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A B S T R A C T

Little is known about the impact of infectious diseases on large carnivores. We investigated factors structuring
the helminth and protozoan infections of wolves (Canis lupus) by using coprological analyses. Faecal samples
(n=342) were analysed from 11 wolf packs belonging to three different geographical and ecological settings in
Italy (Abruzzo, Lazio e Molise National Park, PNALM: 4 packs, 88 samples), in France (Mercantour National
Park, PNM: 4 packs, 68 samples) and in the U.S.A. (Yellowstone National Park, YNP: 3 packs, 186 samples).
Parasites were found in 29.4%–88.6% of the samples and parasite taxa ranged from four to ten in each study
area. Taeniidae (Taenia/Echinococcus), Sarcocystis spp. and Toxascaris leonina were most common in faecal
samples from YNP, whereas Capillaria spp., Taeniidae and Uncinaria stenocephala were predominant in PNALM.
We used generalised linear mixed models to assess the relationship between parasite infection or the number of
parasite taxa and selected ecological drivers across study areas. Significant effects illustrated the importance of
the ecological factors such as occurrence of free-ranging dogs, diet composition and wolf density, as well as the
ancestry of the wolf populations, in shaping parasite-wolf communities. Additional investigations are needed to
elucidate the impact of parasitic infections on wolf populations, as well as the role of anthropogenic factors in
facilitating parasitic diffusion to apex predators.

1. Introduction

Large carnivores are important to the stability of most ecosystems
(Murray et al., 1999) leading to the protection of different endangered
populations of wolves, bears and lynxes throughout Europe (Chapron
et al., 2014). Environmental and intrinsic correlates of stress, the im-
pact of infectious diseases, anthropogenic mortality, habitat loss and
fragmentation are all factors influencing the conservation of these
carnivores (Macdonald, 1996; Murray et al., 1999; Molnar et al., 2015).
Wolf populations represent three different contexts (Boitani, 2003): (1)
existant populations which never went extinct; (2) re-colonizing po-
pulations originating from naturally dispersing individuals (Lucchini
et al., 2002; Valière et al., 2003; Fabbri et al., 2007; Ciucci et al., 2009);
(3) populations originating from translocated animals, following era-
dication by humans (Bangs and Fritts, 1996). Beyond continental dis-
similarities (Craig and Craig, 2005), these different ancestries might
have shaped the parasite community in wolf populations (Roberts et al.,

2002). Geographical distribution as well as local prey populations are
also known to influence the variety of parasites infecting wolf popula-
tions (Craig and Craig, 2005; Bryan et al., 2012; Lesniak et al., 2017a).

Parasites infect wolves either directly or indirectly. Direct infections
occur via contact with conspecifics, other sympatric hosts or con-
taminated material (e.g. faeces or vomitus). When parasites are shared
by sympatric host species, entire communities might be affected (Holt
and Dobson, 2007) and grey wolves (Canis lupus) living in sympatry
with large, reservoir populations of dogs (Canis familiaris) are at a
higher risk of infection (Murray et al., 1999; Randall et al., 2004;
Cleaveland et al., 2007; Lesniak et al., 2017b). Close physical contact
between group members is characteristic of social canids such as wolves
and greatly enhances within-pack transmission of pathogens (Johnson
et al., 1994). Smell is a crucial sense in wolves, and pack members
regularly use urine and faeces to mark their territory. Inspection of
faecal markings is frequent along territory edges. The investigation of
the anogenital area of conspecifics is part of typical social interactions
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(Harrington and Asa, 2003). These behavioural characteristics further
enhance oro-faecal transmission of potential pathogens (Custer and
Pence, 1981b; Kreeger, 2003; Segovia et al., 2003). For example, in-
fection of wolf pups by Cystoisospora spp. can lead to hemorrhagic en-
teritis, diarrhoea, poor growth (Foreyt, 2001) or even death (Mech and
Kurtz, 1999).

Indirect infection occurs through feeding on an infected prey, and
several helminth parasites are acquired by wolves through feeding on
various prey species and scavenging (Segovia et al., 2001; Kreeger,
2003; Craig and Craig, 2005; Moks et al., 2006; Bagrade et al., 2009).
While infection by the protozoan Sarcocystis spp. is usually considered
asymptomatic in canids, infections by several helminth parasites can
cause morbidity rather than mortality (Tompkins et al., 2002), exerting
a significant impact on energy budgets (Roberts et al., 2002) and hence
on population dynamics of canids (Tompkins et al., 2002).

Investigating the association between ecological factors and the
infection by pathogens is a basic prerequisite to understand their im-
pact on wolf populations (Murray et al., 1999). A recent comparative
survey of the presence of viruses in wolves indicated that density and
spatial distribution of susceptible hosts, particularly free-ranging dogs,
can be important factors influencing infections in wolves (Molnar et al.,
2014). However, the assessment of such drivers through comparison of
different geographical regions is complicated by lack of data or by the
adoption of different approaches, such as necropsy vs coprology (e.g.,
Guberti et al., 1993; Schurer et al., 2016; Lesniak et al., 2017a, 2017b).
Coprology is a non-invasive technique to assess the occurrence of sev-
eral pathogens (Torres et al., 2001; Kreeger, 2003; Bryan et al., 2012).
It allows large-scale investigations of wildlife populations, otherwise
impractical using necropsy, especially where species such as wolves are
protected. The faecal samples of carnivores also provide information on
infections in prey species (through parasites with an indirect life cycle),
or pseudoparasites (parasites of prey) ingested by wolves (Bowman,
2009).

Using coprology, we compared wolf packs belonging to three geo-
graphically distinct populations in Italy, France and the USA.
Specifically, our aims were: (i) to establish a list of parasite taxa hosted
by the three wolf populations; (ii) to determine the number of parasite
taxa and the proportion of faecal samples positive to parasites; (iii) to
assess drivers (i.e., wolf density, pack size, the presence of free-ranging
dogs, wolf population ancestry, and prevailing wolf diet) that may
structure parasite communities in wolf populations.

2. Materials and methods

2.1. Study areas

Eleven wolf packs from three different geographical regions were
studied (Table 1): Abruzzo, Lazio e Molise National Park (PNALM) in
central Italy, Mercantour National Park (PNM) in south-eastern France
and the northern range of Yellowstone National Park (YNP) in north-
western United-States. These study areas are located at similar latitudes
and show comparable seasonal climatic variations. Pastoralism is im-
portant in PNALM and PNM, where livestock is present year-round in
some areas. It is inexistent in YNP. During the study period, no sig-
nificant change in human activities took place within each of the three
parks. Red foxes (Vulpes vulpes) are present in all three study areas and
in YNP additionally coyotes (Canis latrans). Free-ranging dogs occur
sympatrically with wolves in PNALM and often rely on the same food
sources as wolves (P. Ciucci, pers. comm.), but are absent from YNP and
very rare in PNM (Table 1).

2.2. Investigated wolf populations and packs

The three protected wolf populations differ by their origin (Table 1).
Wolves never disappeared from PNALM (Zimen and Boitani, 1975) and
acted as a source for the natural recolonisation of the northern

Apennines and the Alpine range, including PNM (Fabbri et al., 2007;
Ciucci et al., 2009). In YNP, wolves were reintroduced in 1995 and
1996 through the release of de-wormed individuals (D. Smith, U.S.
National Park Service, pers. comm.) captured in Alberta and British
Columbia, Canada (Bangs and Fritts, 1996). The density of wolves was
similar in PNALM and YNP, while it was almost five times lower in PNM
(Table 1). For the scope of this study, we defined one wolf pack as a
minimum of one male and one female travelling together. Based on the
quality and quantity of faecal samples we obtained, we selected four
packs in each of the two European national parks (PNALM: Iorio, Or-
sara, Villavalelonga, and Mainarde packs; PNM: Haute Tinée, Moyenne
Tinée, Vésubie-Roya, and Vésubie-Tinée packs). These packs comprised
a minimum of 25 wolves in PNALM and 18–23 in PNM. On the northern
range of YNP, we studied three different packs (Slough Creek, Druid
Peak, Blacktail Deer Plateau) comprising 36–39 wolves. (Supplemen-
tary data Table 1). To locate the packs, we relied on previous knowl-
edge by local wolf researchers and used snow-tracking, howls and bird
activity near wolf kill-sites, or accompanied local field crews who used
telemetry. In the YNP, the packs were observed daily, from dawn to
dusk, whenever weather conditions and distance to the animals (i.e.,
100–1500m) allowed it (Baan et al., 2014). Since sample collection
started in early winter (see below), all samples were from individuals of
over six months of age.

2.3. Faecal sampling

For PNM and PNALM, we used wolf faecal samples collected by
scientists and rangers for different projects during winter (i.e., October
2006–March 2007; Ciucci and Boitani, 2009; Grottoli, 2011; Duchamp
et al., 2012). In YNP, we collected samples during winter (De-
cember–March) 2007–2008 and winter 2008–2009 (Supplementary
data Table 1). In PNALM and PNM, we collected most samples within
24–48 h following snowfalls while snow-tracking the packs, thus di-
rectly identifying the contributing pack (Ciucci and Boitani, 2009;
Duchamp et al., 2012). In the absence of snow cover, we collected
samples at known scent posts, at wolf kill- or scavenging-sites or during
opportunistic surveys along pathways (Grottoli, 2011; Duchamp et al.,
2012). In YNP, we collected faecal samples within hours following di-
rect observation and filming of contributing individuals. We avoided
sample collection when wolves not belonging to the studied packs were
known to have used the area. We considered only well-preserved faecal
samples at the time of collection and discarded those partly consumed
by birds, dried out, or exposed to rain or temperatures above freezing.
Scats composed mostly of hair (estimated as > 90% of the scat vo-
lume) or lying less than 50 cm away from one another (to avoid po-
tential cross-contamination of samples) were excluded. The handling of
samples was carried out wearing thick protection gloves and breathing
mask. All samples were stored on the day of collection at −20 °C in
labelled plastic bags and were kept frozen until analysis.

2.4. Coproscopy

We prepared the faecal samples for coproscopy in a biological safety
hood Class II. Of each homogenised faecal sample, we used
1.55 ± 0.05 g and for the parasite concentration, a modified sodium
acetate - acetic acid - formaldehyde (SAF) technique (Yang and
Scholten, 1977). We prepared a stained and an unstained preparation of
each sample (Truant et al., 1981). We mixed a drop of the concentrated
faecal solution with a drop of physiological saline solution for the un-
stained preparations and a drop of Lugol solution (dilution 1:5) (Ash
and Orihel, 1991) for the stained preparations. We systematically
scanned the coverslipped (18× 18mm) preparations at ×100 magni-
fication, using a calibrated Olympus BX50 microscope, and confirmed
each observation at 400x magnification. We identified helminth eggs
based on their size, colour, shape, the aspect of their content and the
structure of the shell surface. We classified eggs from the Taeniidae
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family together, as they cannot be differentiated by microscopic ex-
amination (Foreyt, 2001; Kahn and Line, 2005; Bowman, 2009). All
other helminth eggs and protozoan cysts we identified to genus or
species level (Leger et al., 1977; Garcia and Ash, 1979; Thienpont et al.,
1979; Bailenger, 1982; Ewing, 1986; Campbell, 1991; Uga et al., 2000;
Foreyt, 2001; Bowman, 2000a, 2000b; 2009; Traversa et al., 2010).

We determined the number of parasite taxa from a given study area.
The proportion of samples with at least one egg or cyst of a parasite
taxon we described as N+/N, with N+ being the number of positive
faecal samples and N the total number of analysed samples. For each
value, we calculated 95% confidence intervals (Motulsky, 1995), fol-
lowing a binomial distribution for large sample size. For further details
on coprological analysis, see Molnar (2012) and Molnar et al. (2014,
2015).

2.5. Statistical analyses

We developed models to assess the relationship between measures
of occurrence and abundance of parasite taxa in wolf scats (response
variables) and the most plausible dominant ecological factors in each
wolf population (Table 2). We considered as response variables: i) in-
fection status, coded as 0 for no parasite detected vs 1 for one or more
parasite taxa detected; ii) parasite taxa (i.e., the number of identified
taxa in a faecal sample). We used as explanatory variables free-ranging
dogs (presence vs absence), diet composition (varied vs specific;
Table 1), wolf density, pack size, and Park ID; the latter was meant as a
proxy of wolf population ancestry, even though it might account for
other factors that differ across study sites and that we did not consider.
To assess the relationship between infection status (i.e., a binary re-
sponse variable) and the exploratory variables we used generalised
linear mixed-effect models (GLMM) with a logit link, whereas to test for
the above effects on parasite taxa (i.e., a Poisson-distributed response
variable) we used a GLMM with a log link. To account for pseudor-
eplication and the nested nature of our data, we included a random
intercept for pack ID, nested within the study area, in our GLMMs. All
models we developed using the lme4 package (Bates et al., 2015) in R (R
Core Team, 2018).

Using these models, we also investigated the same relationships
separately for directly vs indirectly transmitted parasites. Also, as
Taeniidae and, Sarcocystis spp. were found in all three study areas, we
also developed the above-described models for each of these taxa se-
parately (Table 2).

For each group of models, we tested models composed of all single
effects and two covariates interactions among those deemed most
plausible and all possible subsets. We then selected the most parsimo-
nious models using the Akaike Information Criterion corrected for small
sample size (AICc) and averaged models with lowest AICc value (i.e.,
ΔAICc < 2; Burnham and Anderson, 2002). Averaged coefficients in
the final models were deemed significant if their 95% confidence in-
terval (CI) did not include zero. We used the Nagelkerke Pseudo-R2

(Nagelkerke, 1991) to assess how each of the averaged models fit the
data. We also checked for overdispersion of the fitted models using the
sum of squared Pearson residuals which, under the hypothesis of no
overdispersion, is distributed as a chi-squared with df equal to the re-
siduals’ df minus one. For all models, the test failed to reject the null
hypothesis (0.41≤ p≤ 1.0), with ratios of the sum of squared over the
df, that should be 1 under the null, ranging 0.63–1.01.

Finally, we used the Chi-square test to assess difference in the
number of positive samples between study areas. We caution that our
results pertain to the sampled scats but, due to their potential lack of
independence among each other, they are not necessarily re-
presentative of the whole population.

2.6. Ethics statement

The collection of faecal samples is a non-invasive procedure and did
not require approval by animal ethics committees. The wolf is protected
in all three study areas. In PNALM research was approved by the na-
tional park authority (Determination no. 38 of 24 March 2003). No
specific permission was required for the collection of faecal samples in
PNM. In YNP, in agreement with the park's policy; permits YELL-2007-
SCI 5716, YELL- 2008-SCI 5716, and YELL-2009-SCI 5716 were deliv-
ered by the authority of the national park.

3. Results

3.1. Parasite taxa and proportion of parasite-infected faecal samples

In 342 analysed wolf scats (PNALM: N=88; PNM: N=68; YNP:
N=186), we identified 11 different parasite taxa, from four in PNM to
ten in PNALM (Fig. 1; Supplementary data Table 2). The proportion of
positive samples did not differ (χ2= 1.905, df= 1, p=0.167) between
the PNALM and YNP, that shared the highest values (88.6% and 81.7%,
respectively), whereas the proportion in PNM (29.4%) was lower
compared to the two other national parks (55.098 ≤χ2≤ 58.337
1≤ df≤ 1, 0.000≤ p≤ 0.000). At the pack level, we detected on
average 3.8 (± 2.6 SD) parasite taxa per pack, ranging from 1 in the
Vésubie-Roya and Moyenne-Roya packs (PNM) to 10 in the Orsara pack
(PNALM); accordingly, proportion of positive samples ranged from
14.3% in the Vésubie-Roya pack (PNM) to 100% in the Orsara pack
(PNALM). Taeniidae (Taenia/Echinococcus spp.), Sarcocystis spp. and
Toxascaris leonina were most common in faecal samples from YNP,
whereas Capillaria spp. and Uncinaria stenocephala were more common
in PNALM. The two Capillaria species, Physaloptera spp. and Toxocara
caniswere only found in PNALM. Trichuris vulpis was only found in YNP.
All parasites found in PNM were also detected in PNALM. (Fig. 1;
Supplementary data Table 2.).

The trematode Dicrocoelium dendriticum was the most commonly
detected pseudoparasite in the European national parks. In YNP,
Capillariidae were the only pseudoparasites detected. The highest

Table 2
Models developed to investigate the relationship between the occurrence of parasites detected in wolf scats and ecological factors using datasets of three different
wolf populations: PNALM (winter 2006–2007); PNM (winter 2006–2007); YNP (winters 2007–2008 and 2008–2009).

Classes of models Response variable Explanatory variables a

1. Overall ecological effects Infection status b Pack ID*, wolf density, free-ranging dogs, park ID, diet
Parasite taxa c

2. Ecological effects separately for directly vs indirectly transmitted parasites Infection status b Same as for the models of class 1
Parasite taxa c

3. Ecological effects separately for selected groups of parasites Infection status b Same as for models of class 1
Parasite taxa c

a
Random factors in GLMM (Generalised Linear Mixed Models) are marked with *.

b Code 0 (no parasites detected in a faecal sample) vs 1 (≥1 parasite taxa detected).
c The total number of parasite taxa identified in a faecal sample.
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diversity of pseudoparasites was found in PNALM (Table 3). At the pack
level, we detected on average one to two pseudoparasite taxa per pack,
ranging from none in the Slough Creek pack (YNP) to 5 in the Mainarde
pack (PNALM).

3.2. Drivers of parasite infection status and parasite taxa

Chances of parasite infection were higher in areas where free-ran-
ging dogs occurred and also where wolf populations were thriving on a
specialised rather than a more diversified diet. (Table 4a), but we failed
to reveal pack-size and wolf density effects. However, the number of
parasite taxa detected in wolf faeces was cumulatively affected by wolf
density, occurrence of free-ranging dogs, and diet composition
(Table 4b). Wolves living in sympatry with free-ranging dogs were in-
fected by more parasite taxa, and wolves living at higher densities also

tended to be infected by a higher number of parasite taxa. Finally,
wolves consuming a more diversified array of prey species hosted a
lower number of parasite taxa compared to wolf populations predating
on one or two ungulate species (Table 4b).

The number of directly transmitted parasite taxa per faecal sample
was again cumulatively affected by the occurrence of free-ranging dogs
in the area, but also by pack size and Park ID (Table 4c). Specifically,
the number of parasite taxa was much higher in areas with sympatric
free-ranging dogs and tended to increase with pack size; in addition, a
study area effect revealed that in the PNALM, independently from the
occurrence of free-ranging dogs, other factors contributed as well to the
highest number of directly transmitted parasite taxa we revealed,
compared to PNM and YNP (Table 4c). The number of indirectly
transmitted parasite taxa was affected by the type of diet and the Park
ID. Wolves thriving on a more diversified diet tended to have a lower

Fig. 1. Canid endoparasites detected in faecal samples of three different wolf populations from PNALM (2006–2007), PNM (2006–2007), and YNP (2007–2009). The
total number of analysed samples (N), the proportion (P) and corresponding 95% confidence intervals (CI) are specified. P and CI are expressed as percentages (%).

Table 3
Pseudoparasite helminths identified in 342 wolves’ faecal samples of three different wolf populations from PNALM (2006–2007), PNM (2006–2007), and YNP
(2007–2009). The total number of tested samples (N), the number of samples that tested positive (N+), proportion (P) and confidence intervals (CI) are figured. P
and CI are expressed as percentages (%).

Pseudoparasites taxa PNALM (N=88) PNM (N=68) YNP (N=186) Total (N=342)

N+ P CI N+ P CI N+ P CI N+ P CI

Trematoda Dicrocoelium dendriticum 14 15.9 9.3–25.6 11 16.2 8.7–27.5 0 0 – 25 7.3 4.9–10.7
Nematoda Capillariidae a 1 1.1 0.1–7.1 1 1.5 0.1–9.0 3 1.6 0.4–5.0 5 1.5 0.5–3.6

Metastrongylus spp. 4 4.5 1.5–11.9 0 0 – 0 0 – 4 1.2 0.4–3.2
Nematodirus sp. 0 0 – 1 1.5 0.1–9.0 0 0 – 1 0.3 0.0–1.9
Toxocara cati 1 1.1 0.1–7.1 0 0 – 0 0 – 1 0.3 0.0–1.9
Trichuris suis 3 3.4 0.9–10.3 0 0 – 0 0 – 3 0.9 0.2–2.8

Pseudoparasite taxa 5 3 1 6

a Eggs identifiable to the family level only, but that do not correspond to any genus known to infect canids.
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number of indirectly transmitted parasites taxa compared to wolves
living on one or a few prey species; in addition, wolves in YNP hosted a
higher number of indirectly transmitted parasite taxa compared to
PNALM (Table 4d).

3.3. Drivers of infection for selected groups of parasites

The infection status concerning U. stenocephala was only affected by
the occurrence of free-ranging dogs. Wolves living in areas without
free-ranging dogs had much lower chances of being infected
(Supplementary data Table 3). Similarly, infection status for T. leonina
was solely affected by pack size, with larger packs having a higher

Table 4
Model selection and drivers of parasite infection status detected in faecal samples from three wolf populations in PNALM (2006–2007), PNM (2006–2007), and YNP
(2007–2009). All models (see Table 2 for all tested covariates) were fitted with a random intercept for pack identity nested within the study area. Only candidate
models with ΔAICc<10 are shown. We used candidate models with ΔAICc ≤2 for model coefficient averaging. R2: Nagelkerke Pseudo-R2 (selected models only); K:
number of estimable parameters; AICc: Akaike information criterion adjusted for small sample sizes; ΔAICc = (AICc) – (AICc)min; w: Akaike weight.

a) Effects on infection status for all parasites.

Fixed-effects parameters R2 K log-likelihood AICc ΔAICc w

Free-ranging dogs + Diet 0.258 3 −155.7136 321.427 – 1

Fixed-effect parameters β SE 95% confidence interval

lower upper

Intercept 1.498 0.190 1.126 1.869
Free-ranging dogs a 3.005 0.441 2.141 3.869
Diet b −2.448 0.343 −3.120 −1.777

b) Effects on parasite taxa for all parasites.

Fixed-effects parameters R2 K log-likelihood AICc ΔAICc w

Wolf Density 0.233 2 −404.050 816.100 – 0.598
Free-ranging dogs + Diet 0.230 3 −403.447 816.894 0.794 0.401

Fixed-effect parameters Β SE 95% confidence interval

lower upper

(intercept) −0.950 0.969 −2.85 0.949
Wolf density 0.040 0.007 0.026 0.054
Free-ranging dog a 1.628 0.275 1.090 2.167
Diet b −1.437 0.274 −1.974 −0.899

c) Effects on parasite taxa for directly transmitted parasites

Fixed-effects parameters R2 K log-likelihood AICc ΔAICc w

Free-ranging dogs + Pack size 0.727 3 −193.783 397.565 0 0.698
Pack size + Park 0.703 4 −193.622 399.244 1.678 0.302

Fixed-effect parameters β SE 95% confidence interval

lower upper

(intercept) −4.299 2.119 −8.452 −0.146
Free-ranging dogs a 4.348 0.717 2.942 5.754
Pack size 0.259 0.081 0.100 0.419
YNP c −4.732 1.010 −6.712 −2.752
PNM c −3.850 1.020 −5.849 −1.850

d) Effects on parasite taxa for indirectly transmitted parasites

Fixed-effects parameters R2 K log-likelihood AICc ΔAICc w

Diet 0.274 2 −341.839 691.678 0 0.685
Park 0.275 3 −341.615 693.230 1.552 0.315

Fixed-effect parameters β SE 95% confidence interval

lower upper

(intercept) −0.213 0.588 −1.366 0.940
Diet b −1.326 0.161 −1.642 −1.010
PNM c −0.202 0.305 −0.799 0.396
YNP c 1.249 0.195 0.866 1.631

a Reference: Free-ranging dogs absent.
b Reference: Specific diet.
c Reference: PNALM (Italy).
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chance of being infected (Supplementary data Table 4).

4. Discussion

To our knowledge, this is the first broad investigation of helminth
and protozoan parasites in grey wolves of three different geographical
regions. The data complement and broadens several other geo-
graphically more restricted studies using necropsy or coprology
(Guberti et al., 1993; Stronen et al., 2011; Bryan et al., 2012; Schurer
et al., 2016; Lesniak et al., 2017a, 2017 b; Al-Sabi et al., 2018). Our
findings correlate well with the ancestry and the ecology of the three
wolf populations. The PNALM population is the oldest one with free-
ranging dogs widely present, followed by YNP and PNM populations.
Significant differences were detected in the overall number of parasite
taxa and the extent of their infection across the three geographic areas
we considered.

4.1. Factors shaping parasite communities

Our models demonstrated common drivers across all parks. The
presence of sympatric free-ranging dogs, as well as reliance by wolves
on one or two main prey species, compared to a more diversified diet,
positively correlated with both infection status and the number of
parasite taxa we detected in faecal samples. Wolf density and park may
also play a role, however on a more limited scale.

4.1.1. Free-ranging dogs
The impact of free-ranging dogs is illustrated by the surprisingly

high proportion of samples with C. boehmi (80.7%), exclusively de-
tected in PNALM. Only recently, Al-Sabi et al. (2018) reported a high
proportion of 60% of C. boehmi in wolves of Sweden. The high per-
centage of this mainly directly transmitted parasite suggests a very ef-
ficient transmission and an important contamination of the environ-
ment. C. aerophila was always present, at a lower proportion, as a
coinfection in samples with C. boehmi. C. aerophila was reported in
wolves in Eastern Europe (Shimalov and Shimalov, 2000; Popiołek
et al., 2007; Bagrade et al., 2009; Szafrańska et al., 2010), Russia and
North America (Peterson et al., 1998; Craig and Craig, 2005). As the
investigation of faeces is commonly used to convey information in ca-
nids, these parasites can easily be acquired through inhalation of in-
fective eggs from deposited scats. During the study period, Capillaria
species were not common parasites of foxes in central and Northern
Italy (Di Cerbo et al., 2008; Magi et al., 2009), even though they have
been more recently reported (Veronesi et al., 2014; Magi et al., 2015).
The consistent population of free-ranging dogs in Italy (Verardi et al.,
2006; Corrain et al., 2007), including PNALM (Boitani et al., 1995),
served probably as a reservoir for C. boehmi. In 2013 the death of
several wolves in PNALM was attributed to a CDV outbreak (Di
Sabatino et al., 2014). Capillaria spp. infections might have been a co-
factor. The knowledge of the range of hosts and the geographic dis-
tribution of C. aerophila is still incomplete.

4.1.2. Diet
The importance of the diet on the infection status and the number of

parasite taxa was confirmed through the dominant proportion of the
Taeniidae and Sarcocystis spp. detected in all three investigated areas.
These two taxa, with an indirect life cycle, are known to infect a broad
array of ungulate and carnivore species worldwide. The genera Taenia
and Echinococcus are widespread intestinal parasites of canids and have
frequently been reported in wolves, (Foreyt, 2001; Kahn and Line,
2005; Bowman, 2009). Both genera include different species described
in wolves in Europe and North America (Guberti et al., 1993; Custer
and Pence, 1981b; Lesniak et al., 2017a).Taenia spp. require an herbi-
vore or omnivore intermediate host, such as ungulates, lagomorphs,
and rodents (Guberti et al., 1993; Marquard-Petersen, 1997; Craig and
Craig, 2005). The high proportions of positive samples we detected in

YNP, two to three times higher than in PNALM and four times higher
than in PNM, is closely linked to the selection of elk as a primary prey
(> 96%) by wolves on the northern range of YNP (Smith et al., 2008,
2009, 2010). It also suggests a high level of infection of the YNP elk
population. In line with the lower proportions of infected samples also
reported for Canada (Stronen et al., 2011; Bryan et al., 2012), lower
infection extent in PNALM and PNM are in agreement with the more
diversified wolf diets in these regions, some of them not infected by
Taenids.

Echinococcus granulosus is widespread in Italy and in particular in
the Abruzzo region, where it is closely associated to sheep and cattle
grazing and numerous sheepdogs (Guberti et al., 1992; Garippa et al.,
2004; Garippa and Manfredi, 2009). This parasite has also been de-
tected in wolves in PNALM (L. Gentile, PNALM Veterinary Service, pers.
comm.). In PNM no information is available, but in YNP E. granulosus
was detected in some wolves (https://www.nps.gov/yell/learn/ys-24-
1-infectious-diseases-of-wolves-in-yellowstone.htm). Although Echino-
coccus spp are important zoonotic agents causing human echino-
coccosis, to our knowledge, no cases of human infection have been
recently reported from these parks.

The presence of Sarcocystis spp. in all three study areas was not
surprising. Numerous species of Sarcocystis infect a wide range of prey
species around the world, including domestic and free-ranging un-
gulates (Gajadhar et al., 2015). Infection of wolves by Sarcocystis spp.
has been reported in different geographical regions (Emnett, 1986;
Kreeger, 2003; Stronen et al., 2011 Bryan et al., 2012; Schurer et al.,
2016; Lesniak et al., 2017a, 2017 b) and are also well-known parasites
of dogs, foxes and coyotes (Fayer and Johnson, 1975; Ewing, 1986;
Rajković-Janje et al., 2004). The proportion of samples with Sarcocystis
spp. of YNP are similar to the values reported for Canada (36.5–43.7%;
Stronen et al., 2011; Bryan et al., 2012). Lesniak et al. (2017a) found
95% of necropsied wolves found dead in Germany being positive for
Sarcocystis spp., where red deer and fallow deer (Dama dama) are the
main prey (Lesniak et al., 2017a). Patency of Sarcocystis is of a few days
(Emnett, 1986). The time of the collection of the faecal samples has a
direct impact on the parasite detection, besides well-known methodo-
logical differences (see point 4 below). The more diversified diet of
wolves in PNALM and PNM, relative to YNP, could have contributed to
the lower proportion of Sarcocystis spp. Modelling the numbers of
parasites with an indirect life cycle (mainly Taeniidae and Sarcocystis),
indicated that wolves with a more diversified diet hosted a lower
number of parasite taxa. Indeed, wolves in YNP, perhaps due to their
more closely associated predator-prey relationship, showed a higher
probability of being infected by more than one parasite taxon with an
indirect life cycle.

The proportion of positive samples and the number of pseudopar-
asite taxa were highest in PNALM, followed by PNM and lower in YNP,
mirroring an increasing gradient in diet specificity across the regions.
Although infection of wolves through coprophagy cannot be excluded,
the detection of pseudoparasite eggs infecting suids (swine and wild
boar), such as Trichuris suis and Metastrongylus spp. (Table 3), provides
direct information on the diet of wolves. Detection of more generalist
parasites such as D. dendriticum, Nematodirus spp. or Capillariidae, that
infect a broad range of hosts, is an indicator of their presence in po-
tential wolf prey species in the area.

4.1.3. Wolf density
An elevated host density usually facilitates the spread of parasites in

a population (Tompkins et al., 2002) and the transmission of new
parasite species (Roberts et al., 2002). A significant correlation between
cortisol metabolite levels (indicators of stress) and a higher number of
parasite taxa (two or more) in faecal samples of PNALM was already
described (Molnar et al., 2015).

In addition to wolf density at the population level, a higher number
of members within a pack corresponds to higher chances of infection by
one or more parasites taxa. Taxonomically related host species are
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susceptible to be infected by the same parasite species (Freeland, 1983),
and part of the parasite fauna of wolves is also found in other canids
such as dogs, red foxes and coyotes (Canis latrans) (Erickson, 1944;
Custer and Pence, 1981b; Campbell, 1991; Guberti and Poglayen, 1991;
Guberti et al., 1993; Di Cerbo et al., 2008; Bryan et al., 2012). Our
findings indicate that the presence of free-ranging dogs was a relevant
driver of both infection status and the number of parasite taxa detected
in wolf faeces. Contamination of the environment with directly trans-
mitted parasites is enhanced by sympatric populations of canids and
thus facilitates infection of wolves by shared parasites. In all three in-
vestigated areas, wild canids may importantly contribute to this en-
vironmental effect. In central Italy, free-ranging dogs most likely use
similar prey species as wolves (Ciucci and Boitani, 1998), and in
PNALM both free-ranging dogs and wolves scavenge on abandoned li-
vestock carcasses (P. Ciucci, pers. comm.), enhancing the impact of
sympatric canids on infection of wolves.

4.1.4. Park
The differences in parasite numbers between the three investigated

areas indicated that additional different geographical and biological
factors structure the parasite community of wolves. Ancestry of the
studied populations, other ecological correlates, presence and diversity
of sympatric susceptible canids are factors that may explain these dif-
ferences. Our models on all parasite taxa (i.e., both directly and in-
directly transmitted ones) revealed no park effect on infection status,
nor on the number of parasite taxa detected in faecal samples. However,
by separating directly and indirectly transmitted parasites, we did re-
veal a park effect, and different factors affected the number of parasite
taxa in the studied wolf populations. Wolves living in PNALM had
higher chances of hosting a higher number of directly transmitted
parasites (mainly Capillaria spp. and U. stenocephala). Wolves in YNP
had higher chances of hosting indirectly transmitted parasites (mainly
Taeniidae and Sarcocystis). Guberti et al. (1993) suggested that long-
established wolf populations might harbour helminths different from
newly settled populations. As the wolf never disappeared from central
Italy (Boitani, 2003), the high number of parasite taxa that we reported
in PNALM might reflect a long-term co-evolution between the wolf and
its parasite community. Equally high parasite numbers were reported in
wolves elsewhere in Europe (Segovia et al., 2001, 2003; Moks et al.,
2006; Bagrade et al., 2009) and North America (Stronen et al., 2011;
Bryan et al., 2012), in all cases associated with long-established wolf
populations. In YNP, the parasite community of wolves grew from zero,
as reintroduced wolves were de-wormed before their release in the park
in 1995 and 1996 (D. Smith, pers. comm.). It is therefore not surprising
that the number of parasite taxa we detected in YNP was lower com-
pared to long-established, untreated, populations in Canada (Stronen
et al., 2011; Bryan et al., 2012). In the absence of conspecifics, Yel-
lowstone wolves likely acquired parasites maintained in the environ-
ment by coyotes, their closest relatives in the area. Indeed, all parasites
detected in the YNP packs are known coyote parasites (Erickson, 1944;
Thornton et al., 1974; Arther and Post, 1977; Hudkins and Kistner,
1977; Conder and Loveless, 1978; Dubey, 1980; Custer and Pence,
1981a; Radomski and Pence, 1993), and some of them also infect foxes
in North America (Erickson, 1944). Wolves dispersing into YNP
(Jimenez et al., 2017) might have introduced into local packs some of
the detected parasites, such as the helminth T. vulpis, a less common
parasite of coyotes (Custer and Pence, 1981a). The total proportion of
infected samples in YNP (81.7%) was coherent with previous findings
in wolves from North America (91.0% by necropsy, Rausch and
Williamson, 1959; 95.0%, Custer and Pence, 1981b). This proportion
was higher than the one reported for British Columbia (62.6%, Bryan
et al., 2012) with the predominance of the same two parasite taxa:
Sarcocystis spp. and Taeniidae. Our results show that Taeniidae and
Sarcocystis spp. were especially prevalent in the elk population of YNP.

The lowest number of parasite taxa (only four) and the lowest
proportion of infected samples were found in PNM. Reinfection of

wolves is helped by their fidelity to den sites and rendezvous areas in
well-established packs (Custer and Pence, 1981b; Kreeger, 2003;
Segovia et al., 2003). During the recent wolf re-colonisation process of
the French Alpe, such fidelity might not have been immediately es-
tablished, and less common parasites may have consequently failed to
survive in the environment. Small populations of hosts that recolonise
new areas usually harbour a subset of the total variety of parasites
present in the source population (Roberts et al., 2002). If the colonised
area is suitable for the parasite life cycle, most prevalent species are
likely transferred from the source population, whereas less common
ones are expected to disappear in the recolonising population (Roberts
et al., 2002). A dispersal corridor connects the wolf population of PNM
with the one of the Apennines in Italy, from where dispersers founded
the packs in PNM through a natural re-colonisation process (Ciucci
et al., 2009). The absence of Capillaria spp. in PNM might be due to lack
of infection in dispersing wolves during the re-colonisation period.
Heavily infected wolves may have been physically less efficient in
dispersing to PNM. Both Capillaria species infect the respiratory system
of wolves and can severely impair infected hosts (Bowman, 2000a,
2009). The overall lower wolf density and the lack of free-ranging dogs
in PNM both prevent the contamination of the environment by these
parasites. Since the presence of Capillaria spp. in foxes has not been
reported from PNM, their presence should be further evaluated.

4.2. Individual parasites

Cystoisospora spp. was, beside Sarcocystis spp., the only other pro-
tozoan parasite detected in one sample each in PNALM and YNP. This
protozoan was identified in Canada (Bryan et al., 2012) and in the
United States, likely causing the death of wolf pups (Mech and Kurtz,
1999). Hermosilla et al. (2017) reported Cystoisospora spp. also in.

Croatian wolves. Consistent with our results, T. leonina and U. ste-
nocephala were previously reported in wolves from Italy and Germany
(Guberti et al., 1993; Lesniak et al., 2017a). T. leonina was also detected
in studies in Canada (Stronen et al., 2011; Bryan et al., 2012). Reports
of T. canis in wolves vary markedly from 0.3% to 33% (Stronen et al.,
2011; Bryan et al., 2012; Guberti et al., 1993; Lesniak et al., 2017a;
Paoletti et al., 2017), and this parasite was detected in over half of
necropsied foxes from Northern Italy (Di Cerbo et al., 2008). The ab-
sence of T. canis in PNM and YNP and the small proportion of positive
samples in PNALM suggest either a low prevalence of this parasite in
the studied wolf populations or a possible artefact due to the timing of
our sampling. Infection of T. canis, more common in younger canids
compared to adults (Guberti et al., 1993; Bowman, 2009), may be lethal
to pups (Foreyt, 2001; Kreeger, 2003; Bowman, 2009). In winter, in-
fected pups may either succumb to infection or overcome it, although
we know that no wolf pup died in the studied packs from YNP. Phy-
saloptera spp. and Alaria spp. found in wolf samples from PNALM and
YNP were not reported for Italy before. Physaloptera spp. were reported
for Persia, Northern Asia (Kreeger, 2003), Greece and North America
(Erickson, 1944; Schurer et al., 2016), while Alaria spp. have been
described in wolves worldwide and also in Manitoba, Canada (Stronen
et al., 2011). T. vulpis was not found in PNALM and in only one sample
in PNM. This might indicate that the helminth was not widespread,
since the sensitivity of coprology for whipworms is relatively high
(43 ± 3%; Wilson et al., 2002).

4.3. Unidentified nematode larvae

The identification of unidentified nematode larvae would have
needed a thorough morphological or molecular examination. They
could be first-stage larvae of hookworm (in our samples: U. stenoce-
phala) that hatched from eggs in faeces. Free-living or plant nematodes
could have been migrating into the scat from the environment
(Traversa et al., 2010), larvae stemming from infested prey, or parasites
of wolves eliminated as larvae. Different parasites of the dog are present
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as larvae in faeces, including Oslerus osleri, Strongyloides stercoralis,
Angiostrongylus vasorum or Crenosoma vulpis (Traversa et al., 2010) and
most of these parasites have been reported in wolves (Erickson, 1944;
Shimalov and Shimalov, 2000; Segovia et al., 2001; Popiołek et al.,
2007; Bagrade et al., 2009). Sampling in winter most likely prevented
the development of nematode larvae and the contamination of collected
faecal (Marquard-Petersen, 1997). If the detected unidentified larvae
were considered as wolf parasites, the reported helminth proportion
would double in PNM, but remain about the same in PNALM and YNP.

4.4. Methodological caveats of coprology

Torres et al. (2001) showed in wild canids that coprological pre-
valences were significantly lower than those found by necropsy, but
they conclude that in wild canids coprological surveys provide an ac-
ceptable approximation to the real parasite fauna. Additionally, the
number of parasite taxa is underestimated since several parasites could
only be determined to the family (Taeniidae) or genera (e.g. Sarco-
cystis) level. Therefore, our results represent an underestimation of the
real extent of parasite presence. In Italy, M. lineatus, D. caninum, and
Ancylostoma caninum were detected in less than 16% of analysed guts of
wolves (Guberti et al., 1993). Magi et al. (2009) reported an elevated
proportion of M. lineatus and D. caninum in red foxes through necropsy
(45.4 and 57.3%) but found no eggs in faecal samples of the same in-
dividuals. The low sensitivity of coprology probably explains their ab-
sence in our data. Eggs and larvae of A. caninum are destroyed by
freezing (Bowman, 2009) explaining their absence from our samples,
collected in winter and stored frozen.

The term prevalence is sometimes erroneously used in the literature
to describe the proportion of faecal samples containing parasites. We
avoided the use of this term because the collected faecal samples are not
necessarily an unbiased and representative sample of the entire wolf
population. Nevertheless, we believe they provide a practical yet useful
assessment of the extent of infection within a host population, espe-
cially if consistently used to compare different host populations.

5. Conclusions

Even if the actual presence of parasites may be underestimated in
our study due to the low sensitivity of coprology, our findings indicate
high levels of infection by a high number of parasite taxa in PNALM and
YNP. Besides geographical, historical and wolf population parameters,
the presence of free-ranging dogs and the diversity of prey species in-
fluence the parasite fauna of wolves. To better assess the epidemiolo-
gical factors shaping the parasitic fauna and their impact on wolves,
investigations of infections in sympatric canid populations (free-ran-
ging dogs, coyotes, and foxes) and their preferred prey should be un-
dertaken in all three study areas.
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