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Background: Self-report multiple choice questionnaires have been widely utilized to 
quantitatively measure one’s personality and psychological constructs. Despite several 
strengths (e.g., brevity and utility), self-report multiple choice questionnaires have 
considerable limitations in nature. With the rise of machine learning (ML) and Natural 
language processing (NLP), researchers in the field of psychology are widely adopting 
NLP to assess psychological construct to predict human behaviors. However, there is a 
lack of connections between the work being performed in computer science and that of 
psychology due to small data sets and unvalidated modeling practices.

Aims: The current article introduces the study method and procedure of phase II which 
includes the interview questions for the five-factor model (FFM) of personality developed 
in phase I. This study aims to develop the interview (semi-structured) and open-ended 
questions for the FFM-based personality assessments, specifically designed with experts 
in the field of clinical and personality psychology (phase 1), and to collect the personality-
related text data using the interview questions and self-report measures on personality 
and psychological distress (phase 2). The purpose of the study includes examining the 
relationship between natural language data obtained from the interview questions, 
measuring the FFM personality constructs, and psychological distress to demonstrate 
the validity of the natural language-based personality prediction.

Methods: Phase I (pilot) study was conducted to fifty-nine native Korean adults to acquire 
the personality-related text data from the interview (semi-structured) and open-ended 
questions based on the FFM of personality. The interview questions were revised and 
finalized with the feedback from the external expert committee, consisting of personality 
and clinical psychologists. Based on the established interview questions, a total of 300 
Korean adults will be recruited using a convenience sampling method via online survey. 
The text data collected from interviews will be analyzed using the natural language 
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INTRODUCTION

Background
Technological advances brought numerous changes in analyzing 
and predicting data in the field of psychology. In particular, 
the recent fourth industrial revolution and the development 
of computer technology made it possible to quickly and accurately 
analyze and predict human characteristics, with further 
innovations taking place. While many other fields (medicine, 
marketing, engineering, etc.) are rapidly integrating computer 
skills to develop technology that can be  utilized in real life, 
the application of technology in the field of psychology remains 
limited and steady (Ahmad et  al., 2020; Le Glaz et  al., 2021). 
Many attempts are being made to evaluate and identify the 
psychological state or characteristics of an individual. However, 
research and technological development face challenges due 
to numerous theories and immense structures of personality 
(Zunic et  al., 2020).

Traditional Personality Assessment
Understanding individuals’ personality gives substantial 
information about how people behave and adapt to the world. 
Personality psychology theories made attempts to explain 
human personality in a concrete and valid way, through 
accurately measuring individuals’ personality. In the field of 
clinical psychology and psychiatry, classifying personality 
disorders using personality measurements is a central objective. 
Disorders in personality have been categorically understood 
within the diagnostic system for a long time and assessing 
the presence or absence of the disorder has been an important 
topic. However, this method poses problems such as 
heterogeneity within the same category because the boundaries 
between disabilities are unclear, or having one disorder 
belonging to two or more categories at the same time (Widiger 
and Trull, 2007; Livesley, 2010). In addition, the inter-rater 
reliability among experienced clinical psychologists and/or 
psychiatrists diagnosing personality disorders using the 
categorical approach did not reach a sufficient level (Kraemer 
et  al., 2012; Esbec and Echeburúa, 2015). For this reason, 
a dimensional model, which understands personality as a 
complex hierarchy of continuously distributed attributes rather 
than a categorical approach, is receiving attention in 
understanding personality and diagnosing disorders (Costa 
and McCrae, 2017). Many empirical studies have proven its 
validity and usefulness (Widiger, 2017). The Five-Factor Model 
(FFM), which explains personality with Neuroticism, 
Extraversion, Openness, Agreeableness, Conscientiousness, 
and their many facets, is a well-known dimensional model 
of personality (McCrae and John, 1992).

Traditionally, a self-report multiple choice questionnaires 
have been widely utilized to quantitatively measure one’s 
personality and other psychological constructs. This measure 
has extreme practicality in that it simply requires the target 
person’s participation and can readily collect sufficient 
information in one sitting (Paulhus and Vazire, 2007). Despite 
other definite strengths (e.g., brevity and utility), the self-
report multiple choice questionnaires have several limitations 
in nature. First, it is possible for respondents to hide or 
distort their responses, especially in the context of forensic 
or evaluation settings for employment (White et  al., 2008; 
Fan et  al., 2012). To prevent such manipulation, the L-scale 
was designed to detect and provide information on responses 
intentionally distorted or skewed toward socially desirable 
traits (Furnham, 1986). Although L-scale can detect “faking” 
subjects, limitation remains in accurately discerning every 
faking subject from honest subjects (Elliot et  al., 1996). In 
addition, since item contents and anchors are pre-determined, 
test respondents cannot provide detailed information beyond 
test items (Arntz et  al., 2012). According to Paulhus and 
Vazire (2007), this is especially evident in dichotomous response 
formats (e.g., Yes-No, True-False, and Agree-Disagree). Finally, 
test bias due to absolute or random responding also remains 
a critical issue in test administration (Holden et  al., 2012; 
Al-Mosaiwi and Johnstone, 2018).

Structured or semi-structured clinical interview methods 
are utilized in personality assessment and diagnosis since it 
allows more information than the self-reported multiple choice 
questionnaires, and participants are less likely to hide or 
distort their responses. These interview methods can also 
increase the reliability of personality disorder diagnosis in 
compliance to the diagnostic criteria (Wood et  al., 2002). 
Clinicians can identify discrepancies found in self-reported 
tests and obtain additional information on responses 
through follow-up questions, which is essential for 
diagnosing personality disorders (Samuel et  al., 2013). 
Especially, the Structured Interview for the FFM (SIFFM; 
Trull and Widiger, 1997) and the Structured Clinical Interview 
for the DSM-5 Alternative Model for Personality Disorder 
(SCID-5-AMPD) are representative interview instruments 
that evaluate personality traits in terms of dimensional aspect. 
These interviews may better describe behavioral symptoms 
and diagnostic criteria in a systematic and standardized 
manner because of their superior assessment of observable 
behavioral symptoms (Hopwood et  al., 2008). However, it 
is important to note that semi-structured interview requires 
a lot of time and manpower. Also, evaluation relying on 
clinician’s judgment may cause diagnosis bias or problems 
with reliability.

processing. The results of the online survey including demographic data, depression, 
anxiety, and personality inventories will be analyzed together in the model to predict 
individuals’ FFM of personality and the level of psychological distress (phase 2).

Keywords: personality prediction, psychological distress prediction, natural language processing, machine 
learning, the five-factor model of personality
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Machine Learning and Natural Language 
Processing in Psychology
With advancements in computer technology, new attempts 
have been made to analyze psychological traits through 
computer programming and to predict them quickly, efficiently, 
and accurately. Especially with the rise of Machine Learning 
(ML), Deep Learning (DL), and Natural Language Processing 
(NLP), researchers in the field of psychology are widely 
adopting NLP to assess psychological construct or to predict 
human behaviors. ML and DL mainly focus on developing 
algorithms to discover certain patterns and predict new data 
accumulated from prior experiences, learned by computer 
programs through previously performed similar tasks. ML 
and DL enable researchers to identify independent variables, 
which were previously under-recognized, and to handle 
tremendous data. Natural language processing (NLP), a branch 
of ML research and applications, incorporates computer 
programming that automatically understand and analyze natural 
language text. NLP researchers have developed appropriate 
tools and techniques to enable computer systems to understand 
and manipulate natural language to perform desired tasks 
(Chowdhury, 2003). NLP also makes it possible to quantify 
and analyze qualitative text data.

According to previous studies, some researchers applied ML 
and NLP to measure and predict psychological traits such as 
personality and psychiatric disorders. For example, Al Hanai 
et  al. (2018) attempted to predict depression by developing 
an automated depression-detection algorithm that learns from 
a sequence of questions and answers. Jayaratne and Jayatilleke 
(2020) sought to predict one’s personality as an indicator of 
job performance and satisfaction using the textual content of 
interview answers. Also, recent studies aim to identify psychotic 
symptoms and improve the efficient detection of individuals 
at risk for psychosis by applying NLP to language data (Chandran 
et  al., 2019; Corcoran and Cecchi, 2020; Irving et  al., 2021). 
When Park et  al. (2015) utilized ML and NLP to build the 
open-vocabulary language model with Facebook posts, the 
model appropriately predicted the participants’ personality based 
on the FFM.

Likewise, studies attempting to predict and diagnose individual 
psychological characteristics using ML and NLP techniques 
are gradually increasing in the field of psychology and mental 
health. This not only increases efficiency, but also reduces the 
influence of human bias of the existing measurements (Oswald 
et  al., 2020). However, it is notable that the prior studies still 
have limitations and many areas need to be  supplemented. 
First, there is a lack of connections between the work being 
performed in computer science and that of psychology (Stachl 
et  al., 2020). Previous research works in computer science fall 
short in providing in-depth personality assessment and 
interpretation, only citing the psychological literature with 
respect to dependent (target) variables like personality inventories. 
The explanatory power of the results is questionable in that 
it overlooked the importance of personality theories. For instance, 
some studies not only applied non representative SNS profiles 
(Amichai-Hamburger and Vinitzky, 2010; Lima and De Castro, 
2014) or consumption data (Gladstone et al., 2019) as independent 

(predictor) variables for personality prediction, but results of 
the MBTI (Myers-Briggs Type Indicators) test, which classify 
human characteristics into four domains, were also used as 
target variables despite lacking sufficient theoretical basis (Cui 
and Qi, 2017; Gjurković and Šnajder, 2018; Sönmezöz et  al., 
2020). Using these variables makes it possible for convenient 
and quick big data collection and provides simple labeling for 
ML, but it does not give an adequate explanation for the 
predicted results. Second, studies published in the field of 
clinical and personality psychology often show potential 
overfitting problems caused by smaller datasets (Yarkoni and 
Westfall, 2017) and raise concerns about questionable modeling 
practices (Mønsted et  al., 2018). Lastly, it should also be  noted 
that compared to Western countries, studies on language-
personality interconnectedness in the Eastern countries and 
cultures have been relatively less reported.

Purpose
Traditional approaches using self-report multiple choice 
questionnaires and recent approaches using machine learning 
both have their strengths and limitations in personality 
assessment. Although ML allows faster mappings between data, 
the results are meaningful only when explanations for complex 
multidimensional human personality can be  provided based 
on theory. The current study aims to examine the relationship 
between the FFM personality constructs, psychological distress, 
and natural language data, overcoming the lack of connection 
between the field of computer science and psychology. 
We developed the interview (semi-structured) and open-ended 
questions for the FFM-based personality assessments, specifically 
designed with experts in the field of clinical and personality 
psychology (phase 1). Developed interview questions that could 
extract linguistic data reflecting personality were formulated 
and will further be  analyzed by NLP. This will help us acquire 
essential text data to increase the efficiency of ML analysis at 
the final research stage. We  will collect the personality-related 
text data using the interview questions and extract linguistic 
features predicting the FFM of personality and psychological 
distress such as depression, anxiety, and risks for suicidality 
(phase 2). Finally, we  will develop algorithm models that can 
predict personality with text data. We  expect that the newly 
developed models will better predict personality compared to 
the traditional assessments. This will bring about important 
implications in that the research approach is not only exploratory 
but also theory driven, with sufficient amount of text 
data provided.

Hypotheses
We hypothesize that the extracted linguistic feature (1) would 
identify individuals’ personality traits based on the FFM, having 
significant correlations with the self-reported FFM personality 
inventories and (2) would discern a linguistic marker of 
psychological distress. Also, (3) qualitative differences between 
the text data obtained from the video interview and the text 
data obtained from the online survey will be examined through 
an exploratory method.

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Jang et al. Predicting Personality Using NLP

Frontiers in Psychology | www.frontiersin.org 4 April 2022 | Volume 13 | Article 865541

METHOD AND ANALYSIS

Study Design and Procedure
The current research consists of two phases to provide more 
explanatory power. In phase I, we  conducted a pilot study to 
develop the semi-structured interview questions for the FFM 
of personality. In Phase II, the interview for the FFM of 
personality developed in phase I  will be  applied in conducting 
data collection to predict personality and psychological distress 
(study design and procedure are shown in Figure  1). All the 
courses of this study will be  approved by Korea University’s 
Institutional Review Boards (IRB). Data will be  collected by 
an online platform considering the COVID-19 pandemic. Finally, 
the current study will not include any intervention such as 
pharmacotherapy or psychotherapy.

Phase 1 (Pilot) Study
A pilot study was conducted as a process for developing “semi-
structured interview” questions based on the FFM of personality. 
The study was carried out for a year starting from September 
2020. First, a preliminary question pool of 66 items was 
generated by licensed clinical psychologists, social and personality 
psychologists, psychometricians, and experts in human resource 
departments. All questions were designed to measure 10 
domains and 33 sub-facets based on Costa and McCrae’s Five-
Factor model (McCrae and Costa, 1996). Then, we  conducted 
a primary data collection on 59 participants using the 29 
items selected through several additional review processes 
made by experts. All responses collected were once again 
empirically evaluated for adequacy from an external expert 

committee, consisting of psychologists with expertise in 
personality and psychopathology. In particular, differential 
validity, ambiguity in expressions, and the intention of the 
question were carefully considered. Furthermore, additional 
analysis based on ML and NLP for the text data was administered. 
At this stage, we  applied information theory to identify the 
entropy of words that are highly correlated with specific 
personality traits, and Latent Dirichlet Allocation (LDA) was 
used to exploratorily analyze what kind of words related to 
which certain subjects are frequently used by people. Through 
these experts’ feedback and computing analysis process, the 
existing 29 questions were revised and finalized as a total of 
18 questions.

Phase 2 Study
In phase 2 study, we  will collect data using a semi-structured 
interview, developed in a pilot study and self-report inventories. 
Phase II started in November, 2021 and will be  completed in 
August, 2023. Participants will first be  asked to respond to the 
self-report questionnaire about depression, anxiety, suicide risk, 
and personality via online survey platform (Qualtrics). Then, 
they will participate in a semi-structured interview session with 
the researcher in an online meeting or chatting platform. All 
responses of the participants to the interview questions were 
stored and analyzed in the form of text. To extract text features, 
text data from the interview and the online survey will 
be  preprocessed using morphological analysis and analyzed by 
applying the NLP and ML model. The results of the online 
survey including demographic data, depression, anxiety, suicidality, 
and personality inventories will be  investigated together in the 

FIGURE 1 | Study design flow.
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model to predict individuals’ personality based on the FFM 
and the level of psychological distress. The moderating role of 
qualitative differences of linguistic information, in terms of 
written text and transcribed speech, in the effects of personality 
on language patterns or expression needs to be further investigated. 
To explore this, the same questions will be asked to participants 
in both online survey (text submission) and online video 
interview (speech transcribed into text).

Participants
Participants will be recruited from online or local advertisements 
posted in university communities or job search websites. All 
participants will be  provided with written informed consent 
before participating in the study. The inclusion criteria are (1) 
being over 18 years and (2) fluent in Korean language. The 
participants (1) who have a history of brain surgery or (2) 
intellectual disability will be excluded. A total of 59 participants 
were recruited in Phase 1, and in Phase 2, we  will collect 
data from 300 (anticipated) Korean adults using a convenient 
sampling method. This number is considered appropriate in 
that several similar studies (Hirsh and Peterson, 2009; Arntz 
et  al., 2012; Al Hanai et  al., 2018), which directly collected 
data (not based on big data) from about 100 to 400 people, 
reported appropriate results.

Measures
Online Survey
Participants will complete a battery of questionnaires designed 
to assess depression, anxiety, suicidality, personality disorders, 
personality characteristics, and data on demographic information. 
In addition, open-ended questions about individuals’ personality 
will be  asked and collected.

Bright and Dark Personality Inventory
Bright and Dark Personality Inventory (BDPI; Kim et  al., 
2020) will be  used to assess personality traits. The BDPI is 
a 173-item multidimensional personality inventory, which is 
a self-report measure with a 4-point Likert scale (1 = strongly 
disagree; 4 = strongly agree). BDPI was developed based on 
Five Factor Model of personality (McCrae and Costa, 1996). 
BDPI measures personality in five-factor traits and maladaptive 
traits. Since BDPI measures both adaptive and maladaptive 
personality traits dimensionally, one’s personality can 
be described in more detail than traditional approaches which 
only measured adaptive or maladaptive traits of personality. 
This approach considering bipolarity of personality can be used 
to measure one’s personality in various settings from normal 
to clinical settings (Lee et  al., 2019; Kim et  al., 2020). The 
five-factor adaptive personality traits include extraversion, 
agreeableness, conscientiousness, openness, and emotional 
stability, and the maladaptive personality traits include 
detachment, egocentrism, disinhibition, psychoticism, and 
negative affectivity. BDPI has total of 10 personality traits 
and each trait consists of three to four sub-facets. Each 
personality trait and facet will have its own score, which will 
be  converted into T-score.

BDPI was psychometrically validated including Item 
Response Theory, reporting adequate reliability and validity 
(Lee et al., 2019; Kim et al., 2020). Kim et al. (2020) reported 
that Cronbach’s alpha coefficient for adaptive personality scales 
was 0.924, ranging from 0.714 (conscientiousness) to 0.922 
(extraversion) and maladaptive personality scales was 0.960, 
ranging from 0.848 (psychoticism) to 0.896 (egocentrism). 
Intraclass correlation coefficient was 0.731 and 0.707, 
respectively, for adaptive and maladaptive personality scales 
(Kim et  al., 2020).

Mental Health Screening Tool for Depressive 
Disorders
Mental Health Screening Tool for Depressive disorders (MHS:D; 
Yoon et al., 2018) will be used to assess depressive symptoms. 
The MHS:D is a 12-item self-report measure, with a 5-point 
Likert scale (0 = never, 4 = most of the time). Mental Health 
Screening Tools for depression, anxiety, and suicide risk were 
developed and validated for Korean adults. MHS:D was 
developed and validated using structured clinical interview 
and IRT (Yoon et  al., 2018). Weights calculated using IRT 
will be  reflected on total score. In the previous study, Yoon 
et  al. (2018) reported that Cronbach’s alpha coefficient was 
0.99. Total score of MHS:D showed positive correlations of 
0.74, 0.78, and 0.70 with those of CES-D, PHQ-9, and 
BDI-II. MHS:D showed 0.92 of sensitivity and 0.94 of specificity 
for depressive disorder diagnosed with M.I.N.I (Lecrubier 
et  al., 1997) at cut-off point of 13.

Mental Health Screening Tool for Anxiety 
Disorders
Mental Health Screening Tool for Anxiety Disorders (MHS:A; 
Kim et  al., 2018) will be  used to assess anxiety symptoms. 
The MHS:A is a 11-item self-report measure, with a 5-point 
Likert scale (0 = never, 4 = most of the time). MHS:A was 
developed and validated using IRT (Kim et  al., 2018). Weights 
calculated using IRT will be  reflected on total score. In the 
previous study, Cronbach’s alpha coefficient was 0.92. Total 
score of MHS:A showed positive correlations of 0.821, 0.653, 
and 0.821 of total scores of GAD-7, PSWQ, and BAI, respectively 
(Kim et  al., 2018). MHS:A showed 0.795 of sensitivity and 
0.937 of specificity for anxiety disorders at cut-off point of 
25, when it showed 0.869 of sensitivity and 0.972 of specificity 
for GAD at cut-off point of 27.

Mental Health Screening Tool for Suicide Risk
Mental Health Screening Tool for Suicide Risk (MHS:S; Yoon 
et  al., 2020) will be  used to assess suicide risk. The MHS:S 
is a 4-item self-report measure, with a 5-point Likert scale 
(0 = never, 4 = always). MHS:S was developed and validated 
using IRT (Yoon et  al., 2020). Weights calculated using IRT 
will be reflected on total score. In the previous study, Cronbach’s 
alpha coefficient was 0.82 for both paper-based and online-
based MHS:S. The optimal cut-off scores for risk positive and 
high risk group were total scores of 1 and 3, respectively 
(Yoon et  al., 2020).
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Self-Report Standardized Assessment of 
Personality-Abbreviated Scale
Self-report Standardized Assessment of Personality-Abbreviated 
Scale (SAPAS-SR) is a self-report version of SAPAS, which is 
an interview for screening personality disorder (Moran et  al., 
2003; Choi et  al., 2015). It is an 8-item self-report measure, 
with a dichotomous scale (“Yes” or “No”). The scores on each 
scale are summed to obtain a total score. Cut-off score of 
Korean version of SAPAS-SR is 4 of 8, with 67.2% of patients 
with personality disorders were correctly classified with cut-off 
score of 4. In previous study, Cronbach’s alpha coefficient for 
SAPAS scales was 0.79 (Choi et  al., 2015).

Open-Ended Questions: Self-Description and 
Adjectives
Participants will be  asked to describe their own personality 
in 300 characters in Korean. They will be  also requested to 
write down six adjectives that describe themselves and another 
six adjectives which are important to them.

Interview Questions Developed for Personality 
Assessment
Interview questions will be  administered to collect linguistic 
data for personality assessment. Interview questions designed 
to measure personality assessment consist of 18 questions 
about the adaptive personality traits (extraversion-introversion, 
agreeableness, conscientiousness, openness, and emotional 
stability) and the maladaptive personality traits (detachment, 
egocentrism, disinhibition, psychoticism, and negative 
affectivity) and 33 sub-facets based on the FFM (e.g., 
[Extraversion] “how do you  want to spend your time for 
your routine daily hours?”). Final questionnaires were 
developed, revised, and confirmed in the pilot study (phase 
1). Participants will be  instructed to answer the questions 
reflecting their thoughts and ideas. There will be  no time 
limit for the participants to answer. To exclude the impact 
of the interviewer on the responses, additional questions 
will be  presented in a pre-determined manner.

Data Analysis
In this study, we  will analyze textual data and explore its 
associations with personality traits through the following analysis 
plans: (1) Data preprocessing, (2) LDA (Latent Dirichlet 
Allocation), (3) Transformer-based Korean Language Model, 
and (4) Training, Cross-validation, and Testing. Python language 
and Gensim library are planning to be  used in the analysis 
(see Figure  2).

Data Preprocessing
After collecting the linguistic data for personality assessment, 
the data will be  cleaned and filtered on the sentence units 
for analysis. In this step, we  will use regular expressions 
(tokenization) to exclude other punctuation marks and symbols, 
and then perform part-of-speech tagging will be  performed 
to extract only nouns, verbs, and adjectives which are used 
as input variables for the prediction model.

Latent Dirichlet Allocation
Latent Dirichlet Allocation is an unsupervised statistical 
language model which enables the discovery of latent topics 
in unlabeled data (Andrzejewski and Zhu, 2009). By extracting 
the additional characteristics from the documents, it can 
be  used to supplement the inputs to machine learning and 
clustering algorithms (Campbell et  al., 2015). This algorithm 
infers variables based on the words from the text data and 
generates topics for analyzing associations with personality 
traits. In other words, we  will search for topics that can 
aggregate a large number of words contained in the data 
collected through LDA and select meaningful topics 
among them.

Transformer-Based Korean Language Model
Transformer-based pretrained language models have enabled 
neural network models to leverage raw textual data. After 
training the model with a large amount of unlabeled data 
in advance, transfer learning using the labeled data can 
be  performed (Devlin et  al., 2018). The current study will 
utilize a transformer-based language model, additionally 
trained on Korean text. This will go through the process 
of learning, using text data obtained through the interview 
(unlabeled) and personality profile obtained through BDPI 
(labeled). Specifically, the embedding vectors of the sentences 
collected in the interview are extracted from the pretrained 
language model, and the scores of the measured personality 
characteristics are examined to explore words, sentences, 
and linguistic characteristics highly related to specific 
personality characteristics. As a result, the transformer model 
allows the discovery of sentence characteristics that can 
distinguish personality.

Training, Cross-Validation, and Testing
A 75% of the total data will be  used for training and cross-
validation, and the remaining 25% will be  used to evaluate 
the performance of the trained model (the specific ratio may 
change depending on the final data size). The training dataset 
learns the process of finding answers through features, and 
the cross-validation dataset goes through assessing and comparing 
learning algorithms. Through the Testing process, we  will 
identify the best fitting classifier and the best model.

ANTICIPATED RESULTS

Primary Outcome
Our primary objective is to identify specific linguistic features 
that correlate with individuals’ personality traits. In particular, 
we  expect that the level of each factor that the FFM describes 
discovers and classifies linguistic variables that are highly relevant 
to high or low populations. In addition, we  will extract text 
features that are helpful for predicting personality and apply 
them in machine learning algorithms to develop a Machine 
Learning Classification Model of the personality traits based 
on the FFM. We  will examine predictive validity using data 
obtained from the interview questions as independent variables 
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and individuals BDPI scores as dependent variables. This will 
add some evidence for the precision of algorithms using natural 
language processing to predict the ones from the traditional 
self-report personality questionnaire.

Secondary Outcome
We aim to detect linguistic markers of psychological distress 
including depressed symptoms and anxiety symptoms. In 
particular, words or language characteristics that highly reveal 
psychological distress in interview contents related to 
maladaptive facets or negative affectivity. This will enable 
distress to be  quickly and accurately detected and diagnosed 
through an interview.

Exploratory Outcomes
Lastly, we  hypothesized that there are qualitative differences 
between the text data obtained from the video interview and 
the text data obtained from the online survey. Responses to 
the same question obtained through video interview and online 
survey were compared and analyzed to see differences in the 
quality of information provided by face-to-face or 
non-contact method.

DISCUSSION

To the best of the author’s knowledge, this will be  the first 
study to predict the FFM-based personality through machine 
learning technology, using both top-down method, based on 
personality theory and bottom-up approach, based on the data. 
Validity will be  greater than previous studies in that interview 
questions are directly established on the FFM theory and that 
responses are analyzed through ML and NLP. Unlike this 
study, several studies in the past have used data lacking 
representativeness, such as Twitter (Quercia et  al., 2011) or 
Facebook (Youyou et  al., 2015), to evaluate personality. 
Correlation and predictive power can be  reached by chance. 
However, it is very insufficient and error-prone to explain 
complex psychological characteristics such as personality without 
notable evidence. In other words, since such data are very 
limited, unexpected inferences can often be made from seemingly 
random data. But in the field of psychology, presenting a basis 
for the inference is essential. In this regard, this study will 
be able to provide evidence and explanation through the FFM.

In addition, the personality evaluation model and algorithm 
to be developed through this study may reveal better performance 
than the existing self-report multiple choice questionnaires or 

FIGURE 2 | Data analysis plan.
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clinical interview measurements such as SCID-5-PD or 
SIFFM. The reason is that compared to the existing multiple 
choice type tests, questions are rich in information and are 
difficult to intentionally fake or deceive. Also, accurately 
predicting personality through statistical modeling and algorithms 
can reduce the inefficiency of one-on-one interviews while 
providing solutions to bias or reliability issues caused by relying 
on the clinician’s personal judgment. Moreover, this study can 
improve heterogeneity, comorbidity, misdiagnosis, stigma, or 
labelling problems since personality will be  evaluated and 
diagnosed based on a dimensional approach of FFM, instead 
of the categorical approach used in the existing clinical field.

On the contrary, many existing studies were conducted on 
participants who spoke English as their mother tongue (Wongkoblap 
et al., 2017; Shatte et al., 2019; Le Glaz et al., 2021), and Korean-
based studies using the appropriate analysis methods were very 
limited. Specifically, Calvo et  al. (2017) mentioned that studies 
applying NPL in mental health mostly consist of English-speaking 
participants, because predicting psychological characteristics by 
applying NLP to non-English languages is an unexplored area. 
This study can serve as a starting point for future studies that 
attempt to predict psychological characteristics by analyzing and 
learning Korean rather than English. However, problems arise 
in that psychological data are very sensitive and that it is difficult 
to obtain large amounts of information rapidly. Due to security 
issues, a lot of time and effort is needed in collecting large 
amounts of data unlike the other fields where pre-labeled 
information can be  easily obtained through open source. 
Nevertheless, if data are collected and actively shared along with 
strict security management, sophisticated models and algorithms 
can be  refined and the use of computer technology in the field 
of psychology can be  further developed.

CONCLUSION

Unlike other fields that simply analyze large amounts of data, 
human psychology, mental characteristics, and personality 
characteristics require more explanations. We are confident that 
this will be a representative study meeting the criteria. We believe 
that this study will be of great interest to future studies seeking 
to improve the problems of the psychological evaluation methods 
through the advantages of using computers compared to humans, 
as well as combining advanced technologies such as psychology, 
machine learning, big data, and AI.
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