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X-l inked hypophosphatemia (XLH) is the most common genetic form of
hypophosphatemic rickets and osteomalacia. In this disease, mutations in the PHEX
gene lead to elevated levels of the hormone fibroblast growth factor 23 (FGF23), resulting
in renal phosphate wasting and impaired skeletal and dental mineralization. Recently,
international guidelines for the diagnosis and treatment of this condition have been
published. However, more specific recommendations are needed to provide guidance
at the national level, considering resource availability and health economic aspects. A
national multidisciplinary group of Belgian experts convened to discuss translation of
international best available evidence into locally feasible consensus recommendations.
Patients with XLH may present to a wide array of primary, secondary and tertiary care
physicians, among whom awareness of the disease should be raised. XLH has a very
broad differential-diagnosis for which clinical features, biochemical and genetic testing in
centers of expertise are recommended. Optimal care requires a multidisciplinary
approach, guided by an expert in metabolic bone diseases and involving (according to
the individual patient’s needs) pediatric and adult medical specialties and paramedical
caregivers, including but not limited to general practitioners, dentists, radiologists and
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orthopedic surgeons. In children with severe or refractory symptoms, FGF23 inhibition
using burosumab may provide superior outcomes compared to conventional medical
therapy with phosphate supplements and active vitamin D analogues. Burosumab has
also demonstrated promising results in adults on certain clinical outcomes such as
pseudofractures. In summary, this work outlines recommendations for clinicians and
policymakers, with a vision for improving the diagnostic and therapeutic landscape for
XLH patients in Belgium.
Keywords: burosumab, fibroblast growth factor 23 (FGF23), osteomalacia, rickets, vitamin D, X-
linked hypophosphatemia
INTRODUCTION

X-linked hypophosphatemia (XLH) is the most common genetic
form of hypophosphatemic rickets and osteomalacia. Its
incidence has been estimated at 3.9-5 cases per 100.000 live
births, with no evidence of ethnic variation (1, 2). Belgium has an
annual birth rate of ± 117.800 (year 2018), ± 1.93 million
growing children (< 15 years) and 11.4 million total
population (2019 census) (3). Extrapolation of the ~1:20.000
incidence and prevalence would imply that this rare disease has
an incidence of less than 6 cases in newborns annually and a
prevalence of 97 and 475 cases in the pediatric and adolescent/
adult population, respectively. Other sources have reported
prevalences lower than 1:20.000 e.g. 1.4 per 100.000 in the
United Kingdom (4) to 1.7 per 100.000 in Norway (5). Possible
reasons include gaps in diagnosis and referral of XLH patients
from primary or secondary care to centers of expertise. This is
certainly the case also in Belgium, where only recently efforts
have been initiated to improve the care for patients suffering
from rare/orphan diseases (6).

The pathophysiology of XLH has been reviewed extensively
elsewhere (7, 8). In brief, mono-allelic mutations or
chromosomal derangements affecting the Phosphate Regulating
Endopeptidase Homolog, X-Linked (PHEX) gene on the X
chromosome lead to elevated levels of the hormone fibroblast
growth factor 23 (FGF23), resulting in renal phosphate wasting,
impaired 1a-hydroxylation of 25-hydroxyvitamin D [25(OH)D]
to the active hormone calcitriol (1,25-dihydroxyvitamin D [1,25
(OH)2D]) and consequently, chronic hypophosphatemia,
impaired skeletal mineralization and rickets (9). In children,
the corresponding clinical features may include delayed growth
and short stature, craniosynostosis and raised intracranial
pressure, deformities of weight-bearing limbs, muscle
weakness, gait abnormalities (10), tooth abscesses and
excessive dental caries (9, 11, 12).

Following growth plate closure, a part of adolescent and
young adult patients continue to experience debilitating
symptoms while others may experience a “honeymoon” phase
(similar to other metabolic bone diseases) with fewer
musculoskeletal problems (except dental manifestations).
During this phase, conventional therapy with phosphate
supplements and active vitamin D analogues is often stopped,
because subjective and skeletal benefits are thought to be
n.org 2
lacking (13). During adolescence, the psychological burden
increases (14), which may contribute to poor adherence and
lack of follow-up. The historic perception of therapeutic futility
in adults has probably contributed to the dearth of transitional
care programs between pediatric and adult specialty care for
XLH patients. Nevertheless, even adults with milder forms
usually develop symptoms in their third or fourth decade,
which may include bone and joint pain, fatigue, enthesopathy
(commonly involving the hips and anterior spinal ligament),
pseudofractures, dental complications and early osteoarthritis
(15). These complications ultimately cause chronic pain,
impaired mobility, loss of productivity and lower quality of
life (9, 15–20). Extraskeletal complications include hearing loss,
symptomatic Chiari malformations, arterial hypertension
[(possibly induced by oral phosphate supplements (21, 22)].
An increased prevalence of overweight and obesity has also
been observed in XLH (23). Recent data suggest that XLH may
be associated with increased risk of mortality in older adults,
but not in children (4). A recent population-based study also
reported an increased risk of depression and socioeconomic
deprivation (24).

Recently, international evidence-based guidelines for the
diagnosis and management of XLH have been published (13,
25). However, efforts are also required to translate the principles
outlined in these guidelines to more practical recommendations
at the national level, considering local elements such available
resources and health economic aspects (26). Towards this aim,
and as part of an interdisciplinary effort to improve the
diagnostic and therapeutic care pathway for XLH patients in
Belgium, a multi-stakeholder panel gathered to develop national
consensus recommendations.
METHODS

First, two in-person meetings were held between several of the
authors (ML, JS, NG, EB, CH, JLa, KH, EL and JV) to review the
available evidence, facilitate discussion and to propose diagnostic
and therapeutic criteria for Belgium. The international evidence-
based guidelines (13, 25) as well as recent randomized trials were
considered as the basis for practical recommendations applicable
to the Belgian context. Further input was sought from all other
co-authors through consecutive e-mail rounds. The writing
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panel is composed of national experts from all universities and
involves specialists in pediatric nephrology, endocrinology, adult
metabolic bone diseases, rheumatology, clinical genetics,
orthopedic surgery, clinical chemistry and physical medicine
and rehabilitation. Furthermore, a Belgian XLH patient who is
a founding member of the Belgian patient organization (XLH
Belgium) as well as of its French counterpart (RVRH-XLH)
participated. This work was co-authored by members of and
endorsed by the Belgian Society for Pediatric Nephrology, the
Belgian Society for Pediatric Endocrinology and Diabetes, the
Flemish Network on Rare Bone Diseases, the Belgian Bone Club,
the Royal Belgian Society of Laboratory Medicine and the Royal
Belgian Society of Physical and Rehabilitation Medicine.
RESULTS

Diagnosis
The diagnosis of XLH relies on the combination of clinical,
radiographic, biochemical and genetic features (25). More
specifically, this involves signs of rickets and/or osteomalacia
in association with hypophosphatemia and renal phosphate
wasting in the absence of vitamin D deficiency. The diagnosis
should be confirmed by genetic testing whenever possible.

The cl inical features include those common for
hypophosphatemic rickets, as outlined in the introduction i.e.
short stature, waddling gait, and leg bowing in growing children,
in addition to muscle weakness. Fatigue and chronic pain
become more prevalent in older children and particularly
adults. Growth delay usually becomes evident from 9-12
months of age in XLH children (27). Early diagnosis and
treatment is associated with better outcomes in children. Even
when plasma phosphate is measured, hypophosphatemia may be
overlooked due to lack of attention, misinterpretation of
reference values in children, or waxing and waning of
phosphatemia. In adults, signs of prior rickets during
childhood should be sought e.g. short stature and limb bowing,
although these may be absent in patients with milder phenotypes
or those having received appropriate treatment during
childhood. Some clinical features distinctive for this form of
hypophosphatemic rickets are dental abscesses and
enthesopathy, which may present to rheumatologists and are
sometimes mistaken for spondylarthropathies.

Hypophosphatemic rickets has a wide differential diagnosis
(Table 1). Although XLH is the most common genetic form,
both acquired and rarer inherited differential-diagnoses should
be considered. Neither clinical, biochemical, radiographic or
genetic examinations on their own can correctly distinguish
XLH from other conditions. Therefore, we recommend a
multimodal work-up of suspected XLH by an experienced
clinician to exclude other diseases. Bone biopsy is not routinely
recommended in XLH (13). Moreover, expertise in bone
histomorphometry is still scarcely available in Belgium (mainly
in collaboration with neighboring countries, although bone
histomorphometry recently became reimbursed through the
national health insurance).
Frontiers in Endocrinology | www.frontiersin.org 3
Biochemical Work-Up and Differential Diagnosis
Figure 1 shows a practical flowchart outlining the differential-
diagnosis of hypophosphatemia in children or adults, according
to biochemical features. The clinical, radiographic, biochemical
and pathophysiological or genetic features of these causes are
discussed in detail in this section.

As with the approach to any electrolyte disorder, the first step
after careful history taking and clinical examination is to exclude
obvious causes such as dilution (e.g. by massive fluid resuscitation,
dialysis, plasmapheresis), spurious hypophosphatemia (from e.g.
drug interference like amphotericin B, interference by bilirubin
(28) or specific paraproteins), medication effects [e.g. excessive
phosphate binders , niacin (29)] or alcohol abuse.
Hypophosphatemia in alcoholics has a complex, multifactorial
and incompletely understood pathophysiology. These causes
should be considered first, since they can usually be diagnosed
without further work-up.

Distinguishing Acquired vs. Genetic and Acute vs. Chronic
Hypophosphatemia
Previously normal plasma phosphate levels suggest three
possibilities: an acquired chronic cause, an acquired acute causes
or a genetic, adult-onset cause. However, prior phosphate levels
are often unavailable. Elevated alkaline phosphatase (ALP) is also
indicative of chronic hypophosphatemia and consequent rickets/
osteomalacia. Hypophosphatemia in the absence of rickets should
raise suspicion for either an acute, transient cause (e.g. intracellular
shift from hyperventilation, refeeding, hungry bone syndrome) or
an acquired chronic cause such as alcohol abuse, tumor-induced
rickets/osteomalacia (TIR/TIO) or certain medications such as
tenofovir or frequent ferric carboxymaltose infusions (30).
Notably, some genetic forms of hypophosphatemia may have an
adult onset (notably, autosomal-dominant hypophosphatemic
rickets, see below), in which case signs of rickets may be absent.

Chronic hypophosphatemia is believed to play a central role
in the pathogenesis of almost all forms of rickets (31, 32). After
confirming chronic hypophosphatemia, the next step is to assess
phosphaturia i.e. whether hypophosphatemia is due to renal
phosphate wasting or not (see Biochemical Work-Up: Pre-
Analytic and Analytic Considerations below).

Once renal phosphate wasting has been confirmed, three
mechanisms of renal phosphate loss remain: (i) defective intrinsic
renal phosphate transport, (ii) parathyroid hormone (PTH)-
mediated (and/or vitamin D-mediated) hyperphosphaturia, or (iii)
FGF23-mediated causes.

Defective Intrinsic Renal Phosphate Reabsorption
The first category includes all causes of Fanconi syndrome i.e. a
more generalized low molecular weight solute wasting at the
proximal tubulus level. Low levels of uric acid and bicarbonate,
glucosuria, aminoaciduria and low molecular weight (tubular)
proteinuria should hint towards this category. At an older age,
there may be slowly progressive renal insufficiency. However,
some degree of renal tubular acidosis may be acquired during
long-standing XLH, particularly when associated with
nephrocalcinosis (33). The differential-diagnosis of Fanconi
syndrome itself is broad and includes (non-exhaustively)
March 2021 | Volume 12 | Article 641543
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FIGURE 1 | Flowchart outlining the differential-diagnosis of chronic hypophosphatemia based on biochemical features. See text for abbreviations.
TABLE 1 | Differential diagnoses of X-linked hypophosphatemia (XLH).

Disease (gene) Biochemical Radiographic Clinical

XLH (PHEX) FGF23↑, 1,25(OH)2D↓, (Ca↓), PTH↑, calciuria↓ Dense bones, BMD↑,
pseudofractures,
enthesopathy

Rickets + dental abscesses, enthesopathy

Vitamin D-deficiency rickets
(nutritional, CYP2R1, CYP3A4)

25(OH)D↓, PTH↑, (Ca↓), (1,25(OH)2D↓),
calciuria↓, FGF23↓

Osteopenia, fractures Rickets (symptomatic hypocalcemia)

VDRR1A (CYP27B1) 1,25(OH)2D↓, (Ca↓), PTH↑, calciuria↓ Osteopenia, fractures Rickets (symptomatic hypocalcemia)
Chronic renal insufficiency FGF23↑, PO3−

4 ↑, 1,25(OH)2D↓, (Ca↓), PTH↑,
calciuria↓

Unremarkable,
hyperparathyroidism

No rickets (unless nutritional)

Fanconi syndromes, renal
tubular acidosis

FGF23↑, 1,25(OH)2D↓, (Ca↓), PTH↑, calciuria↓ +
metabolic acidosis, low urate, glucosuria,
amino-aciduria, some GFR↓

Rickets and/or osteomalacia Evidence of underlying disorders

Tumor-induced rickets/
osteomalacia

(FGF23↑), 1,25(OH)2D↓, (Ca↓), PTH↑, calciuria↓ Rickets and/or osteomalacia No family history of rickets or osteomalacia

HHRH, NPHLOP1/2 (SLC34A3,
SLC34A1, SLC9A3R1)

FGF23↑, 1,25(OH)2D↑, (Ca=↑), PTH↓,
calciuria↑

Osteopenia, fractures Rickets and/or osteoporosis, prominent
nephrocalcinosis/nephrolithiasis

Jansen metaphyseal
chrondrodysplasia

FGF23↑, 1,25(OH)2D↑, (Ca=↑), PTH↓,
calciuria↑

Osteopenia, fractures Very short stature, more pronounced
skeletal dysplasia

ADHR (FGF23) Variably FGF23↑ associated with iron
deficiency

May be milder, no rickets in adult-onset forms

ARHR1 (DMP1) FGF23↑, 1,25(OH)2D↓, (Ca↓), PTH↑, calciuria↓ Dense vertebral bodies May present as sclerosing bone disease
ARHR2 (ENPP1) FGF23↑, 1,25(OH)2D↓, (Ca↓), PTH↑, calciuria↓ Generalized arterial

calcifications
Generalized arterial calcifications ±
multisystem manifestations

ARHR3, Raine syndrome
(FAM20C)

FGF23↑, 1,25(OH)2D↓, (Ca↓), PTH↑, calciuria↓ Dense bones, BMD↑,
pseudofractures,
enthesopathy

Cerebral calcifications; perilacunar
osteomalacia on bone biopsy; facial features

a-klotho (KL translocation) FGF23↑, a-klotho↑, (1,25(OH)2D↓), (Ca↓), PTH↑,
calciuria↓

Rickets Macrocephaly, prominent frontal bossing,
and dysplasia of the nasal bones, with
exaggerated midfacial protrusion

FD/MAS, linear sebaceous
nevus syndrome (post-zygotic
somatic mutations)

FGF23↑, 1,25(OH)2D↓, (Ca↓), PTH↑, calciuria↓ Focal bone lesions Café-au-lait spots or nevi; focal bone
lesions, jaw involvement

Osteoglophonic dysplasia
(FGFR1), opsismodysplasia
(INPPL1)

FGF23↑, 1,25(OH)2D↓, (Ca↓), PTH↑, calciuria↓ Severe bone dysplasias;
non-ossifying bone
lesions, hypo-/adontia

Very short stature; severe skeletal dysplasia

(SGK3) Unclear pattern Rickets Rickets
Frontiers in Endocrinology | www.f
rontiersin.org 4
Bold, distinctive biochemical, radiographic, or clinical features allowing distinction from XLH. BMD, bone mineral density.
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mitochondrial respiratory chain diseases, metal intoxications,
Wilson’s disease, cystinosis, multiple myeloma [especially when
involving light chains (34)], Sjögren’s disease, medications like
ifosfamide or tenofovir, genetics forms of renal tubular acidose,
Dent’s disease and Lowe’s oculocerebrorenal syndrome (from
OCRL1 or CLCN5 mutations).

Some genetic conditions may rather selectively impair renal
phosphate reabsorption, including several undiagnosed diseases.
Recently, mutations in SGK3 (serum/glucocorticoid-regulated
kinase 3) were identified as a possible cause of autosomal-
dominant hypophosphatemic rickets (35), although further
study is needed to understand the underlying mechanisms.

Parathyroid Hormone-Mediated Hyperphosphaturia
The second category entails disorders of increased PTH or
impaired vitamin D actions. Recent evidence shows elevated
FGF23 in primary hyperparathyroidism (36–38). Both XLH and
primary hyperparathyroidism may feature hypophosphatemia,
renal stone formation, elevated PTH and FGF23 levels. Still,
primary hyperparathyroidism should be easily distinguished by
the presence of hypercalcemia, hypercalciuria, and high-normal
to elevated 1,25(OH)2D as well as by the absence of
rickety features.

Occasionally, it may be difficult to distinguish patients with
non-familial XLH (i.e. probands without other affected family
members) from children with nutritional, vitamin D-deficient-
or -resistant rickets. Low 25(OH)D levels are common in XLH
patients and should be corrected before the diagnosis is
confirmed. In patients refractory to 25(OH)D replenishment,
supervised supplementation may distinguish between poor
compliance vs. resistance due to inactivating CYP2R1
(recessive) or activating CYP3A4 (autosomal-dominant)
mutations (39).

Because FGF23 stimulates CYP24A1 and inhibits CYP27B1 (25-
hydroxyvitamin D3-1a-hydroxylase) expression in both renal and
extrarenal t i ssues (40) , FGF23-mediated forms of
hypophosphatemia are associated with low 1,25(OH)2D levels
(41), secondary hyperparathyroidism (42), and low-normal to
slightly decreased calcemia. However, 10-16.7% of adult XLH
patients may exhibit tertiary (hypercalcemic) hyper
parathyroidism, which is amenable to parathyroidectomy (42,
43). The levels of 1,25(OH)2D are also decreased in patients with
very severe 25(OH)D deficiency, those with chronic renal
insufficiency or in rare cases of CYP27B1 mutations (vitamin D-
resistant rickets type 1A). In the latter three situations, FGF23 levels
are low, high or unknown, respectively. Vitamin D-resistant rickets
due to inactivating vitamin D receptor mutations is exquisitely rare
and more easily distinguished from XLH due to elevated 1,25(OH)
2D levels and because almost all patients display alopecia.
Importantly, radiographic features prominently differ between
XLH and nutritional or vitamin D-related forms of rickets, with
dense bone cortices in XLH and radiolucent bones in vitamin D-
related rickets. Thus, X-ray imaging as well as genetic testing may
distinguish these disorders (see Table 1).

Hereditary hypophospatemic rickets with hypercalciuria
(HHRH) is a group of disorders featuring increased renal
sensitivity to PTH. Bi-allelic mutations in SLC34A3 cause
Frontiers in Endocrinology | www.frontiersin.org 5
HHRH, while heterozygous mutations in SLC34A1 and
SLC9A3R1 cause the phenotypically similar hypophosphatemic
nephrolithiasis/osteoporosis syndromes (NPHLOP1 and
NPHLOP2, respectively). In all these conditions, patients may
have hypophosphatemia, elevated FGF23 levels and
nephrolithiasis/nephrocalcinosis (7). However, osteopenia/low
bone mineral density, hypercalciuria, high-normal to elevated
1,25(OH)2D and low PTH point to the diagnosis of HHRH/
NPHLOP. The same common and distinctive features apply to
the ultrarare skeletal dysplasia Jansen metaphyseal
chondrodysplasia, which is caused by activating PTH receptor
1 mutations (44). Additional clinical features in Jansen
metaphyseal chondrodysplasia patients include severe short
stature, brachycephaly, micrognathia, hypertelorism,
and clinodactyly.

Fibroblast Growth Factor 23-Mediated Renal Phosphate
Wasting
The third pathophysiological category involves FGF23-mediated
forms of hypophosphatemic rickets. After XLH, the second most
common genetic form of hypophosphatemic rickets is
autosomal-dominant hypophosphatemic rickets (ADHR).
Notably, it may be difficult to distinguish autosomal- and X-
linked dominant inheritance in certain families. ADHR is caused
by specific mutations in the FGF23 gene (mostly involving amino
acid residues R176 and R179), making the intact (biologically
active) hormone resistant to cleavage (45). Since iron deficiency
increases FGF23 expression, this gene-environment interaction
explains why adult-onset ADHR may be unmasked by iron
deficiency and may be cured with (oral) iron supplements
alone (46–50). Symptoms may wax and wane in parallel with
iron loss during e.g.menstruation or pregnancy. As noted above,
adults with ADHR may not have signs of rickets.

Ferric carboxymaltose (Injectafer®) infusions are a common
drug-induced cause of transient (and sometimes symptomatic)
hypophosphatemia, mostly in patients without chronic renal
insufficiency. While the clinical significance in patients
requiring sporadic infusions remains unknown, frequent
infusions are a potential cause of acquired hypophosphatemic
rickets and/or osteomalacia. The underlying mechanism involves
specific carbohydrate moieties in the carboxymaltose
apomolecule, which interfere with FGF23 cleavage. This
explains why other i.v. iron formulations do not cause
hypophosphatemia, and why intact (active) FGF23 increases
more than c-terminal FGF23 in ferric carboxymaltose-induced
hypophosphatemia (30, 51, 52). Interestingly, FGF23 may also be
increased in tenofovir-induced Fanconi syndrome (53), via yet
unknown mechanisms.

Autosomal-recessive forms of hypophosphatemic rickets
(ARHR) may be caused by mutations in dentin matrix protein
1 (DMP1, as in ARHR1) or ectonucleotide pyrophosphatase/
phosphodiesterase 1 (ENPP1, as in ARHR2). ARHR1 may
present as a sclerosing bone dysplasia with hyperostosis and
very dense vertebral bodies (54). DMP1 as well as PHEX are
highly expressed in osteocytes, although it remains unknown
how they alter the phosphate-FGF23 set point (55). ENPP1 is a
critical enzyme in the generation of the mineralization inhibitor
March 2021 | Volume 12 | Article 641543
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pyrophosphate. Loss-of-function mutations in ENPP1 lead to
generalized arterial calcification of infancy (GACI). Many
children with ENPP1 mutations who survive GACI will go on
to develop ARHR2 (56, 57). The mechanism underlying raised
FGF23 (58) and hypophosphatemia in GACI/ARHR2 remains
incompletely understood. Extraskeletal features of GACI
including hearing loss (59), thrombocytopenia, neurologic,
cardiovascular, hepatic manifestations and hypoglycemia have
recently been described (60). Recently, a case of ARHR was
described with compound mutations in DMP1 and SPP1
(encoding osteopontin, another small integrin-binding ligand,
N-linked glycoprotein [SIBLING] protein family member) (61).

FGF23 effects on the kidney are mediated by its co-receptor
klotho. One case report described a balanced translocation
affecting the KL gene, resulting in elevated a–klotho levels and
hypophosphatemic rickets with elevated FGF23 (62).

FGF23 is believed to be cleaved at specific sites mainly by FURIN
(PCSK3) (63), which also cleaves PTH and several other substrates.
This cleavage is further regulated via phosphorylation by FAM20C
(family with sequence similarity 20, member C, also known as
DMP4; the gene mutated in Raine syndrome) and O-glycosylation
by GALNT3 (polypeptide N-acetylgalactosaminyltransferase 3)
(63–65). Raine syndrome (also called type 3 ARHR) was formerly
believed to be a lethal osteosclerotic bone dysplasia, although now
survivors into adulthood have been recognized (66–68). Clinical,
biochemical and radiographic features of Raine syndrome may be
very similar to sporadic XLH, but distinctive facial features, cerebral
calcifications and osteomalacia surrounding the osteocyte lacunae
on bone biopsy are a typical hallmark of this condition (69). In
contrast, recessive, loss-of-function GALNT3 mutations impair
FGF23 actions and thus, like in genetic or autoimmune FGF23
deficiency, lead to familial hyperphosphatemic tumoral calcinosis
syndrome (70, 71).

In non-familial childhood- or adult-onset cases of
hypophosphatemia, one must always bear in mind the possibility
of tumor-induced hypophosphatemic rickets (TIR, in growing
children) or TIO (72). In TIR and TIO, small mesenchymal
tumors secrete FGF23 and/or other phosphatonins such as matrix
extracellular phosphoglycoprotein (MEPE) (73). Thus, circulating
FGF23 is usually but not always raised in TIR/TIO. Typical clinical
features include chronic and progressive bone pain, muscle
weakness and low bone mineral density. Diagnosis of TIO and
TIR often remains extremely difficult, leading to extensive (and
sometimes unnecessary) diagnostic procedures, since tumors may
be too small for detection by conventional radiological methods (see
Imaging Studies below).

Hypophosphatemic rickets in several sclerosing bone, skin or
soft tissue disorders is believed to result from increased secretion
of FGF23 or related phosphaturic hormones by the aberrant cells
(74). Such may be the case in fibrous dysplasia/McCune-Albright
syndrome (FD/MAS, which are caused by post-zygotic, somatic
GNAS mutations) and Schimmelpenning-Feuerstein-Mims
syndrome (which both feature bone lesions and café-au-lait
spots), as well as in isolated linear nevus sebaceous syndrome
(the latter two caused by post-zygotic somatic KRAS, HRAS or
NRAS mutations). Finally, FGF23-mediated hypophosphatemia
Frontiers in Endocrinology | www.frontiersin.org 6
has been reported in two ultrarare skeletal dysplasias:
osteoglophonic dysplasia (characterized by rhizomelic dwarfism,
craniosynostosis, impacted teeth, hypodontia or anodontia, and
multiple non-ossifying bone lesions) (75) and opsismodysplasia (a
rare spondylo(epi)chondrodysplasia characterized by delayed
skeletal maturation) (76).

Biochemical Work-Up: Pre-Analytic and Analytic
Considerations
The measurement of plasma calcium (preferably ionized if
feasible, or alternatively albumin-corrected), phosphate, ALP,
creatinine, PTH and 25(OH)D are part of the standard work-up
for any form of rickets or osteomalacia (77).

Alkaline Phosphatase
In the absence of liver disease, bone-specific ALP comprises
~90% of total ALP in children but only ~50% in adults (78, 79).
Therefore, bone-specific ALP has been recommended for the
monitoring of XLH in adults (25). Although bone-specific ALP is
available in Belgium, it is still rarely used. In children, age-
specific reference values should be used for correct interpretation
of these analyses (particularly for ALP and phosphate). During
the first months of life, plasma phosphate and ALP may be
normal in XLH. ALP has no significant diurnal variation and can
be used to monitor disease activity (taking age-specific changes
during growth into account), as well as adherence to therapy (see
Monitoring below).

Plasma and Urinary Phosphate
Since plasma phosphate fluctuates and is influenced by dietary
intake, the international gold standard to assess phosphaturia is
to determine the maximal tubular reabsorption of phosphorus
per glomerular filtration rate (TmP/GFR), ideally from a fasted,
second morning paired plasma and urine phosphate and
creatinine sample (or 2-hour fasted morning urine collection)
(80). Age-related reference ranges for TmP/GFR have been
published (81). Coincidentally, the lower limit of normal for
phosphate and TmP/GFR in children are numerically similar
(82). The fractional tubular resorption of phosphate (TRP) may
be within normal limits in children or adults with XLH. On the
other hand, hypophosphatemia with a TmP/GFR < 0.85 points
to a hyperphosphaturic mechanism. Other proposed
definitions of hyperphosphaturia include 24h phosphaturia >
100 mg or hypophosphatemia with a fractional excretion of
phosphate > 5%.

A 24h urine collection (or split 22h – 2h collection) may be
useful to identify hypercalciuria, which may point to other
diagnoses or excessive use of active vitamin D or calcium
supplements. There are various definitions of hypercalciuria,
either based on total excretion (> 200 to 250 mg/24h or 5.0 to
6.2 mmol/24h in adult women, > 250-300 mg/24h or 6.2 to 7.5
mg/24h in adult men (83), or > 4 mg/kg [0.1 mmol/kg] body
weight/day in children) or based on urinary calcium concentration
(> 200 mg/L) (84). Clearly, further work is needed to define
optimal calciuria cut-points in different populations. The calcium/
creatinine ratio allows to adjust for over- or undercollection in 24h
urine collections, and may be a more practical (although less
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sensitive) method to allow the use of spot urine samples in
children (85, 86). The addition of hydrochloric acid to the
collection ensures dissolution of calcium crystals, thus
preventing underestimation of calciuria (87).

1,25-Dihydroxyvitamin D
While the interpretation of calciuria and phosphaturia rely
mostly on correct sample collection and interpretation of
reference values, 1,25(OH)2D and FGF23 are more challenging
laboratory analyses. Levels of 1,25(OH)2D are higher during
childhood, and pediatric reference ranges have recently been
proposed (88). International efforts to harmonize measurement
of 1,25(OH)2D as well as PTH are underway (89).

Fibroblast Growth Factor 23
Like PTH, FGF23 is an unstable protein susceptible to decay in
several fragments. Similar to phosphate, FGF23 shows diurnal
variation; early-morning venous samples are recommended,
while fasting appears to have little influence on FGF23 (90).
Several FGF23 immunoassays are available: four methods for
intact FGF23 (from Immutopics, Kainos, DiaSorin and
Millipore) and one for c-terminal FGF23 (from Immutopics,
which measures both intact molecules and c-terminal
fragments). These methods differ not only in their marked use
(only DiaSorin is marked for use in diagnostics), cost and
compatibility with several automated laboratory platforms, but
also in their reference ranges and even in their units of
measurement (91, 92). First-generation assays required
collection in protease inhibitor-coated tubes, but storage of
samples on ice and immediate transport to the lab for prompt
centrifugation is nowadays sufficient (92, 93). C-terminal but not
intact FGF23 concentrations are much lower in serum than in
EDTA plasma samples (93, 94). In treated patients with an
unclear diagnosis, it is recommended to stop phosphate
supplements (for at least two weeks) before measuring FGF23,
because phosphate supplements may increase FGF23.
Burosumab therapy (see Burosumab below) may cause
analytical interference with certain FGF23 assays (95), but
FGF23 measurements are not recommended during the follow-
up of XLH patients (see Burosumab below). Thus,
standardization and harmonization of FGF23 assays remain
lacking, and results should always be interpreted cautiously.
Recently, within- and between-subject biological variability for
FGF23 have been published (96). Reference ranges are not
universally established: while c-terminal FGF23 concentrations
may be higher in children than in adults, they are rather similar
for intact FGF23 (82). In Belgium, measurements of FGF23 and
1,25(OH)2D are reimbursed only once per year when requested
by an internal medicine or pediatric specialist to evaluate
abnormal calcemia or phosphatemia.

Imaging Studies
A skeletal survey using conventional radiography is useful in the
work-up of XLH, to confirm rickets or distinguish it from other
skeletal dysplasias (see Table 1), and to look for complications
such as pseudofractures. X-rays of the knees or wrists are usually
sufficient to confirm rickets in children. In adults, X-rays
Frontiers in Endocrinology | www.frontiersin.org 7
typically show enthesopathy, early spinal and extra-spinal
osteoarthritis and/or pseudofractures (which often go clinically
and biochemically undetected). However, radiation exposure
limits the use of radiography during follow-up, particularly in
children. In that regard, low-dose biplanar full-leg X-ray imaging
using the EOS® system may be useful (97). In children,
radiological signs of rickets in the hand, knees and lower limbs
include long bone deformities and abnormal growth plates with
widened and frayed metaphyses. Plain radiographs can confirm
suspected rickets or can be useful pre-operatively, while clinical
and biochemical evaluation (rather than routine repeated X-
rays) is more important during follow-up.

Rickets of any cause can be graded using the Rickets Severity
Scale (RSS), which has been validated in XLH (98). Higher RSS
values (indicating more severe rickets) are associated with more
severely impaired growth, walking ability, pain and physical
disability (98), making this not only a radiographic but also a
clinically relevant outcome. However, this score requires
significant expertise [as evidenced by its moderate intra- and
inter-rater reliability (98)] and is not yet widely available
in Belgium.

Renal ultrasound can be used without radiation harm, to
investigate the presence and/or severity of nephrocalcinosis and
nephrolithiasis, although this requires an experienced operator.
Panoramic dental X-rays may be required for stomatological
work-up. Magnetic resonance imaging of the skull base may be
indicated when there is concern for Chiari malformations (e.g.,
persistent headache, neurological or respiratory abnormalities)
or to identify calcifications in suspected Raine syndrome (X-ray
computed tomography may also be used in adults for the latter
purpose). Bone scintigraphy may show increased metaphyseal
uptake (99) in all forms of rickets and osteomalacia, which may
be mistaken for other conditions e.g. avascular necrosis, transient
migratory osteoporosis, etc. Routine technetium bone scans are
not recommended in XLH and only useful to identify focal bone
dysplasias such as FD/MAS.

Patients with XLH and several other sclerosing
hypophosphatemic diseases usually have elevated bone mineral
density Z- or T-scores on dual-energy X-ray absorptiometry
(DXA). However, this can usually be appreciated well enough
from available plain X-rays. Although low Z- or T-scores may
point to other diagnoses such as HHRH/NPHLOP or TIR/TIO,
DXA is not recommended in the work-up nor in the follow-up of
XLH. Bone ultrasound and high-resolution quantitative
computed tomography have also shown increased cortical and
trabecular bone mass in XLH patients, although these techniques
are still considered investigational (100) and not clinically useful.

Imaging plays a central role in the work-up of TIR/TIO, in
order to determine whether the tumor can be surgically resected
or requires alternative non-operative treatment. These tumors
are often small and elusive, but they commonly arise in the lower
limbs or head and neck area and may be located by whole-body
magnetic resonance imaging, octreotide single photon emission
computed tomography, positron emission tomography with
18
fluorodeoxyglucose or DOTATOC/DOTATATE tracer, and/

or by systemic venous sampling (101–103).
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Genetic Testing
When the clinical, biochemical and radiographic findings suggest
the diagnosis of XLH or another genetic disorder, genetic testing
is recommended, both to confirm the diagnosis as well as for
genetic counselling of the patient and his/her family members.

As the protean example of an X-linked dominant disorder,
XLH is inherited from father to daughter and from mother to
children of either sex. There is no convincing evidence that males
(who are X-chromosome hemizygous) are more severely affected
clinically or biochemically (13, 17, 104–107),. However, there
may be a tendency that, compared to girls and women, affected
boys and men may display more growth delay (5) as well as
greater dysmorphic features such as larger head circumference,
greater cranial height, shorter limbs and greater trunk length
(108–110).

Genetic testing by Sanger sequencing or next-generation
sequencing is readily available in several genetic centers in
Belgium for PHEX as well as for other skeletal dysplasia genes
using a whole-exome sequencing-based gene panel. Genetic
testing also examines the 3’ untranslated region in which
mutations associated with milder XLH phenotypes have been
reported (111–113). In general however, mutations can affect any
exon, without a clear genotype-phenotype correlation (114).

Up to 90% of patients clinically diagnosed with XLH will
show a PHEX mutation (115–117). False-negative testing may
occur in case of somatic mosaicism, large deletions, intronic and/
or splice site mutations (118, 119). Quantitative polymerase
chain reaction or multiplex ligation-dependent probe
amplification may be useful to identify such cases (120). Lower
diagnostic rates ~50% are obtained when applying PHEX
sequencing to any unexplained hypophosphatemic rickets
(121). Still, because it is the most common genetic form,
single-gene PHEX sequencing may be the appropriate first step
in FGF23-mediated hypophosphatemic rickets possibly due to
XLH (122).

Genetic counselling is recommended before obtaining genetic
testing, and afterwards to explain the results and implications.
Especially in young adults and those planning pregnancy,
counselling of the patient and his/her partner is warranted. If
the underlying genetic defect is known, patients have a choice
between natural conception or preimplantation genetic diagnosis
(18). A genetic diagnosis in offspring can be performed, usually
soon after birth.

A practical summary of the recommendations for the clinical,
biochemical, radiographic and genetic work-up for suspected XLH
in Belgium is shown in Table 2. These recommendations are
generally consistent with the recent international guidelines (25).

Multidisciplinary Care and Follow-Up
The recent international guidelines suggest follow-up of XLH
patients by multidisciplinary teams (25). Individualized goals
should be determined. Follow-up should focus on patient-
centered outcomes and improving quality of life, by detecting
and addressing complications early and monitoring compliance
with treatment. Attention should be paid to the impact of the
disease on other family members too.
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We recommend that these multidisciplinary teams are
organized by an expert in metabolic bone diseases and involve
both pediatric and adult specialists, nurses, physiotherapists,
social workers, psychologists, dietitians and occupational
therapists (123). In Belgium, organization of multidisciplinary
care can be facilitated by means of conventions e.g. for children
with chronic kidney diseases or for metabolic diseases. The need
for a specific convention for patients (children and adults) with a
metabolic bone disease is stressed to finance these multi-
disciplinary teams. Currently, children with XLH are mostly
followed by pediatric endocrinologist and pediatric
nephrologists, whereas adults are mostly followed by metabolic
bone disease specialists and endocrinologists in Belgium.

We recommend the development of local protocols for
transitional care between pediatric and adult metabolic bone
disease specialists, as well as family-based outpatient clinics with
pediatric-adult collaboration. In our experience, affected parents
sometimes feel inappropriately guilty and/or neglect their own
health to focus on their affected children (124). Several specialties
should be available on a systematic or consulting basis including
dentists, orthodontists and maxillofacial surgeons, pediatric and
adult endocrinologists, nephrologists, rheumatologists,
orthopedic surgeons, neurosurgeons, radiologists, geneticists,
physical medicine and rehabilitation specialists, urologists,
otolaryngolostist, ophthalmologists (to perform fundoscopy)
etc. (Figure 2). Of note, since metabolic bone diseases is not a
recognized separate specialty in Belgium, the lead specialist may
differ by hospital. General practitioners in primary care play an
important role in primary recognition of the disease and general
follow-up e.g. with regards to compliance, extraskeletal
manifestations and co-morbidities such as arterial hypertension
or obesity, pain, side effects of treatment and psychosocial issues.

The follow-up interval should be individualized to the patient,
with more regular follow-up in young or growing children (on
average every 3 months) compared to adults (who may be
followed every 6 to 12 months, depending on their treatment,
symptoms and needs) (25). XLH patients should see their dentist
at least twice yearly. These intervals are however based on expert
opinion (25).

Clinical assessment including height, weight, inter-malleolar
and intercondylar distances, oral/dental and musculoskeletal
examination and blood pressure measurement should be
performed at every visit in children (see Table 2). Biochemical
and/or radiological investigations should be evaluated only when
clinically indicated.

In asymptomatic adult patients not receiving medical therapy,
there is little need for repeated biochemical or radiological testing
more than once a year. However, because vitamin D deficiency is
common in Belgium and even more common in XLH patients,
we recommend monitoring of 25(OH)D at least every twelve
months, especially during the winter time, regardless of whether
the patient receives medical treatment or not. ALP
measurements are a useful indicator of skeletal complications
such as progressive rickets/osteomalacia and/or pseudofractures,
and therefore should be considered for the monitoring of
patients not receiving medical therapy. In asymptomatic
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untreated patients, monitoring phosphate, 1,25(OH)2D or
FGF23 levels is not useful.

Treatment
Non-Pharmacological Measures
The overarching goals of treatment should be patient-centered
and focus on optimizing quality of life, mobility, pain and
minimizing school and work absenteeism. The need for early
Frontiers in Endocrinology | www.frontiersin.org 9
treatment is stressed in children as it leads to better outcomes,
such as improved linear growth, fewer bone deformities and
better dental health. Patient education is essential at every visit,
particularly in rare diseases and in adolescents. We encourage
caregivers to provide patients with information about the
nascent XLH patient association in Belgium. Multidisciplinary
care should involve physiotherapists as well as psychological,
nutritional and social support. In children, it might be necessary
FIGURE 2 | Multidisciplinary care model centered on the XLH patient, with attention to local protocols and transition from pediatric to adult metabolic bone
specialist care.
TABLE 2 | Recommended diagnostic and monitoring tests for XLH in Belgium.

Clinical History (current illness, review of systems, medications, alcohol use, sleep disturbances, mobility)*†

Clinical examination including:
• height and growth velocity, signs or rickets (limb bowing, chest, …), intermalleolar and intercondylar distance*†

• dysmorphic features, head circumference and shape, craniosynostosis, signs of intracranial hypertension (fundoscopy if possibly symptomatic)*†

• weight and blood pressure (particularly in patients receiving phosphate supplements)*†

• dental examination, mobility, motor development and muscle function (6MWT)*†

• bone tenderness, joint range of motion, spine examination, entheses*†

• hearing assessment*†

• skin (naevi, café-au-lait spots)
Biochemical Recommended tests:

• plasma calcium (ionized or albumin-adjusted)*†, phosphate†, (bone-specific) ALP*†, creatinine*†

• PTH†, 25(OH)vitamin D*†, 1,25(OH)2D
‡

• 24h calciuria (or spot urine calcium/creatinine ratio)†

For differential-diagnostic purposes:
• TmP/GFR (preferably from early morning fasted urinary and plasma creatinine and phosphate)
• Bicarbonate, uric acid, glucosuria, amino-aciduria, low molecular mass proteinuria
Optional (interpret with caution):
• FGF23, intact or c-terminal

Radiological Recommended tests:
• Lower extremity and wrist X-ray (including bone age): baseline + repeat when clinically indicated, considering radiation exposure (consider skeletal
survey in adults, low-dose biplanar X-ray imaging)
• Renal ultrasound (baseline + repeat every 1-2 years during follow-up)*†

Not recommended in XLH:
• Bone densitometry (DXA)

Genetic Recommended for diagnosis:
• Genetic counselling
• PHEX single gene testing
• If negative or other genetic cause more likely: multi-gene panel
*Recommended for monitoring in patients not receiving medical therapy, every 3–6 months (children) to every 6–12 months (adults).
†Recommended for monitoring and dose adjustments in patients receiving medical therapy, every 1–3 months (children) to every 3–6 months (adults) (more frequent follow-up may be
recommended during the start-up phase of medical therapy).
‡Recommended for safety monitoring every 3–6 months in patients receiving burosumab therapy.
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to liaise with school physicians to exchange information about
e.g. growth and hearing problems, to ensure psychosocial
wellbeing, and to ensure that medication or therapist care can
be provided during school hours when necessary.

A healthy diet with sufficient nutritional calcium intake from
dairy products is recommended in XLH, in contrast to calcium
supplements, which are relatively contraindicated due to
increased risk of kidney stone formation (25). Smoking should
strongly be discouraged. Given the increased prevalence of
arterial hypertension, overweight, obesity and metabolic
syndrome in XLH, weight management and cardiovascular
prevention should be an integral part of care. Notably,
specialists should maintain a low index of suspicion for both
obstructive as well as central sleep apnea in at-risk subjects e.g.
those with Chiari malformations, those who are overweight or
obese, and those with arterial hypertension, fatigue or
sleep complaints.

Physical exercise has a myriad of health benefits and is strongly
recommended although no formal guidance in XLH exists.
Recommendations analogous to those in ankylosing spondylitis
and osteoarthritis can be considered (125–127). Children and
adults often display limited range of motion in the lower limbs and
spine, with consequent gait abnormalities (128). We recommend
that exercises and physiotherapy should aim to prevent or
improve muscle weakness, back and joint pain, stiffness and
limited mobility, by targeting muscle strength, core stability,
joint range and general mobility, e.g. by resistance exercise
training in combination with swimming, yoga, Pilates, dancing
etc. Participation in leisure or professional sport activities is
encouraged, with an emphasis on sports with lower risk of
trauma. Targeted rehabilitation is often necessary following
surgery and in case of enthesopathy or osteoarthritis. Given that
XLH is a rare metabolic and growth disorder causing significant
structural and functional musculoskeletal impairments, patients
may be eligible for increased reimbursement of physiotherapy [“E-
pathology list”, §L (129)]. In case of particularly disabling
symptoms and functional impairment, multidisciplinary
rehabilitation could be offered in general hospitals or
rehabilitation centers under the supervision of a specialist in
physical medicine and rehabilitation.

Analgesia
Chronic musculoskeletal pain is common in XLH adults and may
be caused intrinsically by hypophosphatemia and osteomalacia/
rickets (bone and muscle pain) and/or aggravated by (pseudo)
fractures, enthesopathy, osteoarthritis etc. Based on history and
clinical examinations, targeted imaging (using conventional X-ray
and ultrasound imaging, MRI or scintigraphy if necessary) should
always be considered to allow medical and/or surgical
management of the underlying cause. Paracetamol has limited if
any benefit, but may be considered for acute pain. Local and/or
systemic non-steroidal anti-inflammatory drugs (NSAIDs; with
gastroprotection if necessary) in combination with physical
therapy (aiming for a good balance between exercise and rest,
warmth or ice application, etc.) are considered first-line therapies.
Although NSAIDs have been theorized to reduce phosphaturia, a
Frontiers in Endocrinology | www.frontiersin.org 10
randomized trial in children showed no improvement (130).
Tramadol and strong opioids may be required for more
advanced, otherwise untreatable musculoskeletal problems.
Glucocorticoids or colchicine are not recommended. Given
uncertainty regarding benefit and safety for calcific enthesopathy
in general and lack of data in XLH, we recommend against the use
of shockwave lithotripsy.

Phosphate and Active Vitamin D Analogs
The goal of medical treatment in children is to improve rickets,
reduce skeletal deformities and avoid the need for surgery,
improve height velocity and reduce bone pain (Figure 3). Early
treatment in children is associated with improved outcomes
(131). Although evidence was lacking previously, recent data
suggest that conventional therapy may also reduce the burden of
severe dental complications (132–135).

Conventional therapy in XLH consists of combination therapy
with phosphate and active vitamin D analogs (preferably
alfacalcidol, which has a wider therapeutic range and longer half-
life than calcitriol and is available in liquid form for children).
Phosphate supplements should not be prescribed without vitamin
D analogues, since phosphate alone promotes secondary
hyperparathyroidism and thereby renal phosphate wasting.

Conventional therapy is burdensome, since it requires
multiple daily oral doses. Phosphate supplements are
expensive, not reimbursed and generally cumbersome to obtain
in Belgium. Financial provisions are available however via so-
called “conventions” for tubulopathies in children or metabolic
diseases in adults. Alfacalcidol is cheap, reimbursed in Belgium
upon annual request by a specialist, but supply has occasionally
been interrupted by stock breaches. Phosphate salts may be given
in effervescent tablets imported from abroad, or in magistral
capsules. In young children phosphate salts are usually given in
several liquid formulations, such as galenic solutions (Joulie
potio or others), i.v. phosphate solutions given orally, or
commercial solutions. The choice of the formulation should be
based on patient preferences and not solely to the habits of the
prescriber. Side effects of oral phosphate include diarrhea,
abdominal pain, bloating and secondary hyperparathyroidism.
Spreading the dose throughout the day may alleviate side effects.
Some patients prefer to dissolve phosphate in a bottle of drinking
water, which facilitates spreading intake over the entire day and
may reduce side effects. Furthermore, the high sodium and/or
potassium load of phosphate supplements may predispose to
arterial hypertension and/or hyperkaliemia, respectively.
Phosphate complexes with calcium, therefore intake with milk
should be avoided.

In adults, a small (n=16) uncontrolled prospective study
reported reduced symptom scores following conventional
treatment in 87% of patients (136). A trial of conventional
treatment is therefore justified in symptomatic adults (137),
although in many cases, symptoms of fatigue, low back pain,
osteoarthritis, enthesopathy and spinal ligament calcifications
may dominate, which generally do not respond to conventional
therapy, nor does hearing loss (13). Furthermore, conventional
medical therapy is often unpleasant, burdensome (14), and
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costly, requires monitoring and may be associated with side
effects such as gastrointestinal symptoms, arterial hypertension
or nephrolithiasis/nephrocalcinosis. There is consensus however
that insufficiency fractures or pseudofractures, planned surgical
procedures are indications for medical therapy in adults, while
treatment may be considered in case of raised (bone) ALP and/or
bone pain (13).

Concomitant vitamin D deficiency should be corrected with
conventional vitamin D supplements e.g. cholecalciferol or
ergocalciferol (138). Supraphysiological doses of active vitamin D
analogs may be required to correct secondary hyperparathyroidism
(139), but excessive vitamin D doses should be avoided due to risks
of hypercalciuria, kidney stone formation and (rarely)
hypercalcemia. Conventional treatment regimens with phosphate
and vitaminD analogs improve intestinal phosphate absorption and
paradoxically stimulate further FGF23 increases. Phosphate may
exacerbate renal phosphate wasting (140) while active vitamin D
attenuates phosphaturia (141). Of note, monotherapy with active
vitamin D or CYP24A1 inhibition alone ameliorate rickets in
preclinical mouse models (41, 142, 143) and may reduce the risk
of secondary and tertiary hyperparathyroidism, supporting the use
of the lowest possible dose of phosphate and higher doses of active
vitamin D supplements.

In children, an initial dose of elemental phosphate between
20-40 (or 60) mg/kg body weight (0.7-1.3, up to 2.0 mmol/kg
initial dose) is suggested, given as frequently as possible e.g. 4-6
daily divided doses in children (13). Doses > 80 mg/kg are to be
avoided (25). Gradual titration may be used in the first weeks to
avoid sudden gastrointestinal upset (13). Less frequent dosing
e.g. 3-4 times daily may be used for maintenance or to improve
compliance in adolescents and adults. In children, initial doses of
alfacalcidol of 30-50 ng/kg (or calcitriol 20-30 ng/kg bodyweight)
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are suggested, which can usually be given once daily (evening
dosage has been suggested) (25). Other active vitamin D analogs
are not available in Belgium. Lower doses per body weight are
recommended in adults. In general daily doses range between
750-1000 to 1600 mg of elementary phosphorus in 2-4 divided
doses, and 0.75-1.5 µg of alfacalcidol (or 0.5 – 0.75 µg of
calcitriol) (13, 25). However, dosage needs should always be
individualized, since some patients need much higher or lower
doses. With conventional therapy, phosphate dosages are not
given with a goal of normalizing phosphatemia (keeping it at or
above the lower limit is often not possible) but to improve
growth and other symptoms and to normalize ALP, while
avoiding secondary hyperparathyroidism and nephrocalcinosis
(144). Active vitamin D analogs should be titrated to maintain
PTH within the normal range but also to avoid hypercalcemia,
hypercalciuria and kidney stone formation.

Although hypophosphatemia may exacerbate during
pregnancy, the available evidence doesn’t clearly support a
need for medical treatment in pregnant XLH mothers, since
most will give birth uneventfully (145). Low phosphate levels in
breast milk of XLH mothers has been reported in case reports,
but adverse clinical outcomes have not been reported (146, 147).
Similarly, no adverse effects of FGF23 excess on prenatal fetal-
placental phosphate transport, breast milk phosphate
concentrations or skeletal prenatal development are seen in
mouse models (148, 149). Neonatal rickets is exceedingly rare,
and there is currently insufficient evidence to formally
recommend medical treatment for the sole indication of
maternal or offspring skeletal health (18). Still, there is no
international consensus on this topic (25). There is probably
overuse of caesarean sections in this population, for no good
reason (145).
FIGURE 3 | Response to conventional medical treatment with phosphate and active vitamin D supplements in XLH. (A) Clinical presentation at age 3 years. (B) One
year, (C) 2 years after initiation of conventional therapy.
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Burosumab
In 2018, the European Medicines Agency (EMA) granted
conditional market authorization to the fully humanized
monoclonal anti-FGF23 antibody burosumab [formerly
KRN23 (150)] for the treatment of XLH in children ≥ 1 year
of age with a growing skeleton and radiographic evidence of bone
disease (26). Late 2020, authorization was expanded for older
adolescents and adults with radiographic evidence of bone
disease, regardless of growth status.

In an open-label phase 2 trial, 52 children aged 5-12 years
with XLH were randomized to receive burosumab without other
conventional therapy, at a dose titrated to their phosphate level,
every 2 or 4 weeks. The more frequent dosing led to more stable
plasma phosphate concentrations, but the primary endpoint of
the radiographic Rickets Severity Score was reduced in both
groups (151). Most patients normalized their phosphate levels
and TmP/GFR, and ALP levels declined. Greater height
improvements were seen with the two-week dosing interval.
Physical ability ameliorated and pain decreased in both groups
(151). Another phase 2 trial confirmed the favorable efficacy and
safety profile of burosumab in children aged 1-4 years (152).

Importantly, in an active-controlled open-label phase 3 trial,
61 children aged 1-12 years were randomized to receive
conventional therapy or burosumab. Significantly greater
improvements in radiographic healing of rickets (primary
endpoint), growth, ALP and other biochemistries, lower-
extremity deformities and mobility were observed with
burosumab (153). Some patient-reported outcomes were
significantly improved e.g. pain interference and physical
health scores at week 40, although not for other outcomes or
later time points (154). Some hypersensitivity and injection site
reactions were noted in all trials, but there were no differences in
serious treatment-related adverse events. Unfortunately, clinical
trial data in adolescents remain lacking, despite the importance
of the pubertal growth spurt. Nevertheless, the revised EMA
market authorization would support continued use in
adolescents when clinically indicated.

These data show that burosumab has the potential of
improving clinical outcomes beyond current standard therapy.
Notably, since it reduces the underlying renal phosphate wasting,
burosumab has not been associated with complications of
conventional therapy like nephrocalcinosis or secondary/
tertiary hyperparathyroidism. However, burosumab is
considerably more expensive than conventional medical
therapy, and long-term outcomes as well as cost-effectiveness
analyses are pending. Burosumab gained reimbursement in
Belgium as of January 1st, 2021. Cost-sensitive criteria for use
of burosumab in children in Belgium, proposed by the authors
and approved by the competent authorities, are detailed in Table
3. Of note, these criteria still reflect the earlier EMA-approved
indication (restricted to children with growing skeletons) and
not the most recent version.

The EMA-approved dose in children is a 2-weekly s.c.
injection starting 0.8 mg/kg bodyweight, increased with 0.4
mg/kg dose increments (max. 2.0 mg/kg, cap at 90 mg dose) to
achieve fasting plasma phosphate concentrations in the low-
Frontiers in Endocrinology | www.frontiersin.org 12
normal range for age. The average dose at this interval was 1.0
mg/kg in pediatric trials (25). Conventional treatment should be
discontinued. Monitoring of peak phosphate levels at day 7-11
after injection, or before dosing after a three month period to
achieve steady state is also suggested (25). In case of
hyperphosphatemia, dosing should be withheld. The dose may
need to be adjusted over time, but intervals for dose adjustment
of 1-2 months are suggested (25). Creatinine levels should also be
monitored, and treatment avoided in patients with incident renal
insufficiency due to the theoretical risk of hyperphosphatemia
and ectopic mineralization.

In adults, a phase 3 randomized trial (n=134) has compared
placebo to a fixed 1 mg/kg bodyweight burosumab dose every
four weeks. This normalized phosphatemia in almost 90% of
patients. At 24 weeks, a significant decrease in joint stiffness and
healing of active fractures was reported, with a safety profile
similar to placebo (155). During the 24-week extension phase, all
participants received open-label burosumab. Pseudofracture
healing was confirmed in the group that switched from
placebo to burosumab, and stiffness, pain and physical
functioning and performance on the six-minute walking test
improved significantly compared to baseline (156). Bone biopsies
showed significant improvement in all osteomalacia indices
(157). Thus, if approval is granted for use in adults by EMA
(as has been done by its U.S. FDA counterpart, with a maximal
dose of 90 mg), burosumab could represent an interesting
treatment option for adult XLH patients suffering persistent
bone and/or joint pain and disability, particularly from
(pseudo-)fractures, despite a trial of optimal conventional
therapy (25). Monitoring recommendations would be similar
as in children (25).

Adjunctive Medical Therapies
Growth hormone is an off-label, yet theoretically attractive
adjunctive therapy for XLH because it (transiently) increases
phosphatemia and 1,25(OH)2D, lowers PTH and increases TmP/
GFR, may improve height Z-scores without influencing body
disproportion (158, 159) and might improve muscle strength.
However, it doesn’t improve the underlying rickets and may
increase ALP and exacerbate skeletal deformities (160).
Moreover, it did not significantly improve adult height in long-
term follow-up of a randomized controlled open-label study
receiving conventional therapy (161). Clinical studies show that
growth hormone therapy is more effective in prepubertal than in
pubertal children (162). Although final height may be
compromised despite conventional therapy in up to 60% of
patients (163), extremely short children (Z-score ≤ -2.5) may
be more likely to benefit (13, 164). Optimal control of rickets,
PTH and ALP should be achieved before growth hormone
therapy is considered in children with XLH (25). In Belgium,
growth hormone therapy is not reimbursed for short stature
related to XLH, although it has been obtained via medical need
programs in the past (now no longer available).

Calcimimetics such as cinacalcet have been used to control
secondary and tertiary hyperparathyroidism in XLH (165, 166).
However, since they have been associated with severe side effects
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including hypocalcemia and QT-interval prolongation, their use
should be limited (25).

Thiazide diuretics reduce hypercalciuria and may halt the
progression of nephrocalcinosis in XLH (167). Thiazides should
therefore be considered in case of arterial hypertension.
However, adverse effects are common and require surveillance
including hypotension, hypokalemia, hyponatremia,
hypomagnesemia, hyperuricemia and increased insulin
resistance. In contrast to hydrochlorothiazide, dipyridamole,
which may reduce intrinsic renal phosphate leakage in some
conditions, appears ineffective in XLH (168). The use of
potassium citrate is not advised in XLH, because alkalinization
may increase urinary phosphate precipitation (25).

Recently, a preclinical study in growing Hypmice (the mouse
model of Phex mutations) found that sclerostin inhibition
increased phosphate and reduced FGF23 levels (169). Further
evaluation of the efficacy and safety anti-sclerostin antibodies in
the context of clinical trials is required. Other therapeutics
targeting the FGF23 pathway e.g. suppressing the upregulation
of osteopontin (170, 171) are also under development.
Inadvertent treatment with bisphosphonates or other
osteoporosis drugs, e.g. in case of misdiagnosis in patients with
Frontiers in Endocrinology | www.frontiersin.org 13
fractures, may induce deterioration and adverse skeletal
effects (172).
Surgical Management
It is difficult to make firm evidence-based recommendations for
orthopedic management in XLH (25). We recommend that care
should be coordinated by an experienced orthopedic surgeon
specialized in pediatric metabolic bone diseases. Insoles are not
useful for pes planus in patients with varus or valgus knee
deformity (25). In general, persistent or progressive severe
deformity or disability despite ongoing optimal medical
therapy may be an indication for surgery (25). Guided growth
techniques by hemi-epiphysiodesis can be considered early as an
alternative to more invasive options such as osteotomy (173),
intramedullary nailing, external circular frames e.g. Ilizarov or
combined techniques (174–177). Bed rest should be avoided as
much as possible, and in those patients requiring it, careful
monitoring for hypercalciuria is needed, which may warrant
lowering of active vitamin D doses (25). Notably, medical
treatment for at least 12 months in children and three to six
months in adults, has been recommended before elective surgery,
TABLE 3 | Reimbursement criteria for burosumab in children in Belgium as of January 2021.

Starting criteria • Demographic criteria: Children 1 year of age and older and adolescents with growing skeletons
• Diagnostic criteria: With a diagnosis of X-linked hypophosphataemia
o Radiographic evidence of bone disease (rickets severity score ≥ 2)
o Biochemical criteria:

◾ Persistently low plasma phosphate (based on age-adjusted reference values) AND raised ALP (based on reference values for age)
o And confirmed by either genetic (or biochemical) criteria:

◾ genetic diagnosis with PHEX mutation or appropriate family linkage
◾ Or, in case of no identifiable genetic mutation, raised serum FGF23 concentration (> 30 pg/ml by Kainos assay, after discontinuation of
conventional therapy for at least two weeks)

• Following exclusion of all other causes of hypophosphatemia
• With at least one severe clinical symptom likely to improve with burosumab
o Lower limb bone deformity (genu varum or genu valgum)
o Growth delay (≤ 20th percentile for age and gender, according to national normative growth curves)
o Dental abscesses during the past year
o Chronic bone or muscle pain or joint stiffness
o Reduced mobility (delayed gross motor development, need for walking aids, abnormal gait)
o Presence of craniosynostosis

• Refractory to prior conventional medical therapy for at least 6 months, with complications of conventional medical therapy, or in
case of intolerance for conventional therapy
• Without renal insufficiency i.e. estimated glomerular filtration rate > 30 ml/min/1.73 m²
• Physician criterion: when prescribed at a university hospital by a pediatric nephrologist or endocrinologist, experienced in the treatment of XLH
and participating in the European XLH registry

Continuation
criteria

• Reevaluation every year in children 1-12 years and every 6 months in children ≥13 years; must meet all criteria below for
continuation
• Biochemical criteria:
o decrease in ALP compared to the initiation of treatment, AND
o increase of plasma phosphate level compared to treatment initiation to levels above the lower limit of normal for age, OR ≥ 30% increase; OR

increased renal tubular phosphate reabsorption to level > 0.84 mmol/L or ≥ 30% increase
• Radiographic criterion:
o Absolute decrease of the Rickets Severity Score of at least 1 point

• Improvement of at least one clinical symptom:
o Increased height Z-score
o Improvement in bone deformity (genu varum or genu valgum)
o Improvement in bone pain, joint stiffness or walking ability

• Evidence of continued growth (or potential): height gain of ≥ 2 cm in the last year, or radiographically open epiphyses
• Compliance with clinical follow-up at least every six months
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including dental implants (13, 25). Following surgery,
prescribing rehabilitation is strongly recommended.

Repeated craniotomies may be necessary in symptomatic
intracranial hypertension due to craniosynostosis (178).
Neurosurgery may also be required for symptomatic Chiari
malformation type 1, in which the cerebellar tonsils herniate
through the foramen magnum and may compress the lower
brainstem, upper spinal cord and/or cause syringomyelia (25).
Up to 59% of children showed complete or partial sagittal suture
fusion and 25% showed Chiari malformation type 1 in a recent
large retrospective cohort study, however, most patients were
asymptomatic (179). Rarely, symptomatic spinal enthesopathy
or ossification of the posterior longitudinal spinal ligament may
requir ing laminoplas ty , laminectomy or poster ior
decompression surgery (180–183).

Tertiary hyperparathyroidism with consequent hypercalcemia
is a complication of longstanding high-dose phosphate
supplements (184), although it has been noted in untreated
patients too (18). It may be improved by partial or (sub)total
parathyroidectomy, with or without ectopic parathyroid
reimplantation. Clinicians should be aware that parathyroidectomy
in these circumstances is usually followed by severe hungry bone
syndrome with symptomatic hypocalcemia, which may require
high doses of intravenous and oral calcium in combination with
active vitamin D supplements (43, 185).

Monitoring
In patients receiving medical therapy, monitoring and
adjustment of treatment doses should be based on
measurements of calcium and phosphate in plasma and urine,
creatinine, ALP and PTH at every visit (25). Notably, ALP may
transiently increase during healing of rickets or signal the
presence of pseudofractures. Increased ALP in otherwise well-
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controlled hypophosphatemia may signify poor compliance e.g.
when patients improve their compliance shortly before clinic
visits. If secondary hyperparathyroidism is present, alfacalcidol
may be increased, phosphate doses decreased, or concomitant
vitamin D deficiency may require replenishment.

Renal ultrasound to detect nephrocalcinosis or nephrolithiasis
is recommended in medically treated XLH patients after one year
and then every 1-2 years. Improvement of radiological signs of
rickets can be seen after one year of treatment.

Patients receiving burosumab therapy may develop anti-drug
antibodies, which may be accompanied by declining plasma
phosphate levels and may require dosing increases when
associated with clinical deterioration. Measuring anti-drug
antibodies is not of clinical interest. The international
guidelines suggest to measure 1,25(OH)2D every 3 to 6 months
as a safety outcome in patients receiving burosumab therapy,
together with monitoring for hypercalciuria (25). In patients
receiving active vitamin D analogs and phosphate however,
monitoring of 1,25(OH)2D is not recommended, because
supraphysiological doses may be required to maintain PTH
and calciuria within the desired range. Measuring FGF23 is not
useful during follow-up of XLH patients, especially in patients
treated with burosumab which may cause analytical
interference (95).
DISCUSSION AND CONCLUSIONS

This consensus document provides a broad, detailed and
practical overview of clinical aspects of diagnosis and
management of XLH, which can guide specialists in Belgium.
Key findings and policy recommendations are summarized in
Table 4.
TABLE 4 | Summary of key policy recommendations.

Area Findings

Epidemiology • The estimated incidence of XLH in 1:20.000 or less live births, translates to less than six cases in newborns per year in Belgium, with a
prevalence of less than 97 and 475 cases in the pediatric and adult population, respectively.
• There remains a large gap in XLH diagnosis, treatment and follow-up in Belgium.

Diagnosis • XLH has a broad differential-diagnosis. A correct diagnosis relies on the integration of clinical, radiological, biochemical and genetic findings.
• We recommend a multimodal work-up of suspected XLH by an experienced clinician to exclude other diseases.
• Pre-analytical and analytical challenges in the interpretation of plasma phosphate, alkaline phosphatase (ALP), phosphaturia, calciuria, 1,25-
dihydroxyvitamin D and FGF23 should be taken into account.

Multidiscipinary
care and follow-
up

• We recommend referral to and follow-up by specialized multidisciplinary metabolic bone disease teams as well as protocols for transitional care
between pediatric and adult specialists, and family-based outpatient clinics with pediatric-adult collaboration whenever possible.
• We encourage caregivers to provide patients with information about the XLH patient association in Belgium.

Treatment • Early medical treatment in children is advised to achieve optimal height, reduce skeletal deformities and reduce or avoid the need for surgery, to
reduce musculoskeletal pain and to reduce dental complications.
• Conventional medical therapy is often unpleasant, burdensome, and requires frequent monitoring and may be associated with side effects such
as gastrointestinal symptoms, arterial hypertension or nephrolithiasis/nephrocalcinosis.
• In a randomized controlled trial, burosumab resulted in significantly greater improvements in radiographic healing of rickets, growth and ALP, due
to superior improvements in phosphatemia, TmP/GFR and 1,25-dihydroxyvitamin D compared to conventional medical treatment.
• There is consensus that insufficiency fractures or pseudofractures, planned surgical procedures are indications for medical therapy in adults,
while treatment may be considered in case of raised (bone) ALP and/or bone pain.
• Given recent European approval of burosumab for XLH in adults, it could represent an interesting treatment option for patients suffering
persistent bone and/or joint pain and disability, particularly from (pseudo-)fractures, despite a trial of optimal conventional therapy.
• We recommend that orthopedic care should be coordinated by an experienced surgeon specialized in rare metabolic bone diseases.
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Several key questions regarding XLH and other rare
metabolic bone diseases remain unanswered (186): What are
the best way to manage fatigue? What is the mechanism of pain?
How can psychosocial support for patients and their families best
be organized? How do rare metabolic bone diseases progress in
ageing? Why do people with the same genetic mutation have
different symptoms?

We recognize several limitations of these consensus
recommendations. Most recommendations presented here, are
based on expert opinion. We did not perform a systematic review
nor used a formal GRADE or Delphi approach. However, recent
international guidelines fulfill this need (25), and our
recommendations can be considered a national translation of
those guidelines. We believe national recommendations are
useful, because Belgian policymakers have only recently
initiated efforts to improve the care for patients with rare
diseases, and no formal centers of expertise are officially
recognized (currently, this task is delegated to all university
hospitals). An important limitation is that not all specialties
are represented among the authors. Specifically, a dentist or
maxillofacial surgeon was not currently involved in XLH care
pathways, highlighting the need to further liaise with other
specialties in the care of XLH patients in our country. The
Belgian burosumab reimbursement criteria as outlined in
Table 3 are quite strict and not necessarily evidence-based, but
they represent a consensus between several of the authors, within
the strict Belgian reimbursement context. In several neighboring
countries, burosumab is reimbursed when prescribed for
Frontiers in Endocrinology | www.frontiersin.org 15
children or adults treated in centers of excellence. Ideally, this
would also preferable in Belgium. An alternative would be to use
the existing framework of so-called “college of expert physicians”
to peer-review reimbursement requests. Moreover, we chose not
to present separate guidelines for children and adults, since we
believe in an integrated, life course approach. Nevertheless, some
recommendations are not relevant for either children or adults.
Finally, several authors have a conflict of interest, although there
was no sponsor involvement in the development, writing or
publication of these guidelines. The authors would also like to
emphasize that these recommendations are not intended as a
substitute for expert clinical judgement.
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