genes based on comparison of expression profiles under

different stimuli. The core genes are those response genes that are

in common between stimuli and which are highly correlated. The

assumption is that such genes represent the specific differentiation

pathways carrying the cells between their initial and final states.

Expression profiles of a core gene are therefore expected to be

fairly robust for different perturbations. Similarly, the transient

genes are those which differ between the two stimuli and which

likely represent the metabolic processing of the stimulating agent,

as well as any short-term changes induced by stimuli unrelated to

changing the cell fate. Identifying these genes simply requires

identifying those genes with altered patterns of expression but

which are not well correlated between stimuli.

The formation of core and transient groups is based on a data-

driven classifier that is applied to the time-course gene expression

data. Our classification scheme begins first by fitting cubic

regression models to each individual gene expression profile. A

cubic model was chosen for this dataset because of the moderately

large number of time points available to fit a model with four to

eight covariates. For a single gene, both a full model and a reduced

model are fitted to its time-course expression profiles for each

perturbation. The full model specifies a set of parameters that

capture the time-dependent curvature of a gene’s expression

profile for each separate perturbation. In this way, the full model

assumes that the expression profile is different across the two

perturbations.

For a single gene, the full model is specified by the following

formulae, where Ya,b denotes the gene expression value measured

for inducer a at time point b:

Figure 1. Schematic diagram outlining our hypothesis.
doi:10.1371/journal.pcbi.1000626.g001
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corresponds to the measured

time points (N = 12 for the Huang et al. dataset) and

e
~
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0
represents a random Normal

residual error term.

The parameters a0, a1, a2, a3 and b0, b1, b2, b3 are the

coefficients of the time covariate in the model for the ATRA-

induced and DMSO-induced time series respectively. We

interpret these parameters in the following way: a0 represents

the gene’s expression in the ATRA-induced time series at time

zero, a1 represents the linear time effect on the gene’s

expression in the ATRA-induced time series, similarly a2 and

a3 represent the quadratic and cubic time effects, respectively.

Essentially these parameters measure the effect that the time

component has on a gene’s expression level, and we allow for

the possibility of time having a polynomial effect up to degree

three.

The reduced model is a simpler model that assumes the

expression profiles for different perturbations need only be

specified by the one set of parameters.

For a single gene, the reduced model is specified by the

following formulae:
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as defined in the full model.

Fitting these two models to a single gene, is equivalent to

proposing two hypotheses: one, that this gene belongs in the core

group and is therefore defined by the reduced model, and two, this

gene belongs in the transient group and is defined by the full

model. To decide which of these two hypotheses is more plausible

given the available data, we use the analysis of deviance test, which

is an extension of the likelihood ratio test.

The likelihood ratio statistic calculates the likelihood function (in

other words how well the data fits a hypothesized model) under

two different hypotheses and evaluates how statistically significant

the difference between the two likelihood functions is.

The likelihood ratio statistic L(x) takes the form of:

L xð Þ~sup L hjxð Þ : h [ V0f g
sup L hjxð Þ : h [ Vf g where V0~ l0,l1,l2,l3ð Þ represents

the parameters specified under the null hypothesis that the gene

belongs in the core group and its profile is explained by our reduced

model.

The second vector V~ a0,a1,a2,a3,b0,b1,b2,b3ð Þ represents the

parameters specified under the alternative hypothesis that the gene

belongs in the transient group and is therefore is specified by the

full model.

L(h | x) is the likelihood function specified by the model. The

numerator of L(x) represents this likelihood function calculated

under the reduced model (the core gene hypothesis), we use the

data to find the estimates of the unknown parameters that

maximize this likelihood.
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The statistic -2log2[L(x)] is asymptotically distributed as a Chi-

square random variable with four degrees of freedom. Therefore

at the 0.05 level of significance, if this statistic is greater than 3.841,

this implies that the difference between the two likelihoods is

significant and the full model has a higher likelihood, given the

expression profile data available. A gene with this result would

hence be placed in the transient group.

An extension of this test is the analysis of deviance, which

instead compares the size of the likelihood ratio statistic with the

likelihood of the full model alone. Because the full model specifies

more parameters, it follows that the likelihood of the full model

will be higher than the likelihood under the reduced model. What

we are interested in testing then is whether the improvement in the

model fit obtained with the full model over the reduced model is

statistically significant.

The analysis of deviance uses the ratio of the likelihood ratio

statistic and the likelihood under the full model only. This ratio

statistic is distributed as an F random variable with 4 and 16

degrees of freedom. The rationale is that when the full model

Decomposition of State Space Trajectories
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results in a very large improvement over the reduced model, this

ratio statistic will be very large and hence the P-value will be very

small. This suggests that the full model significantly improves the

model fit to the expression profile data and the associated gene will

be classified as a transient gene. For more details on how the

likelihood ratio statistic and the analysis of deviance are computed

from the data, please see Text S1 [11].

Because our method involves testing almost three thousand

hypothesis tests, the chance of detecting a false positive result grows

to a non-trivial degree, for example at the 0.05 level, we expect to

declare about 144 transient genes purely by chance. To correct

against this, the resulting P-values must be adjusted for multiple

testing. We have chosen to adjust our P-values using the Benjamini-

Hochberg method which controls the false discovery rate [12].

Genes with significant adjusted P-values (less than 0.1) are placed in

the transient group; all other genes are in the core group. For the

Huang et al. dataset, this classification scheme identified 1428 core

genes and 1462 transient genes (see Tables S1 and S2) [11].

One limitation of this modeling approach is that for some genes,

there is a low degree of similarity between the observed expression

profile and the one predicted by the most appropriate model (see

Figure S1) [11]. This is especially the case for genes that display

spiky expression profiles across the time series. This is partly due to

the low degree of temporal sampling of what is a complex dynamic

system but also in part due to potential biological differences in the

samples themselves. It is possible that other curve-fitting methods

such as a Fourier transform or spline-dependent algorithm might

also be applicable to this kind of data. However these methods do

not provide the statistical machinery that comes with the regression

modeling approach that we have taken. The main advantage of our

method is being able to easily apply valid statistical tests to

determine which one of two models is more likely in light of the

data. We are also able to explicitly define statistical significance in a

meaningful way that protects against a specified false discovery rate.

Functional Enrichment Analysis
Our interpretation of the convergent behavior seen in the

expression states of cell fate transitions hinges on the assumption

that genes can be divided into a core or transient group, based on

their functional role in the cell fate transition. For this assumption

to be valid, we would therefore expect the genes in the core group

to be involved in processes related to the differentiation of

promyelocytes. Similarly, the transient group is expected to have

genes involved in processes related to the metabolism of the

inducer and a general response to the exposure of a foreign

stimulus. To investigate whether there is any evidence in the data

to support our assumptions, the core and transient groups were

subjected to a representation analysis using their GO term

assignments. The Gene Ontology Project [13] attempts to classify

gene products, assigning proteins to groups specifying their

Molecular Function, the Biological Process to which they

contribute, and their Cellular Component [14]. The GO terms

in each class form a hierarchy of increasing specificity (formally a

directed acyclic graph or DAG) so that the broadest classifications

provide a general picture of the functional class to which a gene

belongs (for example, a kinase) while more precise terms will

specify precisely what a particular gene does (such as specifying the

substrate on which a kinase acts). Functional category over-

representation was assessed using the Fisher’s exact test with a

Benjamini-Hochberg correction to adjust for multiple testing; P-

values were retained at the 0.1 significance level.

We identified 13 GO functional classes that were over-

represented in the core group, relative to the transient group.

All of these classes were associated with transcription and RNA

metabolism (see Table 1). These results support our assumption

that the genes in the core group are associated with a common

differentiation process. This can be seen by considering the over-

enrichment of GO categories for transcription, and transcriptional

regulation. During differentiation, cells require increased access to

a diverse range of proteins to transform themselves into new cell

types. The synthesis of these proteins can only come about through

the differential expression of key transcriptional networks which

based on the results of our functional enrichment analysis, clearly

affect a significant proportion of those genes found in the core

group. The fact that we did not see categories more specific to the

differentiation of promyelocytes into neutrophils may be because

these highly-specific terms usually sit at the periphery of the GO

Table 1. Enriched GO terms for the core group that were statistically significant at the 0.1 level.

GO ID

Number of
Core Genes
in GO Term

Total Number
of Core Genes

Total Number of
Transient Genes

Number of
Genes in
GO Term P-value

Adjusted
P-value Ontology GO Term

GO:0003676 358 1428 1462 618 1.0861026 0.00833 MF Nucleic acid binding

GO:0016070 317 1428 1462 547 5.5261026 0.0129 BP RNA metabolic process

GO:0044446 339 1428 1462 590 7.1061026 0.0129 CC intracellular organelle part

GO:0044422 340 1428 1462 592 7.2461026 0.0129 CC organelle part

GO:0044428 168 1428 1462 271 8.4161026 0.0129 CC Nuclear part

GO:0006350 257 1428 1462 441 3.1861025 0.0407 BP transcription

GO:0032774 234 1428 1462 400 5.4661025 0.0460 BP RNA biosynthetic process

GO:0032991 271 1428 1462 470 5.6061025 0.0460 CC macromolecular complex

GO:0006694 17 1428 1462 18 5.7461025 0.0460 BP steroid biosynthetic process

GO:0006351 23 1428 1462 397 6.5361025 0.0460 BP transcription, DNA-dependent

GO:0006355 224 1428 1462 382 6.5861025 0.0460 BP regulation of transcription, DNA-dependent

GO:0045449 239 1428 1462 413 0.000124 0.0792 BP regulation of transcription

GO:0006139 430 1428 1462 782 0.000152 0.0902 BP nucleobase, nucleoside, nucleotide and
nucleic acid metabolic process

doi:10.1371/journal.pcbi.1000626.t001
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hierarchy and only a small number of genes are assigned to these

functional classes. Therefore, it is less likely to see enrichment

given the starting pool of genes retained by the filtering

procedures. For example, neutrophil differentiation class has five

gene products, regulation of neutrophil differentiation class has

two gene products in the current version of GO.

The enriched GO functional classes in the transient group,

relative to the core group, showed compelling evidence in line with

our assumption that transient genes are primarily involved in

perturbation-related processes only. We identified seven enriched

GO functional classes, and all seven collectively describe typical

cellular responses to an external perturbation (see Table 2). For

instance, ‘‘defense response’’, ‘‘response to external stimulus’’,

‘‘response to wounding’’ (defined as ‘‘A change in state or activity

of a cell or an organism (in terms of movement, secretion, enzyme

production, gene expression, etc.) as a result of a stimulus

indicating damage to the organism.’’) and ‘‘response to stimulus’’,

‘‘inflammatory response’’ (defined as ‘‘The immediate defensive

reaction (by vertebrate tissue) to infection or injury caused by

chemical or physical agents.’’) are exactly the kind of functional

classes we would expect to see based on our definition of the

transient gene group. The remaining two classes ‘‘signal

transduction’’ and ‘‘cell communication’’ describe processes that

are directly triggered by an inducer.

Specific Biological Examples
As a further validation step of our proposed model, we utilize

the information known about the induction pathways of DMSO

and ATRA in HL-60 cells since we expect these genes whose

expression is regulated by these pathways to be in the transient

group. The proteins PTEN, Akt1, p27 play an integral role in the

signaling pathways triggered directly by DMSO [15,16] (see

Table 2. Enriched GO terms for the transient group that were statistically significant at the 0.1 level.

GO ID
Number of Core
Genes in GO Term

Total Number of
Transient Genes

Total Number
of Core Genes

Number of Genes
in GO Term P-value

Adjusted
P-value Ontology GO Term

GO:0006952 99 1462 1428 137 1.0261027 0.000471 BP defense response

GO:0009605 92 1462 1428 126 1.3261027 0.000471 BP response to external stimulus

GO:0009611 73 1462 1428 96 1.8461027 0.000471 BP response to wounding

GO:0006954 60 1462 1428 77 5.4261027 0.00104 BP inflammatory response

GO:0007165 373 1462 1428 638 3.8961026 0.00542 BP signal transduction

GO:0050896 291 1462 1428 486 4.2361026 0.00542 BP response to stimulus

GO:0007154 393 1462 1428 679 8.2461026 0.00906 BP cell communication

doi:10.1371/journal.pcbi.1000626.t002

Figure 2. DMSO signaling pathway. DMSO upregulates the tumor suppressor protein PTEN [15] in HL-60 cells. This increase in PTEN expression
and activity is brought about by the activation of NF-kB. PTEN is a lipid phosphatase that is located in the cytoplasm and one of its primary roles is to
dephosphorylate PIP3, a product of PI3K. The upregulation of PTEN results in a perturbation of the PI3k/Akt pathway, specifically the reduction in Akt
phosphorylation levels and hence decreasing the amount of activated Akt. Normally activated Akt leads to phosphorylation of FOXO3, a member of
the forkhead transcription factor family and this sets off further pathways that promote cell survival. However, inactive FOXO3 is able to translocate to
the nucleus where it acts as a transcription factor, binding to cis-DNA elements and causing an increase in the gene expression of p27 [16]. The p27
protein inhibits the cyclin-dependent kinase complex Cyclin E and CDK2 which controls the G1 to S phase transition.
doi:10.1371/journal.pcbi.1000626.g002
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Figures 2 and S2 [17]). The genes corresponding to these proteins

are known to be differentially expressed by DMSO. PTEN and

Akt were classified as transient genes by our model.

Similarly, we saw key ATRA-induced genes: RXR-a, p21,

CITED2, RARRES3, MBN, CD38 and SMYD5 featured in the

transient group [18–23] (see Figures 3 and S3 [17]). CITED2 is

the CREB binding protein/p300 complex that is a transcriptional

activator that is induced by ATRA [18]. RARRES3 is one of three

known genes that respond to the synthetic retinoid tazarotene, a

common treatment for dermatological diseases (the other two

genes do not feature in our data). The myeloblastin gene (MBN) is

known to be down-regulated during RA-induced differentiation of

HL-60 cells. MBN is a serine proteinease, also called Proteinase-3.

SMYD5 is a member of the SMYD family and its expression also

responds to RA induction [19]. HL-60 cells normally do not

express the cell surface antigen CD38, but when exposed to

ATRA, these cells undergo an immunophenotypic transition to

become CD38+ [20].

In surveying the literature, we were able to identify a total of ten

genes whose expression levels have been reported to be induced by

either DMSO or ATRA. This includes three induced by DMSO

(Akt, p27, PTEN) and seven by ATRA (RXR-a, p21, CITED2,

RARRES3, MBN, CD38, SMYD5). Of these ten, only one (p27)

was not identified as belonging to the transient group using our

approach. Therefore, observing nine out of ten inducer-related

genes in the transient group was a statistically significant result

with a P-value of 0.0117 (Fisher’s exact test, see Text S2 [17]).

Our model also predicts that key genes involved in the

differentiation of promyelocytes should feature in the core group.

We took the set of sixteen genes identified by two papers that studied

the myeloid-specific differentiation pathways in HL-60 cells; these

genes belonged to the Myc, Mad, Bcl-2 and Caspase families [24,25]

(see Figure S4 [17]). Thirteen out of sixteen were classified as core

genes. This result was highly significant with a P-value of 0.00924,

The Myc proteins are a family of transcription factors that

regulate important cellular processes like proliferation, apoptosis

and differentiation. HL-60 cells are naturally in a proliferative

state, however in the presence of an inducer like ATRA or

DMSO, the transition to enter the differentiation pathway is

brought about by Myc and Mad [24]. Myc, specifically c-myc is

abundant in proliferating HL-60 cells, but its downregulation is

associated with differentiating HL-60 cells. Mad is a family of

mitotic checkpoint genes and their expression prevents a cell from

completing the cell cycle. Mad1 mRNA transcripts are highly

expressed in differentiating HL-60 cells but undetectable in

proliferating cells. Members of the Myc family and the Mad

family with expression data available were: c-Myc, Myc binding

protein 2 (a nuclear protein that binds specifically to Myc) [26] and

Mad2. These three genes were in our core group.

Upon differentiation, HL-60 cells undergo apoptosis [25]. To

this end, HL-60 cells are known to downregulate genes in the Bcl-2

family which promotes cell survival, and upregulate genes in the

caspase family which mediate cell death. Expression data was

available for the following Bcl-2 genes: Bcl-2, Bfl-1 (BCL2A1), Bik,

Bcl-w (BCL2L2), Bax, BCLAF1 (Bcl2-associated transcription

factor 1); and for the following caspase genes: Caspase-1, Caspase-

2, Caspase-3, Caspase-6, Caspase-8, Caspase-9, Caspase-10. All

the Bcl-2 genes were in the core group, except for Bik. Five out of

the seven caspases were in the core group, while Caspase-1 and

Caspase-3 were in the transient group. Having 10 out of the 13

apoptosis-related genes in the core group also represented a

statistical significant enrichment (Fisher’s exact P-value 0.0418).

Figure 3. ATRA signaling pathway. ATRA is able to diffuse freely across the cell membrane. A pair of cellular retinoic acid binding proteins act as
cell surface receptors for retinoids however these have been shown to be dispensable in retinoic-acid signaling [21]. ATRA binds to a family of nuclear
hormone receptors called retinoic-acid receptors (RARs). There are three subtypes of the RAR family, these are encoded by different genes and
denoted RAR-a, RAR-b, RAR-c. Collins et al [22] demonstrated that in HL-60 cells, ATRA induced granulocytic differentiation by binding RAR-a directly.
RAR-a binds to specific cis-acting DNA sites, known as retinoic-acid response elements (RAREs). These RAREs are located in the promoter sequences
of specific genes that are targets of RAR-a. In order to bind DNA efficiently, RARs must however form heterodimers with a second family of nuclear
hormone receptors, the retinoid X receptors (RXRs), of which there are three subtypes: RXR-a, RXR-b, RXR-c. Both RXRs and RARs function as ligand-
dependent transcription factors. One of the RAR-target genes whose expression is upregulated is the cell cycle protein p21 [23]. p21 inhibits the
cyclin dependent kinase complex Cyclin E and CDK2. In this way, ATRA induces cell cycle arrest at the G1 to S phase transition checkpoint.
doi:10.1371/journal.pcbi.1000626.g003
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Based on our understanding of the mechanisms of DMSO and

ATRA signaling in HL-60 cells, we know that the point at which

these pathways converge is at the G1-S phase transition point

controlled by the cyclin dependent kinase complex of Cyclin E and

CDK2. The genes that encode Cyclin E and CDK2 were both

placed in the core group.

By pulling out known genes that play a critical role in the

DMSO and ATRA signaling pathways we see that most of these

genes are in the transient group. Similarly the majority of the

sixteen genes in the myeloid differentiation pathway were in the

core group. These examples provide further evidence to support

our explanation that underlying these cell fate transitions, there is

an interplay between a transient pathway and a core pathway that

involves those genes that regulate inducer-specific and differenti-

ation-specific processes, respectively. One limiting factor in our

analysis was the restriction imposed by the starting pool of 3841

genes retained from filtering steps applied by Huang et al [3].

There were several canonical genes (such as RAR-a, Mad1) that

were not in this group of 3841 genes and therefore were not

included in the downstream analyses.

Expression Trajectories
Visualization of the gene expression changes as they occur over

the duration of the time-course shows how this overall signal can

be decomposed into the transient and differentiation-specific

components. We constructed heatmap representations of the

trajectories using the visualization software tool GEDI ([27], see

Figure S5 [11]). This tool displays dominant patterns in high

dimensional gene expression data by applying a self-organizing

map (SOM) clustering algorithm and then creating mosaic tiles

which are colored according to a map that represents the centroid

values of each gene cluster. In this way, mosaics can be

constructed for each time point or each sample in the experiment,

and the expression pattern changes occurring across the

experiment are visually highlighted.

Figure 4 shows the heatmap representation for the separate

trajectories formed for the core and transient groups and the

overall group of 2980 genes. The SOM used by the GEDI tool

had a grid of 25 rows and 26 columns. On average, each tile

contains about 5 genes for the overall group and about 3 genes for

the core and transient component groups. We can see how the

overall trajectory initially displays divergence between the ATRA

and DMSO signal. After 2 days however, the trajectory begins to

converge. The transient group trajectory displays heatmaps that

for the DMSO and ATRA signal are almost inverted, mirror

images of each other. The core group trajectory on the other hand

displays heatmaps that have highly similar structures for DMSO

and ATRA for the duration of the time-course. We also

constructed the core and transient-specific components of the

gene expression trajectories using principal component analysis

(see Figure S6 [17]).

Discussion

Using the HL-60 cell line as an example, we note that the main

molecular outcome of the two inducers DMSO and ATRA, is to

arrest the cell cycle at the G1-S phase transition point. DMSO

exerts this effect ultimately by increasing the expression of p27

whereas ATRA upregulates the expression of p21. Both of these

proteins p27 and p21 block the cyclin dependent kinase complex

Cyclin E and CDK2 which normally drives the cell cycle past this

transition point. HL-60 cells are therefore stimulated to converge

to a state where both cell populations exhibit the genome-wide

gene expression profiles associated with an arrested cell cycle (and

thereby the differentiation profiles associated with neutrophil-like

cells), however it is important to point out that this convergence is

an eventual result of the molecular effects exerted by the inducers.

This convergence only emerges later in the time-course because

these inducers have different biochemical means of initially getting

to the core differentiation pathway. By recognizing this interplay

between the two types of processes that are driving cell fate

Figure 4. Gene expression mosaics of the ATRA and DMSO-stimulated time course data. The expression mosaics for the ATRA and DMSO-
stimulated time course data capture spatial patterns in the data as the system iterates through the time series. These images are a graphical
representation of dynamic expression changes in the data, clustered using a self-organizing map algorithm (SOM). We show how the overall
expression trajectories for the ATRA and DMSO-stimulated data can be divided into components defined by the core and transient set of genes. Red
denotes extreme positive log expression ratios, blue denotes extreme negative log expression ratios.
doi:10.1371/journal.pcbi.1000626.g004
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transitions: a transient group and a core group, we can provide a

solid link between our knowledge of key molecular events

occurring in this system with the convergent properties of these

trajectories that we are observing.

Attempts to reconcile the attractor hypothesis with an equally

robust explanation that appeals to molecular biology are difficult

and reveal some of the limitations of the attractor hypothesis.

Specifically, it does not afford the mechanistic interpretation that

the core/transient profile decomposition does. While it is worth

noting that the temporal damping of the transient and core

differentiation gene expression levels is consistent with what one

would expect in the case of an attractor, the attractor hypothesis in

its simplest form suggests that there should be a large class of

perturbations that displace a biological system from its initial state,

initiating the transition to its final state. This is in stark contrast to

what we observe biologically [28].

The resolution to this apparent contradiction may be that the

landscape of the gene expression state space is much more

complex and ‘‘rugged’’ than most simple models assume. Conrad

Waddington first proposed the notion of ‘‘canalization’’ (essential-

ly, the existence of canal-like routes) in describing cell fate

transitions to describe what he saw as a relatively small number of

allowable state space trajectories connecting initial and final cell

states [8]. Waddington used the analogy of water flowing down a

hill via a series of valleys which correspond to these canalized

paths which would, by their nature, be robust to small

perturbations. In much the same way, the core and transient

components suggested by our trajectory model can be thought of

as being a ‘‘core’’ component equivalent to the central pathway

between states with the transient components representing

orthogonal perturbations relative to the core downhill pathways.

In such a model, one could imagine selective pressure over time

defining the canals as particular pathways become increasingly

essential to allow transitions to well-defined cellular states. In such

a model, one could argue that the development of undifferentiated

states, such as those which develop in cancer, arise when the canals

are destroyed or significantly altered. In any event, the overall

effect of this combination of core and transient components is that

differentiation pathways are buffered against perturbations but are

still able to mediate apparently deterministic transitions between

phenotypes.

It may be argued that by our definition of what makes a core

and a transient process, we are entering a circular argument and

imposing structural properties on the trajectory components that

we originally hypothesized we might see. For example, because

core genes are defined as those whose expression profiles remain

invariant for different inducers, we would consequently expect that

the core trajectories for two inducers to have similar shapes, and

the transient trajectories would be less comparable. We acknowl-

edge that this is somewhat true, however we believe that the true

power of our approach lies in the framework that it provides in

allowing us to deconvolute high-throughput data on perturbed

networks. By being able to resolve the transient, perturbation-

driven processes from the core pathways, this approach gives us a

means to compare the effects of different perturbations on a

systems-level.

For example, in a situation where a chemotherapeutic drug

results in differential remission rates amongst patients, we may

begin to explore how this same perturbation applied to multiple

patients affects these transient and core components. The current

framework also provides a means to extend this model to explicitly

acknowledge the role stochastic processes play in the cell. We

could model the trajectory components as realizations of a

stochastic process and construct an appropriate probability

distribution or density function that describes this process. Such

a model allows for deviations from the most likely route and

consequently allows for changes that could lead to the transition

from normal cells to the development of disease states. Such

models would have applications in understanding the development

of disease states such as APL or in understanding systems-level

evolution of phenotypic responses such as drug resistance. Using

our probability distribution model, we could make predictions of

the most likely trajectory a cellular system will take in

consideration of external cues or microenvironment properties of

the system.

Methods

Annotation Sources
We made use of the mappings to GO categories and KEGG

pathways from the latest version at the time of the Bioconductor

annotation package hgu95av2 (version 2.0.1).

Data Availability
The full set of expression data is made publicly available

through GEO (accession identifier: GSE14500). The expression

data for the 3841 genes can be downloaded as a supplemental file

(Dataset S1) and is also made available from our website [11].

Supporting Information

Dataset S1 This file contains the gene expression data for the

3841 genes that were retained after filters were applied to remove

genes that were associated with low expression or did not show

significant expression changes across the time points measured.

The expression measures in the data set provided by Huang et al.

[3] are represented as normalized log2 expression ratio values

where each gene’s ratio is formed by comparing its expression

measure in the stimulated time-course to its corresponding

expression in a non-stimulated control sample of HL-60 cells.

Found at: doi:10.1371/journal.pcbi.1000626.s001 (1.35 MB XLS)

Figure S1 CD4 is an example of a gene with a spiky expression

profile and our model does a limited job at predicting the

expression levels observed. However, the purpose of our model is

not to predict expression but to estimate parameters that lets us

determine whether a particular gene belongs in the core or

transient group within a robust statistical framework that gives us

the means to adjust for false positives and multiple testing issues.

Found at: doi:10.1371/journal.pcbi.1000626.s002 (0.02 MB PDF)

Figure S2 Expression profiles for some genes involved in

DMSO-induced signaling.

Found at: doi:10.1371/journal.pcbi.1000626.s003 (0.03 MB PDF)

Figure S3 Expression profiles for some genes involved in

ATRA-induced signaling.

Found at: doi:10.1371/journal.pcbi.1000626.s004 (0.03 MB PDF)

Figure S4 Expression profiles for some genes known to

participate in myeloid differentiation.

Found at: doi:10.1371/journal.pcbi.1000626.s005 (0.03 MB PDF)

Figure S5 Gene expression trajectories and their core and

transient sub-components for the DMSO and ATRA-stimulated

data.

Found at: doi:10.1371/journal.pcbi.1000626.s006 (0.02 MB PDF)

Figure S6 Cartoon describing how Figure 3 was constructed

using GEDI software.

Found at: doi:10.1371/journal.pcbi.1000626.s007 (0.02 MB PDF)
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Table S1 The core genes. Table S1 lists the 1428 genes that

were placed in the core group.

Found at: doi:10.1371/journal.pcbi.1000626.s008 (0.06 MB PDF)

Table S2 The transient genes. Table S2 lists the 1462 genes that

were placed in the transient group.

Found at: doi:10.1371/journal.pcbi.1000626.s009 (0.06 MB PDF)

Text S1 The Likelihood Ration Test. Text S1 contains

information on how the likelihood ratio test and the analysis of

deviance test are computed from the data. This section includes an

example using expression data for a gene to show how our method

uses these tests to places genes in the core and transient groups.

Found at: doi:10.1371/journal.pcbi.1000626.s010 (0.04 MB PDF)

Text S2 Using Fisher’s exact test. Text S2 outlines how we use

the Fisher’s exact test to compute the significance of seeing an

enrichment of transient or core genes in sets of genes extracted

from the literature.

Found at: doi:10.1371/journal.pcbi.1000626.s011 (0.02 MB PDF)
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