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Abstract

Introduction—The hypothalamo-pituitary-adrenal (HPA) axis is perturbed in obesity. We 

previously reported presence of leptin resistance in the brainstem and uncoupling between central 

noradrenergic tone and the HPA axis in obesity-prone (DIO) rats. Metformin is shown to lower 

body weight and adiposity, but the underlying mechanism is unclear. We hypothesized that this is 

associated with restored HPA axis function.

Methods—Adult male DIO rats were placed on either a regular chow or HF diet for 7 weeks. 

Starting week 4, the animals were given either a low dose (60mg/kg) or high dose (300mg/kg) of 

metformin in drinking water. In addition to body weight and feeding, we examined different arms 

of the HPA axis to test if metformin can reinstate its function and coupling. To understand 

potential mechanisms, leptin signaling in the brainstem and circulating free fatty acid levels were 

also assessed.

Results—Metformin treatment lowered weight gain, fat mass, caloric intake, and serum leptin 

levels. HPA axis activity as determined by corticotropin-releasing hormone in the median 

eminence and serum corticosterone was decreased by metformin in a dose-dependent manner, and 
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so was norepinephrine (NE) in the paraventricular nucleus. Importantly, metformin completely 

normalized the NE-HPA axis uncoupling. While brainstem pSTAT-3 and SOCS-3, key markers of 

leptin signaling, were not different between groups, circulating saturated and unsaturated free fatty 

acids were reduced in HF-fed, metformin-treated animals.

Conclusions—These findings suggest that oral metformin can successfully correct HPA axis 

dysfunction that is associated with lowered circulating free fatty acids in DIO rats, thereby 

uncovering a novel effect of metformin in the treatment of obesity.
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INTRODUCTION

Dysfunction of the hypothalamo-pituitary-adrenal (HPA) axis, or stress axis, is one of the 

pathophysiological hallmarks in obesity. Human studies have shown that urinary free 

cortisol levels are higher in patients with abdominal obesity1–3, while there was no change in 

circulating morning cortisol levels in obese compared to lean individuals4. Obese subjects 

also have elevated cortisol secretion following stimulation with corticotrophin-releasing 

hormone (CRH) or adrenocorticotropic hormone (ACTH) analogue1, 2, indicating an 

abnormally hypersensitive HPA axis. Consistent with this, diet-induced obese (DIO) rats 

also exhibit higher circulating corticosterone following physical and environmental 

stressors5, making them an excellent model for investigating this phenomenon. While 

obesity-associated impairment in HPA axis sensitivity and function have been well 

appreciated over several decades, the mechanisms underlying the dysregulation are poorly 

understood. This is of clinical significance because impaired HPA axis activity can result in 

increased appetite and fat mass as well as impaired insulin sensitivity and glucose 

homeostasis6 – symptoms commonly observed in obesity7, 8. Understanding this issue will 

therefore help us devise meaningful strategies to combat obesity.

Noradrenergic nuclei from the brainstem (A1, A2, A6) send out strong projections to CRH 

neurons in the paraventricular nucleus of the hypothalamus (PVN), and serve as a critical 

input for HPA axis activation. Supporting this notion are earlier findings that showed that 

direct norepinephrine (NE) injection into the PVN markedly elevates circulating 

corticosterone, while depleting PVN NE by chemical denervation of noradrenergic bundles 

or via pharmacological blockades leads to a significant reduction of both CRH release and 

corticosterone9–11. We have previously reported that the HPA axis is impaired in DIO 

rats12, 13. Through a careful examination of different arms of the HPA axis circuitry, we 

found that leptin, an adipocyte-derived hormone and an important regulator of various 

neuroendocrine functions including energy balance and the HPA axis, is unable to suppress 

noradrenergic output to the PVN, indicating a possible impairment of leptin signaling12, 13. 

Importantly, this was associated with uncoupling between the NE and the HPA axis 

especially on a high-fat (HF) diet13. It is thus tempting to speculate that correcting this 

crucial neuroendocrine function and the associated NE-HPA axis uncoupling would be a 

viable strategy to treat obesity.
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Metformin is an oral biguanide, insulin-sensitizing agent that has been widely used to treat 

type 2 diabetes due to its ability to suppress hepatic glucose production and improve insulin 

sensitivity14–16. Apart from its anti-diabetic effects, recent clinical studies indicate that 

metfomin is also effective at lowering body weight and fat mass in obese children and 

adults17–19. Moreover, anti-diabetic, appetite-suppressing, and body weight-lowering effects 

by metformin were demonstrated in obese animals20–22. While the exact mechanism still 

remains unclear, along with our recent reports, these findings raise a possibility that the 

metabolic benefits accomplished by metformin, in particular the weight-reducing effects, 

may be partly mediated through restoration of the HPA function and/or integrity. The direct 

effect of metformin on the HPA axis seems plausible considering their ability to readily 

cross blood-brain-barrier23, 24.

To explore this novel concept, selectively bred DIO rats placed on a regular chow or HF diet 

were treated with either a low-dose or high-dose metformin in drinking water for 4 weeks. 

Metabolic parameters including body weight and food intake and direct indices of HPA axis 

activation – NE in the PVN, CRH in the median eminence (ME), and serum corticosterone – 

were examined. Since circulating free fatty acids were found to be elevated in DIO rats in 

our previous study13 that can potentially contribute to changes in HPA axis function, serum 

free fatty acids were measured at the end of metformin treatment. Metformin has been 

shown to improve leptin sensitivity in the hypothalamus and lower body weight in diet-

induced obese rats and obese Ay agouti mice25, 26. This prompted us to assess pSTAT-3 and 

SOCS-3, key indicators of leptin signaling pathway, in brainstem noradrenergic nuclei to 

determine if metformin-induced changes in HPA axis function and NE-HPA axis coupling 

are associated with changes in leptin signaling.

METHODS

Animals

Selectively bred, DIO (i.e. obesity-prone) male Sprague-Dawley rats were raised in our 

colony using breeders obtained from Charles River Laboratories, Inc. (Wilimington, MA) as 

previously described13. These animals were used because their propensity to become obese 

is attributed to polygenic inheritance, thus closely mimicking the development of human 

obesity27. They were single-housed in the animal facility room with temperature of 23±2°C 

and 12:12-h light/dark cycle (lights on at 0700h; off at 1900h). Animals were provided with 

ad libitum access to regular chow diet (Teklad 8640 diet; 3.11kcal/g, 5% fat; Harlan, 

Indianapolis, IN) and water prior to experiments. All studies were conducted in accordance 

with the National Institutes of Health’s Guide for the Care and Use of Laboratory Animals 
and the protocol was approved by the institutional animal care and use committee at 

Michigan State University.

Metformin treatment

Nine-week-old male DIO rats were given 7 weeks of regular chow or high-fat (HF) diet (6 

groups; n=9–10 each). The group size was based on our previous studies with these animals 

using similar protocols12, 13. The HF diet contained 45% fat with an energy density of 

4.73kcal/g (D12451; Research Diets Inc., New Brunswick, NJ). At the end of the third week, 
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the animals received either a low dose (LD; 60mg/kg BW) or high dose (HD; 300mg/kg 

BW) of metformin (Spectrum Chemicals & Laboratory Products, Inc.; New Brunswick, NJ) 

dissolved in drinking water for 4 weeks. One group of animals were given normal drinking 

water without metformin to serve as a control group. The high dose was determined based 

on earlier studies26, 28 and on its ability to achieve plasma metformin concentrations 

comparable to those in diabetic patients under metformin therapy29. The low dose of 

metformin was included to test its dose-dependent effect on body weight and the HPA axis. 

Water intake of each animal was monitored everyday to ensure that the animals were 

consuming the correct amount of metformin. Metformin concentrations in drinking water 

were readjusted to the body weight of animals once a week. A schematic of study design is 

shown in Fig. 1. Body weight and caloric intake were carefully measured every week 

throughout the experiment. At the end of 4-week metformin treatment, the animals were 

sacrificed by decapitation at 10am after 3h fast. Following blood glucose measurement 

through a hand-held glucometer (AlphaTrak, Zoetis) and trunk blood collection, serum was 

separated for detection of leptin and corticosterone by radioimmunoassay. The abdominal fat 

pads (epigonadal, perirenal, retroperitoneal) were harvested and weighed, and brains were 

collected, immediately frozen in dry ice, and stored at −70°C for analyses as described 

below.

Palkovits’ microdissection

This procedure has been described earlier12, 13. Frozen brains were sectioned in 300μm 

increments using a cryostat at −10°C, and noradrenergic nuclei in the brainstem (A1, 

ventrolateral medulla; A2, nucleus tractus solitarius; A6, locus coeruleus), the 

paraventricular nucleus (PVN), lateral hypothalamus, and median eminence (ME) were 

dissected by Palkovits’ microdissection with the help of a rat brain atlas30. The lateral 

hypothalamus/ME and brainstem punches were stored at −70°C for detecting orexin/CRH 

concentrations by ELISA and leptin signaling by western blots, respectively. The PVN was 

stored in 0.1M HClO4 at −70°C for analysis of NE content using HPLC with 

electrochemical detection (EC).

NE concentrations in the PVN

Details of the HPLC-EC system employed here for detection of NE in the PVN punches 

have been described previously31, 32. Microdissected PVN samples were homogenized in 

150μl of 0.1M HClO4 and centrifuged for 10 min at 10,000 g (RCF). The lysates (120ul) 

were mixed with 30μl of the internal standard (0.05M dihydroxybenzylamine; DHBA) and 

125μl of this mixture was injected into the HPLC system. The sensitivity for NE detection 

was <1pg, and NE concentrations were expressed as pg/μg protein.

Leptin signaling in the brainstem

Noradrenergic nuclei from the brainstem were homogenized in lysis buffer (Sigma Aldrich, 

St. Louis, MO) and protein concentrations were determined using BCA assay as previously 

described12, 13. 20μg of protein was loaded for each sample into SDS-PAGE gels (NuPAGE, 

Invitrogen, Carlsbad, CA). Proteins were then transferred onto PVDF membranes which 

were probed with antibodies including pSTAT-3 (1:1000; goat-polyclonal; Santa Cruz 

Biotechnology, Dallas, TX), SOCS-3 (1:1000; goat-polyclonal; Cell Signaling Technology, 
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Danvers, MA), and GAPDH antibody (1:2000; mouse-monoclonal; Sigma-Aldrich, St. 

Louis, MO). After washing 3 times of 10 min each, the membranes were incubated in 

blocking solution containing goat anti-rabbit DyLight 800 and goat anti-mouse DyLight 680 

secondary antibodies (1:5000; Thermo Fisher Scientific; Waltham, MA). Bands were 

visualized and analyzed using an Odyssey imaging system (Li-COR biosciences, Lincoln, 

NE).

Serum leptin, brain CRH and orexin

A commercially available ELISA kit (TiterZyme Kits, Assay Design, Ann Arbor, MI) was 

used to detect leptin in serum according to the manufacturer’s specifications. CRH in the 

ME was measured by CRH EIA kit (Phoenix Pharmaceuticals, Inc., Belmont, CA). The 

assay had a minimum sensitivity of 0.30 ng/ml and an inter-assay variability of <5%. Orexin 

in the lateral hypothalamus was measured using a commercially available 

radioimmunoassay (Phoenix Pharmaceuticals, Inc., Belmont, CA). A small aliquot was used 

for assessing protein levels using a Micro BCA protein assay kit (Pierce, Rockford, IL). 

Orexin was expressed as pg/μg protein.

Serum corticosterone

Radioimmunoassay for corticosterone was performed using a tracer and standards from 

EMD Millipore (Billerica, MA) and the primary and secondary antibodies generated in our 

lab, as described previously12, 33. Duplicates of samples were used to ensure reproducibility. 

The sensitivity and inter-assay variability were 0.2 ng/ml and less than 4%, respectively.

Circulating free fatty acids (FFAs)

Serum FFAs were determined as described before13, 34. Total lipids from serum were 

extracted using hexane:ethanol (1:1) solvent mix, after which the extracts were separated on 

a SP-2560 column (Supelco, Bellefonte, PA) and analyzed using a Clarus 500 gas 

chromatography (Perkin Elmer, Waltham, MA). >99% pure methylated esters were used as 

standards (Nu-Chek Prep, Elysian, MN). Concentrations of both saturated and unsaturated 

fatty acids were expressed as mg/dl.

Statistical analysis

NE, CRH, and orexin levels in the brain and serum leptin, corticosterone, and free fatty acids 

were analyzed by 2-way ANOVA with diet and metformin dose as two independent 

variables, followed by Bonferroni-adjusted multiple comparisons. Blood glucose and protein 

expression of leptin signaling markers (pSTAT3, SOCS-3), final body weight, weight gain, 

total caloric intake, feed efficiency, and fat mass were analyzed by 2-way ANOVA followed 

by Bonferroni-adjusted multiple comparisons. Weekly body weight and caloric intake 

differences were analyzed by 2-way repeated measures ANOVA (treatment as between-

subject factor and time as within-subject factor) followed by Bonferroni post hoc test. Type 

II regression analysis was conducted to determine the association between NE, CRH, and 

corticosterone. Data from lean Sprague-Dawley rats and obesity-resistant (DR) rats were 

obtained from our previous studies13, 33 to perform the regression analysis and compare to 

that in DIO rats in the present study. Samples affected by a significant hemolysis in serum or 
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insufficient amount of tissues were excluded. Data are expressed as Mean±SEM. Significant 

difference between groups was set at p<0.05.

RESULTS

Metformin supplementation lowers weight gain and caloric intake in DIO rats independent 
of diet

While final body weight was not statistically different among groups (Fig. 2A), as expected, 

weight gain was found to be significantly higher in HF-fed rats compared to that in chow-fed 

controls without metformin treatment (Fig. 2B). Interestingly, metformin dose-dependently 

reduced weight gain in both chow and HF-fed DIO rats (Fig. 2B). A close examination of 

weekly body weight change revealed a sharp deviation from the anticipated weight 

trajectory, with a significant decline in weight gain especially in animals supplemented with 

HD metformin (Fig. 2C). This was accompanied by reduced caloric intake in metformin-

treated animals, especially in HF-fed rats within a week of metformin treatment (Fig. 2D, 

E). As a result, DIO rats treated with HD metformin had lower feed efficiency and were less 

energetically efficient to gain mass regardless of diet (Fig. 2F). Next, we sought to determine 

if metformin-induced resistance to weight gain is associated with lower adiposity. Indeed, 

HF-fed control group displayed a larger visceral fat mass compared to chow-fed controls 

(>100%), but oral metformin treatment significantly reduced it mainly in HF-fed animals 

(Fig. 3A, B). Leptin is an adipocyte-derived hormone whose circulating levels are generally 

proportional to body fat percentage. High circulating leptin levels are associated with leptin 

resistance that is thought to be one of the main drivers for obesity development35. Metformin 

supplementation decreased serum leptin levels in HF-fed DIO rats (Fig. 3C) most likely due 

to the reduction in fat mass. Metformin is also known to improve insulin sensitivity and 

glycemic control in obese or diabetic individuals14, 36, 37, so it is reasonable to speculate that 

it would correct hyperglycemia in obesity-prone DIO rats. However, we did not observe any 

differences in blood glucose levels between chow and HF-fed DIO rats or following 4 weeks 

of metformin treatment (Fig. 3D). These results suggest that oral metformin supplementation 

lowers weight and fat gain that is at least partly due to reduced caloric intake.

Metformin suppresses HPA axis activity in HF-fed DIO rats in a dose-dependent manner

Hyperactivation of the HPA axis is associated with obesity1–3, 5, 38. Noradrenergic neurons 

located in A1, A2, and A6 brainstem regions project to the PVN and release NE to stimulate 

CRH neurons for stress axis activation9–11. HF feeding increased PVN NE concentrations 

compared to chow feeding by ~50% in control rats (Fig. 4A) which is consistent with our 

earlier report13. Interestingly, oral metformin supplementation was able to dose-dependently 

lower PVN NE concentrations, although the reduction was statistically significant only in 

HF-fed animals (Fig. 4A). Compared to HF-fed controls, HD metformin-treated animals 

with HF diet had 50% lower PVN NE levels. This was accompanied by a corresponding 

decrease in CRH levels in the ME (Fig. 4B) where PVN CRH neuropeptide is released into 

before stimulating ACTH secretion from the anterior pituitary. ACTH in turn enters the 

systemic circulation and stimulates glucocorticoid secretion from the adrenal gland. As 

expected, serum corticosterone in HF-fed, metformin-treated animals was significantly 

lower compared to that in HF controls (Fig. 4C). Next, orexin levels in the lateral 
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hypothalamus was determined because orexin-expressing neurons have reciprocal excitatory 

connections with CRH neurons in the PVN39, and acute stimulation of these neurons has 

recently shown to activate the HPA axis40. Since metformin dramatically suppressed HPA 

axis activity, we anticipated orexin levels to be lower in the metformin-treated animals. In 

contrary to our expectation, orexin concentrations in the lateral hypothalamus was not 

different between groups (Fig. 4D), indicating that it may not play a major role in HF-

induced activation of the HPA axis.

HPA axis circuitry is fully restored following metformin treatment

Type 2 regression analysis (Fig. 5) was used to demonstrate the lack of correlation between 

different arms of the HPA axis in DIO rats placed on a HF diet and the positive impact of 

metformin treatment. The analysis based on the data from different cohorts of normal 

Sprague-Dawley rats as well as obesity-resistant DR rats (from previous studies for 

comparison)13, 33 shows a near perfect regression between PVN NE vs. corticosterone or 

ME CRH (R2=0.92–0.99; Fig. 5A–C), whereas DIO rats show a clear disconnect between 

PVN NE vs. corticosterone (R2=0.01; Fig. 5D) or ME CRH (R2=0.18; Fig. 5E). 

Surprisingly, metformin treatment almost completely rescued the HPA axis integrity as 

shown by restored coupling between PVN NE vs. ME CRH (R2=0.99) or serum 

corticosterone (R2=0.89; Fig. 5D–E). These results suggest that oral metformin treatment is 

able to effectively reverse the HPA axis dysfunction induced by HF feeding in DIO rats.

Chronic metformin treatment fails to improve leptin signaling in noradrenergic neurons

Leptin is an important regulator of the HPA axis31, 33, 41, and its receptors are expressed in 

noradrenergic neurons in the brainstem42, 43. Our previous reports revealed that unlike 

obesity-resistant DR rats, DIO rats have high circulating leptin but impaired brainstem leptin 

signaling, suggesting that this may be responsible for the observed failure to suppress NE in 

the PVN13. In the present study, metformin was able to effectively decrease PVN NE levels 

in HF-fed DIO rats, leading us to predict that this may be due to restored leptin signaling in 

noradrenergic nuclei in the brainstem. However, measurement of pSTAT-3 (marker of 

downstream leptin signaling) or SOCS-3 (negative feedback inhibitor of leptin signaling) 

expression were devoid of changes across all groups (Fig. 6A–F), suggesting that 

metformin-induced suppression of NE in the PVN is not likely a result of enhanced/restored 

leptin signaling in the brainstem.

Metformin decreases circulating free fatty acids in HF-fed DIO rats

Earlier studies have shown that free fatty acids (FFAs) can activate both the sympathetic 

outflow and the HPA axis and induce metabolic syndrome44–46. We speculated that 

metformin-induced suppression of stress axis activity and restored coupling within PVN 

NE-HPA axis in DIO rats may be associated with changes in circulating FFAs. Indeed, we 

observed that whereas HF-fed controls have significantly higher unsaturated fatty acids – 

oleic acid (300%; Fig. 7A), arachidonic acid (50%; Fig. 7C), linolenic acid (300%; Fig. 7F) 

– and saturated fatty acids like palmitic acid (200%; Fig. 7D) and stearic acid (250%; Fig. 

7E) compared to chow-fed controls, treatment with LD metformin was able to nearly 

normalize the circulating levels of these FFAs (Fig. 7A–F). Interestingly, while serum 

docosahexanoic acid levels were not different between the groups, eicosapentanoic acid, 
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another active metabolite of linolenic acid, was significantly lower in HF-fed animals 

independent of the dose of metformin (Fig. 7G, H). Collectively, these results suggest that 

chronic metformin treatment can improve the circulating FFA profile in HF-fed DIO rats.

DISCUSSION

Metformin is generally regarded as the first-line medication for individuals with type 2 

diabetes because of its consistent glucose-lowering and insulin-sensitizing effects, as well as 

for its higher safety threshold. Recent human and animal studies have shown that metformin 

can also effectively lower body weight and adiposity17–20, 28, 47. While the mechanisms 

underpinning its anti-diabetic effects such as its ability to suppress hepatic glucose 

production have been well described14–16, 21, the potential neural, hormonal, and/or 

molecular pathways by which metformin successfully reduces body weight and fat mass 

remain unclear. We have previously shown that obesity-prone DIO rats have a dysfunctional 

HPA axis that is known to be strongly associated with obesity development6, 8. Here we 

tested if metformin could correct HPA axis function in DIO rats and help them lose weight 

when challenged with HF diet. Our current findings demonstrate that 4 weeks of oral 

metformin treatment renders them resistant to obesity by reducing body weight gain, caloric 

intake, and visceral fat depots. More importantly, these metabolic benefits are associated 

with normalization of NE levels in the PVN and HPA axis function that are independent of 

leptin signaling in brainstem noradrenergic neurons.

The ability of metformin to decrease weight gain, fat mass and food consumption in DIO 

rats is supported by other studies17, 20, 28, 47. Caloric intake declined sharply in rats as soon 

as metformin treatment was started and rose modestly the following week and remained at 

that level for the rest of the observation period. This suggests an acute and persistent effect, 

perhaps through downregulation of orexigenic NPY in the hypothalamus48. Another 

possibility is that metformin is able to reduce weight gain by increasing energy expenditure. 

This notion is supported by a recent study that showed higher energy expenditure following 

metformin treatment in HF-fed mice49. It is not clear if a similar mechanism is in operation 

in DIO rats in the present study. Contrary to other studies, metformin treatment failed to 

lower blood glucose in DIO rats. While the reasons are not clear, it is possible that 3h fasting 

instead of an overnight fasting (a known stressor that can lower circulating leptin and 

activate the HPA axis) before the sacrifice and glucose measurement potentially diminished 

the differences in blood glucose between the diet control groups and metformin-treated 

animals. Furthermore, improved glucose homeostasis is typically observed following modest 

weight loss50, 51. In the present study, metformin treatment only resulted in less weight gain 

and not weight loss from baseline. Likewise, the fat mass in HF-fed, metformin-treated 

animals did not drop to the degree seen in chow-fed animals which is twice as that in lean 

DR rats13. The absence of body weight and fat loss following metformin treatment may have 

led to the failure of metformin to lower blood glucose. These findings are consistent with 

earlier findings by Kim and colleagues26.

Leptin suppresses NE release in the PVN and also lowers circulating corticosterone in lean 

rats32, 33, 41, 52, 53, pointing to an inverse relationship between the satiety hormone and the 

HPA axis. Previously, we observed that when DIO rats are placed on a HF diet, they display 
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higher NE levels in the PVN in spite of elevated circulating leptin, indicative of possible 

leptin resistance in brainstem noradrenergic nuclei13. Since noradrenergic innervation to the 

PVN is critically involved in stimulating feeding54, 55, higher PVN NE observed in DIO rats 

may be one of the drivers that contribute to increased feeding and the development of 

obesity. In the present study, metformin was able to effectively suppress NE levels in the 

PVN and this was associated with lower weight gain. Decreased NE is most likely not a 

result of high circulating leptin since metformin also reduced it. The leptin-lowering effects 

of metformin and its ability to counter weight gain is consistent with findings from a recent 

study that showed resistance to diet-induced obesity via reducing leptin production56. While 

blocking the synthesis led to lower circulating leptin, surprisingly the study found restored 

leptin sensitivity in hypothalamic neurons that play an important role in energy balance. 

Hence, we hypothesized that metformin may lower PVN NE in DIO rats possibly by 

restoring leptin signaling in extra-hypothalamic areas also such as the brainstem 

noradrenergic nuclei. This is based on the previous findings from our group13 as well as 

others57, 58 that showed impaired brain leptin signaling in obese animals compared to lean 

animals even at baseline without stimulation with leptin. Interestingly, our data show that 

pSTAT-3 and SOCS-3, markers of leptin signaling, were not different between the control 

and metformin-treated groups. Along with our previous findings on leptin responsiveness in 

DIO rats13, these results support the concept that the reduction in PVN NE and HPA axis 

activity caused by metformin is not likely mediated by leptin signaling in the brainstem. 

Metformin could directly affect noradrenergic neurons to decrease NE synthesis, a 

possibility that needs to be investigated in the future. Similar to leptin, insulin is another 

nutrient-related hormone that is involved in neuroendocrine regulation of feeding and body 

weight59, 60. Interestingly, insulin can also exert sympathoexcitatory actions through the 

arcuate nucleus and downstream activation of glutamate receptors and MC3/4 receptors in 

the PVN61–63, and insulin during hyperinsulinemic euglycemic clamps has been shown to 

increase HPA axis activity (i.e. increased CRH in the PVN and plasma ACTH and 

corticosterone)64. Thus, it is possible that metformin treatment lowers both the sympathetic 

and HPA axis activation in part by decreasing insulin signaling in the arcuate nucleus and/or 

the PVN in our animals. If this is true, then whether this phenomenon is brain region-

specific and how this may interact with insulin’s anorexigenic action through the 

hypothalamus are interesting questions that warrant a detailed investigation.

On the other hand, our results clearly show that metformin treatment can lower circulating 

FFAs. Since FFAs are known activators of sympathetic outflow44, these findings are in line 

with the ability of metformin to inhibit sympathoactivation65, 66 possibly through reduction 

in PVN NE. Reduction in serum FFAs by metformin could be simply because the 

metformin-treated animals ate less food. Since HF diet contains 45% of calories as fat, less 

fat consumption may have partially corrected the dyslipidemia found in DIO rats. 

Alternatively, metformin has been shown to increase lipid uptake and induce lipolytic and 

thermogenic programs in brown adipose tissue67, 68. The fat-burning properties of 

metformin may have led to efficient utilization of fatty acids, thereby reducing circulating 

FFA levels.

Another interesting outcome of this study was the complete reinstatement of NE-HPA axis 

coupling following metformin treatment in HF-fed DIO rats. This is clinically significant in 
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light of our previous findings13 that showed a disconnect between PVN NE and the HPA 

axis, leading to dysregulation of the stress axis activity that has been shown to promote 

obesity and other metabolic disorders. The restored coupling between PVN NE and HPA 

axis indices in HF-fed DIO rats in this study was similar to what we observed in lean 

Sprague-Dawley rats and obesity-resistant DR rats. We cannot rule out the possibility that 

the restored NE-HPA axis coupling may be a secondary effect of metformin-induced 

resistance to weight gain. However, it is important to note that the observation of 

significantly decreased PVN NE and HPA axis activity in the absence of differences in 

weight gain points to weight-independent effects of metformin on NE-HPA axis circuitry. 

Nonetheless, comparing the effects of metformin to pair-fed or weight-matched animals will 

be necessary to clearly address this question.

Collectively, our findings indicate that oral metformin treatment in obesity-prone DIO rats 

lowers body weight gain and caloric intake that is associated with effective suppression of 

the HPA axis. More importantly, this study showed that metformin can completely rescue 

the impaired coupling between PVN NE and the HPA axis present in DIO rats, thus 

revealing metformin’s novel mechanism of action in the treatment of obesity. Although not 

completely clear, decreased circulating FFAs may play a role in this phenomenon. Further 

studies are needed to understand direct effects of metformin on brainstem noradrenergic 

neurons.
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Fig. 1. Study design.
Selectively bred, obesity-prone DIO rats were initially placed on a regular chow or high-fat 

(HF) diet for 3 weeks. The animals were treated with either a low dose (LD; 60mg/kg) or 

high dose (HD; 300mg/kg) of metformin in drinking water from week 4–7 while remaining 

on the same diet. Groups without metformin supplementation were included as controls.
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Fig. 2. BW, caloric intake, and feed efficiency.
The effects of metformin treatment on A) Final body weight (BW), B) BW gain, C) Weekly 

BW change, D) Total caloric intake, E) Weekly caloric intake, and F) Feed efficiency (BW 

gain/total caloric intake x 1000). n=5–9 per group. * p<0.05; ** p<0.01. For C) and E), * 

indicates statistically significant difference between HD metformin-treated groups and their 

respective control groups.
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Fig. 3. Oral metformin treatment decreases fat mass and circulating leptin in HF-fed DIO rats.
A) Visceral fat mass (epigonadal, retroperitoneal, perirenal), B) Relative fat weight (Fat 

weight/BW (%), C) Serum leptin levels, and D) Blood glucose at sacrifice after 3h fasting. 

n=5–9 per group. * p<0.05; ** p<0.01.
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Fig. 4. Metformin dose-dependently lowers PVN NE and suppresses the HPA axis.
The effects of oral metformin treatment on A) NE concentrations in the PVN, B) CRH levels 

in the ME, and C) serum corticosterone, and D) orexin levels in the lateral hypothalamus. 

n=6–9 per group. * p<0.05; ** p<0.01.
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Fig. 5. Metformin effectively rescues the coupling between PVN NE and the HPA axis in DIO 
rats.
Type II regression analysis between A) PVN NE vs. serum corticosterone in lean Sprague-

Dawley rats, B) PVN NE vs. serum corticosterone and C) PVN NE vs. ME CRH in obesity-

resistant DR rats, D) PVN NE vs. ME CRH and E) PVN NE vs. serum corticosterone in 

DIO rats and DIO rats treated with metformin. Lines of best fit and R2 are indicated. n=4–7 

per group.
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Fig. 6. No change in brainstem leptin signaling following metformin supplementation.
Western blot results of pSTAT-3 and SOCS-3 in brainstem noradrenergic nuclei (A1, A2, 

A6) in control or metformin-treated DIO rats on either chow or HF diet. A, B) pSTAT-3 and 

SOCS-3 expression in the A1 region, C, D) A2 region, and E, F) A6 region. Data are 

normalized to GAPDH and expressed as fold change from regular chow-fed DIO group. 

n=4–5 per group.
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Fig. 7. Metformin treatment reduces circulating free fatty acids in HF-fed DIO rats.
At the end of metformin treatment, both unsaturated and saturated serum free fatty acids 

from DIO rats on regular chow or HF diet were analyzed by gas chromatography. A) oleic 

acid, B) linoleic acid, C) arachidonic acid, D) palmitic acid, E) stearic acid, F) linolenic 

acid, G) docosahexanoic acid, and H) eicosapentanoic acid. n=6–9 per group. * indicates 

statistically significant difference compared to HF controls. # indicates significant difference 

compared to all chow-fed groups.
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