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Abstract
Cardiovascular and oncological diseases represent the global major causes of death. For both, a novel and far-reaching risk 
factor has been identified: clonal hematopoiesis (CH). CH is defined as clonal expansion of peripheral blood cells on the basis 
of somatic mutations, without overt hematological malignancy. The most commonly affected genes are TET2, DNMT3A, 
ASXL1 and JAK2. By the age of 70, at least 20–50% of all individuals carry a CH clone, conveying a striking clinical impact 
by increasing all-cause mortality by 40%. This is due predominantly to a nearly two-fold increase of cardiovascular risk, but 
also to an elevated risk of malignant transformation. Individuals with CH show not only increased risk for, but also worse 
outcomes after arteriosclerotic events, such as stroke or myocardial infarction, decompensated heart failure and cardiogenic 
shock. Elevated cytokine levels, dysfunctional macrophage activity and activation of the inflammasome suggest that a vicious 
cycle of chronic inflammation and clonal expansion represents the major functional link. Despite the apparently high impact 
of this entity, awareness, functional understanding and especially clinical implications still require further research. This 
review provides an overview of the current knowledge of CH and its relation to cardiovascular and hematological diseases. 
It focuses on the basic functional mechanisms in the interplay between atherosclerosis, inflammation and CH, identifies 
issues for further research and considers potential clinical implications.
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Abbreviations
AS	� Aortic stenosis
AML	� Acute myeloid leukemia
CAD	� Coronary artery disease
CCUS	� Clonal cytopenia of undetermined 

significance

CHIP	� Clonal hematopoiesis of indetermined 
potential

CVD	� Cardiovascular disease
DNMT3A	� DNA-methyl-transferase 3A
IL	� Interleukin
JAK2	� Janus kinase 2
MDS	� Myelodysplastic syndrome
MI	� Myocardial infarction
PAH	� Pulmonary artery hypertension
TAVI	� Transcatheter aortic valve intervention
TNF	� Tumor necrosis factor
VAF	� Variant allele frequency

Introduction

Hypertension, dyslipidemia, diabetes, obesity and smoking 
are the most common and widely known cardiovascular risk 
factors. Nevertheless, the global profile of atherosclerosis 
has changed substantially over the last decade. Given the 
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association of cardiovascular diseases (CVD) with pros-
perity, worldwide socioeconomic development has spurred 
the spread of atherosclerosis around the globe. In parallel 
with the changes in distribution, risk stratification is also 
undergoing a transformation. Due to the effective and widely 
affordable administration of cholesterol reducing and anti-
hypertensive drugs, risk factors beyond the traditional can-
didates are gaining impact. Consequentially, this has led to 
a shift in patient’s risk characteristics (e.g., toward younger 
age, female sex, normal body mass index [BMI] and dif-
ferent ethnicity). This emphasizes the need to understand 
atherosclerotic risk beyond metabolic syndrome and other 
traditional elicitors to prevent disease development in the 
future [59]. A novel, recently described non-traditional risk 
factor is a hematopoietic manifestation called CH.

In the broad sense, CH describes any clonal hematopoi-
etic proliferation, including leukemias and other malignant 
hematological diseases. More narrowly, the term is used 
for clonal proliferation of hematopoietic cells without overt 
hematological malignancy. This definition of CH compro-
mises two distinct, major entities: clonal hematopoiesis of 
indeterminate potential (CHIP) and clonal cytopenia of 
undetermined significance (CCUS), which is distinguished 
from CHIP by the presence of cytopenias.

CHIP was first recognized in the 1990s, when Fey et al. 
observed skewed X-linked inactivation in older women and 
were the first to propose a potential mechanism of acquired 
clonality. Later, the same group identified specific somatic 
mutations in some of the affected women [23, 38] and 
referred to the condition as being “of indeterminate poten-
tial” because of the lack of a clear association to disease. 
Since then, however, research has provided mounting evi-
dence to the contrary.

During aging, proliferating cells acquire somatic muta-
tions due to stress, exogenous factors and increasing sus-
ceptibility to errors during DNA-replication. Most of these 
mutations are either neutral or detrimental at the single cell 
level and remain insignificant. Others, if occurring within a 
particular driver gene or regulatory sequence, may bestow 
a selective advantage and even contribute to malignant 
transformation. Along this evolutionary process, transitions 
are fluid and pre-malignant lesions are common for most 
oncologic entities. Recognition of this has identified valu-
able opportunities for screening approaches and pre-emptive 
treatment before disease development. However, contrary to 
other pre-malignant entities, CHIP conveys much broader 
systemic impact not limited to the hematopoietic system. In 
particular, it has been shown to be associated with increased 
all-cause mortality and cardiovascular risk [54, 55].

Given the clinical significance as a pre-malignant state 
and cardiovascular risk factor, CHIP is gaining increasing 
recognition as a distinct and relevant clinical entity. This is 
leading to discussions about screening and precautionary 

interventions that draw a unique and promising connection 
between the hemato-oncological and cardiovascular fields in 
terms of current and future (preventive) clinical approaches. 
However, the importance of this phenomenon has not gained 
enough awareness, yet. A concerted basic and translational 
research effort will be required to establish standard clinical 
guidance recommendations. Not least, several crucial ques-
tions remain unanswered: How to screen? Who to screen? 
Who to treat and how to treat?

Definition of CHIP: how to measure?

CHIP is historically defined as the presence of somatic 
mutations in the peripheral blood with a clonal size of at 
least 2% variant allele frequency (VAF), in the absence of 
overt hematological disease [84].

The two most frequently affected genes are DNA (cyto-
sine-5) methyltransferase 3 alpha (DNMT3A) and Tet 
methylcytosine dioxygenase 2 (TET2), followed by addi-
tional sex combs-like 1 (ASXL1) and serine/arginine-rich 
splicing factor 2 (SRSF2), Janus kinase 2 (JAK2) and Cbl 
proto-oncogene (CBL), among others [55]. These genes 
mostly encode for proteins involved in epigenetic regula-
tion, such as DNA-methylation (TET2, DNMT3A) or his-
tone modification (ASXL1), or for spliceosome constituents 
(SRSF2, SF3B1) or signaling proteins (JAK2, CBL, GNB1, 
GNAS) [8]. In contrast to established myeloid malignancies, 
such as acute myeloid leukemia (AML) or myelodysplastic 
syndromes (MDS), CHIP clones tend to be characterized 
by a more restricted range of mutations as well as a smaller 
clone size [8]. The predominant mutation pattern in CHIP 
is a single substitution of cytosine to thymidine, mostly due 
to spontaneous deamination. This is considered to be a sig-
nature of aging, as DNA error correction decreases in effi-
ciency. It is therefore not surprising that age represents the 
strongest risk factor for CHIP [87]. By the age of 70, CHIP 
can be identified in 20–50% of all individuals depending 
on the sensitivity and gene coverage of the assay used to 
identify clonal variants [22, 46, 55]. Recent studies that use 
genome-wide approaches to detect clones that lack muta-
tions in ‘known drivers’ of myeloid neoplasia, even sug-
gest CH to be near-ubiquitous in the aging hematopoietic 
system, the reported prevalence of CH being limited only 
by the detection method used [5, 90, 94]. Besides age, some 
other factors predispose for developing CHIP (Fig. 1), such 
as previous oncologic treatment [16, 29, 50], male sex [43], 
smoking [55], unhealthy diet [11] and specific changes in 
microbiome composition [68]. Furthermore, chronic inflam-
matory diseases, such as auto-inflammation [7, 80, 96] or 
HIV-infection [33] seem to favor the emergence of CHIP 
(Fig. 1). The potential relevance of genetic predisposition 
remains contentious. Some studies point out a familial 
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predisposition [48, 98] but this has not been supported by 
twin studies [20, 37, 44].

Although CHIP is associated with an increase in red cell 
distribution width [42], there is, by definition, no signifi-
cant change in blood cell counts. This makes genetic analy-
ses essential for screening and diagnosing CHIP. Since the 
reported prevalence of CHIP is strongly dependent on the 
sensitivity of the sequencing assay employed [53, 90], it is 
important to define the basic conditions for potential screen-
ing approaches.

Current definitions of CHIP, such as that adopted in the 
most recent 5th edition of the WHO classification of hema-
tolymphoid tumors, require detection of a variant in a known 
set of driver genes. However, it has recently become clear 
first, that expansion of clones with no such driver variants is 
common in the aging hematopoietic system [43, 69, 74, 98] 
and second, that CH without involvement of a known driver 
gene seems nonetheless to be associated with an increase in 
all-cause life-time mortality risk comparable to that of CHIP 
with a known driver [98].

CHIP: a new cardiovascular risk factor

Independent of traditional cardiovascular risk factors, CHIP 
was shown to nearly double the cardiovascular risk com-
pared to healthy individuals, thereby establishing CHIP as 
a new and persuasive cardiovascular risk factor. The indi-
vidual risk increases with the size of the particular clone as 
represented by the VAF, which can vary between 2% (lower 
definition of CHIP) and 50% (equivalent to all cells carry-
ing a heterozygous mutation) [42, 54, 55]. In the meantime, 
however, there is increasing evidence that CH clones well 

below 2% VAF can also impact cardiovascular life time [13, 
54, 55].

Jaiswal et al. were the first to draw the connection of 
CHIP with CVD. Moreover, they provided a functional 
explanation. They exposed TET2-deficient and LDL-recep-
tor defective mice, established by competitive bone mar-
row transplantation, to a high fat diet and observed a severe 
enlargement of atherosclerotic plaques [42, 54]. Similarly, 
an atherogenic diet of Jak2-mutant mice led to larger and 
more complex atherosclerotic plaques with larger necrotic 
cores, earlier lesion formation and greater pro-inflammatory 
immune cell activation compared to wild type mice [89].

Since the original identification of CHIP as a potent 
cardiovascular risk factor, several retrospective studies 
have further elucidated the connection between CHIP and 
common cardiovascular risk factors. For instance, CHIP 
occurs more frequently in smokers [16, 29, 31, 45, 49, 
58]. Since tobacco is a mutagenic agent, the implication 
is clear. However, functional experiments identifying a 
direct causal effect are still lacking. There does seem to 
be a link between CHIP and metabolic imbalance, based 
on retrospective and in vitro data [18, 34, 41]. Cohort-
analyses show that the presence of CHIP increases the 
likelihood of developing diabetes mellitus by 30% [18, 
55]. Surprisingly, no associations were observed regard-
ing lipid profiles, except for JAK2-mutations, which are 
negatively associated with total cholesterol and LDL cho-
lesterol. Mechanistically, TET2 is involved in regulation of 
the cellular metabolic homeostasis through AMP-activated 
protein kinase (AMPK), which represents a central cellular 
sensor of metabolic demand. In this context, hyperglyce-
mia could promote a clonal advantage in TET2 mutated 
stem cells [34]. In parallel, other groups have shown that 

Fig. 1   Risk factors and associ-
ated diseases of CH. Several 
circumstances (left) have 
been shown to promote the 
emergence of CH, with age 
representing the strongest risk 
factor. Regarding a genetic pre-
disposition, current data remain 
contentious (empty arrow). 
However, CH is associated with 
an increasing number of dis-
eases (right). Most of these are 
cardiac or malignant conditions. 
Nonetheless, associations with 
metabolic and chronic inflam-
matory disease have also been 
recently identified
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depletion of TET2 might accelerate atherosclerosis due 
to dysfunctional autophagy, as a major AMPK-regulated 
pathway [60, 97].

Current evidence for clinical relevance 
of CHIP

Atherosclerosis and myocardial infarction

In 2014 Jaiswal et al. were the first to describe a statistical 
association between atherosclerotic events and the pres-
ence of CHIP with a hazard ratio of 2.0 (95% confidence 
interval [CI] 1.1–1.8) for coronary artery disease (CAD) 
[55]. In a subsequent study, this group later compared 
4726 CHIP-patients to a control group of 3529 individu-
als and confirmed a 1.9-fold overall risk of developing 
CAD for individuals affected by CHIP. They further 
measured the coronary artery calcification score based on 
computer tomography and detected a 3.3-fold increase in 
CHIP carriers. In line with this, the risk of developing 
early onset myocardial infarction, (age men < 40 years/
woman < 50 years) was four times higher among CHIP-
affected individuals. Closer analysis revealed two addi-
tional parameters to modulate the cardiovascular risk. 
First, risk was dependent on the clonal size (VAF). Sec-
ond, it was dependent on the identity of the affected gene 
with mutations in JAK2 leading to a 12-fold increase, 
whereas mutations in the most frequently affected genes 
TET2 and DNMT3A conferred a two-fold increase in the 
risk of developing atherosclerosis [54]. The association 
between CHIP and CAD was replicated in a cohort of post-
menopausal women where the likelihood was increased 
by a factor of 1.36 (95% CI 1.07–1.73) [49]. Since then, 
further clinical data have emerged from a range of CVDs 
(Table 1).

Stroke

In line with the overall increased cardiovascular risk, 
the presence of a CHIP mutation was associated with a 
2.6-fold increased likelihood for ischemic stroke in the 
cohort analyzed by Jaiswal et al. [55]. This increased risk 
of total strokes was replicated in a further cohort, follow-
ing adjustment for age, sex and ethnicity, with a hazard 
ratio of 1.14 (95% CI 1.03–1.2). Importantly, the risk for 
hemorrhagic stroke was increased 1.24-fold, with TET2 
being the strongest risk associated gene. Overall, CHIP-
bearers were prone to hemorrhagic rather than to ischemic 
stroke. Among ischemic strokes, TET2 again showed the 

strongest association, with microvascular pathology being 
more frequent than large-vessel strokes [11].

Heart failure

The outcomes of patients with heart failure (HF) has repeat-
edly been associated with CHIP [9, 30, 35, 56, 70, 71], with 
correlations resembling those in atherosclerosis. Namely, the 
HF risk increases with clone VAF [9, 35, 56, 95] and with 
the number of the acquired mutations [30].

Atherosclerosis represents the major cause of congestive 
HF [12] and CHIP-carriers confer a significantly increased 
HF-associated mortality after having experienced myo-
cardial infarction [30, 35]. Inflammation appears to lay an 
important role here [61]. In mouse models lacking TET2 or 
DNMT3A, blockage of Interleukin-1β (IL-1b) rescued the 
deficiency in heart function [78, 79]. Furthermore, transcrip-
tome analysis of HF patients with DNMT3A mutations reveal 
elevated expression levels of inflammatory genes [4]. Hence, 
one possibility might be that CHIP is associated with HF 
through inflammation-mediated effects on atherosclerosis. 
Nevertheless, in the cohort of Dorsheimer et al., most of 
the deaths among TET2 or DNMT3A-mutation carriers were 
attributed to arrhythmic events or progression of HF rather 
than to myocardial infarction [35]. Furthermore, a large 
meta-analysis including over 55,000 participants failed to 
identify any difference between CHIP carrying HF patients 
regarding prior CAD [95]. Sano et al. investigated the patho-
genesis of HF upon CHIP-mutations by establishing a mouse 
model system. For this purpose, they infused angiotensin II 
to mimic hypertensive HF and observed increased cardiac 
dysfunction associated with lack of TET2 or of DNMT3A. 
Interestingly, the phenotype induced by loss of TET2 or 
DNMT3A was accompanied by increased cytokine release 
and expansion of the hematopoietic compartment [79].

Cardiogenic shock represents the most severe clinical 
manifestation of acute heart failure. Böhme et al. recently 
studied the prognostic impact of CHIP in 446 patients with 
cardiogenic shock in acute myocardial infarction from the 
CULPRIT-SHOCK randomized clinical trial [15]. CHIP 
variants at ≥ 2% VAF were found in 29% of the patient 
population, most frequently in the DNMT3A and TET2 
genes. Compared to non-CHIP patients, CHIP carri-
ers experienced worse short-term clinical outcome with 
regard to a composite endpoint of all-cause mortality and 
the need for renal replacement therapy, even after adjust-
ment for traditional risk factors and several established 
biomarkers such as arterial lactate, NT pro brain natriu-
retic peptide (NT-proBNP), cystatin C or IL-6. In line with 
this, Scolari et al. observed a 1.5-fold increased preva-
lence of CHIP-mutations, particularly TET2 and ASXL1, 
among patients with cardiogenic shock predominantly of 
non-ischemic origin, compared to HF patients (95% CI 
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Table 1   Overview of current clinical data

Author, year Cohort Clinical data

Jaiswal et al. 2014 [55] 17,182 cases of 3 population-based cohorts All-cause mortality (HR 1.4, 95% CI 1.1–1.8)
Risk of coronary artery disease (HR 2.0, 95% CI 

1.2–3.4)
Ischemic stroke (HR 2.6, 95% CI 1.4–4.8)

Jaiswal et al. 2017 [54] 433 cases
577 controls of population-based cohorts

Cardiovascular risk (HR 1.9, 95% CI 1.4–2.7)
Early onset myocardial infarction (HR 4.0, 95% CI 

2.4–6.7)
Wolach et al. 2018 [91] 10, 893 cases

 5947 healthy (232 CHIP)
 4946 Schizophrenia (205 CHIP)
(Institutional cohort of Dana-Farber Cancer Institute)

Doubled risk of venous thrombosis for all CHIP
12-fold increase for venous thrombosis for JAK2

Dorsheimer et al. 2019 [35] 200 cases with HF taken from trials examining the 
effects of intracoronary administration of autologous 
BMCs

38 cases with CHIP

4.4 years follow-up
Higher mortality with HF hospitalization among 

DNMT3A/TET2 (HR 2.1, 95% CI 1.1–4.0)
Higher mortality associated w/ clonal size (VAF)

Abplanalp et al. 2020 [4] 8 cases with severe AS
6 postinfarction cHF
3 healthy controls

Sequencing monocytes of CHIP (TET2 + DNMT3A) vs. 
non-CHIP. CHIP samples show increased expression 
of:

 IL-1b, IL-6 receptor, NLRP3 inflammasome complex, 
CD163

Assmus et al. 2020 [9] 419 cases of ischemic CHF
227 with DNMT3A or TET2 (monocentric institu-

tional)

Higher 5-year mortality among carriers of CHIP
 5-year mortality without CHIP: 18%
(95% CI 14–21%)
 5-year mortality with one DNMT3A or TET2: 29%
(95% CI 11–46%)
5-year mortality with both DNMT3A and TET2: 42%
(95% CI 26–57%)

Bick et al. 2020 [13, 14] 97,691 cases
4229 with CHIP
Community based cohort of NHLBI TOPMed research 

program

6.9 years follow-up
 Increase of CVD events among CHIP (HR 1.27, 95% CI 

1.04–1.56)
 Greater risk of CVD from larger CHIP clone (HR 1.59, 

95% CI 1.21–2.09)
Cremer et al. 2020 [30] 419 cases with HF (institutional cohort) 4-year follow-up

 Higher mortality among CHIP-carriers
 Higher mortality related to clonal size (VAF)
 Higher mortality related to mutation count

Mas-Peiro et al. 2020 [66] 279 cases with severe AS + TAVI
93 CHIP (TET2/DNMT3A) (monocentric institutional)

Increase in medium-term all-cause mortality following 
successful TAVI

Adjustment for sex + age (HR 3.1, 95% CI 1.17–8.08)
Adjustment for NT-proBNP (HR 4.81, 95% CI 

1.49–15.57)
No difference in clinical parameters

Potus et al. 2020 [75] 1832 PAH- patients
7509 controls
50 PAH-patients
41 healthy controls (PAH Biobank)

Identification of 9 unique TET2-germline variants
3 somatic variants
86% of PAH patients depicted reduced TET2 expression

Bhattacharya et al. 2021 [12] 44 111 individuals
2507 with CHIP

10-years of follow-up
 The prevalence of CHIP increased among unhealthy 

diet (healthy 5.1%, intermediate 5.7%, unhealthy 7.1%)
 Increase of rates of incident cardiovascular events, 

compared to individuals without CHIP and intermedi-
ate diet to:

  Individuals with CHIP, unhealthy diet (HR 1.52; 95% 
CI 1.04–2.22)

  Individuals with CHIP, healthy diet (HR 0.99; 95% CI 
0.62–1.58)
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1.0–2.1). At the same time, harboring a CHIP mutation 
was associated with a decrease of survival at multiple 
timepoints (30-days: HR 2.7; 95% CI 1.3–5.7, P = 0.006; 
90-days: HR 2.2; 95% CI 1.3–3.9, P = 0.003; and 3-years: 
HR 1.7; 95% CI 1.1–2.8, P = 0.01), while individuals car-
rying a TET2-mutation displayed elevated serum levels of 
SCD40L, IFNγ, IL-4 and TNFα [81].

Aortic stenosis and other conditions

Sequencing a cohort of 279 patients with aortic valve ste-
nosis (AS) having undergone transcatheter aortic valve 
intervention (TAVI) identified another association with 
CHIP. Mortality between one and eight months after TAVI 
was increased for carriers of DNMT3A or TET2 by a factor 

Table 1   (continued)

Author, year Cohort Clinical data

Honigberg et al. 2021 [49] 19,606 women
 418 natural premature menopause
 887 surgical premature menopause

Association with premature menopause (odds ratio, 
1.36, 95% 1.10–1.68)

CAD (HR 1.36, 95% CI 1.07–1.73)
CAD among CHIP (VAF > 0.1) (HR 1.48, 95% CI 

1.13–1.94)
Kiefer et al. 2021 [56] 399 cases with HF taken from clinical institutional 

trials
3.95 years follow-up
 Mutations within CBL, CEBPA, EZH2, GNB1, PHF6, 

SMC1A, SRSF2 are associated with higher mortality 
independently of TET2/DNMT3A

Palomo et al. 2021 [70] 60 cases with HF
17 CHIP

3.6 years follow-up
 DNMT3A associated with diastolic dysfunction
 No increase of death among CHIP (HR 1.53, 95% CI 

0.45–5.24)
 No increase of HF + death among CHIP (HR 2.12; 95% 

CI 0.79–5.71)
Pascual-Figal et al. 2021 [71] 62 HF cases

24 CHIP (single-center prospective registry of ambula-
tory patients)

3.65 years follow-up
 Accelerated HF progression among DNMT3A/TET2
 In terms of death (HR 2.79; 95% CI 1.31–5.92)
 Death or HF hospitalization (HR 3.84; 95% CI 

1.84–8.04)
 HF-related death /HF hospitalization (HR 4.41; 95% CI 

2.15–9.03)
Soudet et al. 2021 [82] 61 cases with unprovoked pulmonary embolism

12 CHIP (monocentric hospital of Amiens-Picardie)
No difference in terms of age, location or risk stratifica-

tion
Yu et al. 2021 [95] 56,597 cases

 3406 CHIP from 5 population-based cohorts, (ARIC, 
Atherosclerosis Risk In Communities, study; CHS, 
Cardiovascular Health Study; JHS, Jackson Heart 
Study; UKBB; WHI, Women’s Health Initiative

Increased prospective risk of HF
(HR 1.25, 95%CI 1.13–1.38)
 ASXL1, TET2 and JAK2 but not DNMT3A
 Higher risk for large CHIP-clones (HR 1.29, 95% CI 

1.15–1.44)
No difference with or without prior CAD

Bhattacharya et al. 2022 [11] 78,752 cases (8 prospective cohorts and biobanks) Total stroke (HR 1.14, 95% CI 1.03–1.27)
 Hemorrhagic stroke (HR 1.24, 95% CI 1.01–1.51)

Böhme et. al. 2022 [15] 446 patients with cardiogenic shock after myocardial 
infarction (from CULPRIT-SHOCK randomized 
trial)

 129 CHIP

Primary endpoint: 30-day all-cause mortality or renal 
replacement therapy

Increased risk for combined endpoint (OR 1.83, 95% CI 
1.05–3.21)

Trend for difference in all-cause mortality (OR 1.67, 
95% CI 0.96–2.90) after multivariable adjustment

Scolari et. al. 2022 [81] 341 patients with cardiogenic shock (mainly non-
ischemic cause) vs. 345 patients with ambulatory 
heart failure

3-year follow-up
 Cardiogenic shock patients had a higher prevalence of 

CHIP (OR 1.5, 95% CI 1.0–2.1)
 Decreased survival among CHIP patients at differ-

ent time points (30-days: HR 2.7; 95% CI 1.3–5.7; 
90-days: HR 2.2; 95% CI 1.3–3.9; 3-years: HR 1.7; 
95% CI 1.1–2.8)

Several prospective and retrospective cohort analyses draw correlations of CHIP with a wide range of cardiovascular diseases, such as heart fail-
ure, cardiovascular disease, aortic valvular stenosis, CVD and stroke
AS aortic stenosis, BMCs bone marrow cells, CAD coronary artery disease, CHIP Clonal hematopoiesis of indetermined potential, CI confidence 
interval, HF heart failure, HR hazard ratio, cHF chronic heart failure, PAH pulmonary artery hypertension
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of 3.1 (95% CI 1.17–8.08) after adjustment for sex and 
age, and by 4.8-fold (95% CI 1.49–15.57) after further 
adjustment for NT-proBNP serum levels. Interestingly, 
basic clinical parameters such as concomitant athero-
sclerotic disease, blood cell count, inflammatory markers 
or procedural characteristics were comparable between 
CHIP and non-CHIP patients [66]. Another study analyzed 
monocytes of AS patients carrying CHIP-mutations and 
detected an increased expression of inflammatory genes 
and mediators, including IL-1b, IL-6-receptor, NLRP3 
inflammasome complex and CD163 [4].

Compared to the other common CHIP mutations, those 
in JAK2 carry a specific risk profile. Wolach et al. identi-
fied a 12-fold increased risk for venous thrombosis among 
JAK2-mutation carriers, compared to a doubled risk among 
the other CHIP mutations. The authors offered mechanisti-
cal insight using Jak2V617F knockin mouse model, in which 
increased formation of neutrophilic extracellular traps, as 
a mechanism of innate immunity, promoted thrombosis 
[91]. However, an independent study analyzed a cohort of 
61 patients with unprovoked pulmonary embolism, 12 of 
whom carried CHIP-mutations, and failed to detect any 
difference between CHIP carriers and non-CHIP carriers. 
Possibly due to the small number of CHIP-positive indi-
viduals, no JAK2 mutation was found [82].

Another association with CHIP, and in particular with 
TET2 mutation, was recently demonstrated for pulmonary 
arterial hypertension (PAH) within a cohort of 1832 individ-
uals. In this case, contradictory to the aforementioned data, 
the identification of a TET2 mutation predicted a favorable 
course of disease, with disease onset being delayed and pul-
monary artery pressure being lower among TET2 mutation 
carriers. Nonetheless, the group found in accompanying 
mouse experiments that depletion of Tet2 did provoke PAH 
and this effect was reversible by blockage of IL-1b [75].

Mechanisms of increased CV risk in persons 
with CH

Macrophage activity and cytokine release

Atherosclerosis represents a severe vascular pathology, 
driven by the interplay between dyslipidemia and inflamma-
tion (Fig. 2). Given the evidence discussed above, it seems 
likely that CHIP promotes a pro-inflammatory environment, 
including changes of monocyte and macrophage biology, 
implying that chronic inflammation might embody the por-
tentous link between cardiovascular risk and CHIP.

This conclusion was based initially on the observation 
of significantly increased cytokine levels in association 

Fig. 2   Functional interconnections between CHIP and CVD. Somatic 
mutations within CHIP-associated genes contribute to atherosclerotic 
pathomechanisms at various stages. Possible interferences of CHIP 
and atherogenesis are depicted in yellow. Effects appear gene-spe-
cific. Notably, some mutations may lead to loss (as assumed for most 
TET2-mutations or the hotspot-mutation R822H within DNMT3A) 

and others to gain of function, which raises a special challenge in the 
search for common mechanisms of CHIP-associated risk increases. 
sm smooth muscle cell, ICAM-1 Intercellular Adhesion Molecule 1, 
VCAM-1 vascular cell adhesion protein 1, ABCA ATP-binding cas-
sette transporter A1
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with CHIP mutations. A direct causal association between 
CHIP and atherosclerosis via inflammation was subse-
quently demonstrated by Fuster et al. [41], who observed 
increased levels of IL-1b and an apparent atheroscle-
rotic phenotype in Tet2 mutant mice. Blockage of IL-1b 
diminished the arteriosclerotic phenotype, identifying 
inflammation as the crucial connection [42]. Ameliora-
tion of atherosclerosis and HF in Tet2 depleted mice by 
pharmacological inhibition of the NLRP3 inflammasome 
(MCC950), followed by reduction of IL-1b further con-
firmed this functional concept [79].

These cytokines strongly regulate monocyte rolling, 
adhesion and transmigration through endothelium, followed 
by macrophage transformation, all of which are key pro-
cesses contributing to atherosclerosis [59]. Global changes 
in cytokine levels and skewed monocytic and macrophagic 
functions therefore represent a compelling elicitor for the 
vascular pathology.

The majority of research in this area has analyzed the 
effects of variants in the two genes most frequently mutated 
in CH: TET2 and DNMT3A. As described above, TET2-
depletion resulted in increased release of the cytokines 
IL-1b, IL-6 and tumor necrosis factor-alpha (TNF-α) 
in vitro [1, 42, 51, 78], as well as in mouse models [42]. 
Similar observations were made for DNMT3A. For instance, 
CRISPR/Cas-9 mediated DNMT3A knockdown provoked 
elevated levels of the cytokines CXCL1, CXCL2, IL-6 and 
CCL5 in macrophages [78]. Furthermore, monocytes bear-
ing DNMT3A mutations showed an increased expression 
of pro-inflammatory genes, including the aforementioned 
cytokines [3, 14, 61]. In line with these in vitro data, CHIP-
carriers also displayed elevated serum levels of IL-6 [14, 
28], IL-8 [54], and IL1-b [14].

While modified global cytokine levels apparently repre-
sent a major hallmark in terms of CHIP mediated patho-
mechanism, there also appear to be changes in specific 
monocytic and macrophagic functions, although this effect 
seems to be context specific [27]. For instance, patients 
with germline variants of DNMT3A, showed reduced levels 
of monocyte secreted IL-10 [67]. In another experiment, 
DNMT3A stimulated antiviral immune response of mac-
rophages through activating histone deacetylase 9 [64]. In 
contrast, monocyte-function appeared to remain mainly sta-
ble in the presence of TET2 mutations [56], with the excep-
tion of the promotion of macrophage migration inhibitory 
factor (MIF), a pivotal factor for monocytic differentiation, 
that is characteristically elevated in atherosclerosis [76]. 
With respect to Jak2-mutants, alterations in macrophage 
function also appear to contribute to atherosclerosis [89]. 
Here, it has been shown experimentally that Jak2 mutant 
macrophages induce DNA replication stress, activate the 
AIM2 inflammasome and thereby aggravated atherosclero-
sis [39].

Taking the pro-inflammatory state in atherosclerosis into 
account, it is not surprising that elevated levels of high-sen-
sitive C-reactive protein (hs-CRP), a non-specific indicator 
of inflammation, are observed [59]. However, with regards 
to CHIP contradictory data exist. Some studies found no 
association of CHIP and hs-CRP [14, 59], whereas others 
state a significant elevation [21]. Altogether, CHIP appears 
to disturb the strongly cytokine regulated equilibrium of 
macrophage expansion and function, which further promotes 
the development of atherosclerotic lesions.

Lipoprotein‑ and cellular metabolism

Lipoprotein homeostasis is a further factor contributing to 
the formation of atherosclerosis. Macrophages that arise 
from transmigrated circulating monocytes are able to ingest 
oxidized or native LDL inside the atherosclerotic lesion. If 
this process is dysfunctional or macrophages become over-
loaded, they can turn into foam cells and contribute to arte-
riosclerotic lesion progression [59]. Just recently, CHIP was 
found to have an impact in this process. Dotan et al. inves-
tigated mutant Jak2 mice and macrophages. They observed 
attenuated cholesterol efflux from macrophages, most likely 
due to dysfunctional ABCA1 cholesterol transporter, while 
cholesterol uptake was unaffected, leading to the accelera-
tion of atherosclerosis. Consistent with this, systemic inhibi-
tion of JAK2 with ruxolitinib provoked the same effect [36]. 
In large CHIP cohorts, however, no alterations of serum 
cholesterol and its derivates were detected [14, 36, 54, 55].

One of the major hubs to sense and regulate cellular 
energy and substrate supply is the ubiquitous and highly 
conserved process of autophagy. Macroautophagic deg-
radation is thought to accelerate atherosclerosis at several 
breaking points, such as efferocytosis, lipid metabolism 
and oxidative homeostasis of the endothelium [62]. THP1-
derived macrophages, that were incubated with Ox-LDL, 
showed an attenuation of their macrophagic activity in a 
TET2 dependent manner, and effect that was reversible by 
mimicking de-methylation through treatment with azacyti-
dine [60]. Immunohistochemical staining of aortic walls in 
mice revealed both reduced expression of Tet2 and reduced 
autophagic activity upon low shear stress. Changes in the 
expression of TET2 were shown to regulate autophagic activ-
ity in endothelial cell cultures, with the knockdown of Tet2 
being accompanied by decreased expression of endothelial 
NO-synthase and increased expression of endothelin-1 as 
a typical hallmark of endothelial dysfunction [93]. Where 
it is of note that a recent report of endothelial cell differen-
tiation form circulating monocytoid cells in a sheep model 
raises the possibility that CHIP myeloid cells may have the 
potential to transdifferentiate and contribute directly to the 
endothelial compartment [11]. In ApoE−/− mice, overex-
pression of Tet2 was followed by upregulation of autophagy 
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reduced atherosclerotic lesions and a decrease in the expres-
sion of ICAM-1 and VCAM-1, which are crucial for mono-
cyte invasion. Despite this, cholesterol, tri-acyl-glyceride, 
and lipoprotein levels remained unchanged [72]. Together, 
these data indicate an involvement of TET2 in the regula-
tion of autophagy in macrophages and endothelial cells. A 
potential mediator in this respect is Beclin-1, which is cen-
tral to the assembly of autophagosomes and the expression 
of which is controlled by TET2-dependent de-methylation 
of promotor sequences [72]. It is worth noting in this context 
that changes in DNA methylation-patterns have widely been 
associated with increased atherosclerotic risk [6, 63, 73].

In the case of JAK2, further mechanisms have been dis-
cussed. As described above, since JAK2 mutations provoke 
neutrophils to form neutrophil extracellular traps, this may 
lead to thrombosis, which could further increase CVD risk 
[91]. Furthermore, Jak2V617F mice showed increased ath-
erosclerotic lesions with complex and comparatively large 
necrotic cores containing iron, erythrocyte and macrophagic 
depositions. Reduced erythrocyte expression of CD47 and 
reduced levels of c-Mer tyrosine kinase (MerTK), as a key 
modulator of efferocytosis, suggest that impaired efferocyto-
sis and increased erythrophagocytosis may make substantial 
contributions to the formation of atherosclerotic lesions [89].

Cardio‑oncology axis: future perspectives

CHIP mediates a novel and unique bi-directional connection 
between hematopoiesis and the cardiovascular system, in a 
functional as well as clinical manner. The exact mechanisms 
by which some mutations promote a clonal advantage and 
accelerate atherosclerosis, for instance by provoking inflam-
mation, remain to be elucidated. From what is known so 
far, CHIP mutations convey enhanced self-renewal of the 
hematopoietic stem cell (HSC) compartment and con-
comitantly obstructed hematopoietic differentiation in a 
mutation-specific fashion [24, 25, 47]. The most frequent 
mutations within TET2 and DNMT3A further promote gran-
ulomonocytic differentiation to the expense of the erythroid 
lineage [57, 88]. These effects seem to be mediated by the 
epigenetic enzymatic functions, which coordinate the action 
of transcription factors regulating self-renewal or myeloid 
lineage commitment [24]. Notably, the enhancement of 
HSC-proliferation itself may accelerate CH-development 
[47]. The currently adopted concept hypothesizes a vicious 
cycle between enhanced inflammation triggered by CHIP 
and the emergence of more mutations [52].

Similar mutual associations exist regarding the likelihood 
of malignant transformation and the prevalence of CHIP 
among oncologic patients. On the one hand, CHIP carri-
ers bear a higher likelihood of malignant transformation [2, 
32, 43], on the other hand radio and chemotherapy increase 

mutation rate and reduce the stem cell pool, thus increasing 
proliferative pressure on the remaining cells. This is likely 
to contribute to the higher prevalence of CHIP among pre-
treated oncology patients [29, 65, 92]. Given the strong asso-
ciation of CHIP with increase of cardiovascular life-time 
risk and the fact that some hematological diseases such as 
MDS are associated with increased cardiovascular risk any-
way [19], this cohort clearly deserves thorough observation 
or follow-up. With respect to screening approaches, it may 
be appropriate to routinely subject oncological patients to 
close surveillance of both cardiovascular function and CHIP 
mutation status. The presence of a CHIP mutation may ulti-
mately impact treatment decisions.

Potential therapeutic approaches 
to mitigate CH‑associated CV risk

Because of the far-reaching clinical implications of the 
entity CHIP, there is clearly a case for surveillance and 
potential preventive intervention. Given the mutual connec-
tions between CHIP, malignant disease and CVD, a closely 
intertwined interdisciplinary communication is likely to be 
essential for effective clinical management. Having recog-
nized this necessity, some clinics already offer specific CHIP 
consultation [17, 83]. However, no standard guidance pro-
cedures or general recommendations regarding the adequate 
counseling of affected patients have been established to date. 
Nonetheless, expert recommendations include a tight moni-
toring of traditional cardiovascular risk factors, individual 
risk assessment, adjustment of lifestyle factors and notifica-
tion of the whole care team. Regarding interventions with 
the potential of curbing cardiovascular risk, no evidence-
based options are available yet, beyond changes in lifestyle 
and common risk factors. For instance, current data suggests 
an impact of nutrition, since screening of 48,289 individu-
als unraveled a higher prevalence of CHIP among those 
consuming an unhealthy diet, defined as a decreased ratio 
between healthy elements (fruit and vegetables) to unhealthy 
elements (red meat, processed food and added salt) [10].

If a clonal somatic mutation is detected in a patient with 
unexplained cytopenia, further diagnostic testing may be 
indicated to rule out an underlying overt hematological 
malignancy. In the event of a dynamic change in blood 
parameters, a bone marrow puncture should be performed 
[17].

Nevertheless, screening is only clinically justified if 
there are potential interventions or pre-emptive treatment 
options. Initial in vitro experiments have already identified 
first pharmacological targets (Table 2). One aims to restore 
TET2’s enzymatic activity by supplementing its cofactor 
ascorbic acid, which was shown to reverse the enhanced 
self-renewal of hematopoietic stem and progenitor cells 
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(HSPC) in Tet2-deficient mice [26]. An ongoing clinical 
trial addresses this relationship by investigating the effect 
of intravenous high dose ascorbic acid in patients bearing 
CCUS (NCT03418038), while other clinical approaches 
target inflammatory processes. Another promising mode of 
action was examined as part of the CANTOS-trial (Canaki-
numab Anti-inflammatory Thrombosis Outcome Study). 
Herein a sub-study observed the effects of the anti-IL-1b 
antibody Canakinumab on individuals with CHIP [77, 86]. 
First results indicate a significant reduction of cardiovascu-
lar events in patients bearing TET2-mutations [85]. Some 
trials targeting mutated isocitrate dehydrogenase (IDH) by 
Enasidenib (NCT05102370) and Ivosidenib (NCT05030441) 
respectively, are under recruitment. In ASXL-knockin-mice, 
activation of autophagic activity by blockage of mTOR 
through rapamycin reversed the phenotype of HSPC expan-
sion [8, 40] thereby identifying a potential future pharma-
cological point of application.

In conclusion, CH represents a promising field for future 
containment of cardiovascular risk as well as hematologi-
cal malignancies. As a prerequisite, further interconnec-
tions besides promotion of an inflammatory milieu (such 
as metabolic and mesenchymal interplay) remain to be elu-
cidated and are likely to reveal further targets for potential 

pre-emptive treatment options. With respect to HF, the 
crucial question of the ways in which CHIP, inflamma-
tion and atherosclerosis are intertwined in disease evolu-
tion and affect prognosis demands further attention. With 
this goal, this review aims to increase the awareness for CH 
and point out the areas most relevant for future research. A 
more thorough appreciation of the diverse interactions and 
mechanisms can be expected to identify fresh opportunities 
for translation into the clinic not just for the treatment, but 
increasingly for the prevention of CVD.

Funding  Open Access funding enabled and organized by Projekt 
DEAL. The author(s) acknowledge support from the German Research 
Foundation (DFG) and Universität Leipzig within the program of Open 
Access Publishing.

Declarations 

Conflict of Interest  The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that 
could be construed as a potential conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 

Table 2   Current ongoing clinical trials on diagnosis and treatment of CHIP

Clinical trial Condition Intervention Identifier

STOP-LEUKEMIA: Repurposing Metformin as a Leuke-
mia-preventive Drug in CCUS and LR-MDS

CCUS, LR-MDS Metformin NCT04741945

A Pilot Study of Enasidenib for Patients with Clonal Cytope-
nia of Undetermined Significance and Mutations in IDH2

CCUS Enasidenib NCT05102370

A Pilot Study of Ivosidenib for Patients with Clonal Cytope-
nia of Undetermined Significance and Mutations in IDH1

CCUS Ivosidenib NCT05030441

Metabolic Profiling of Hematopoietic Stem Cells in Clonal 
Hematopoiesis (CHIP): A Prospective Observational Study

CHIP Prospective
 Single-cell transcriptomics
 Mutation-specific single-cell genotyping

NCT05246813

Clonal Hematopoiesis of Indeterminate Potential and 
Residual Cardiovascular Event Tendency After Smoking 
Cessation

CHIP Prospective (1-year) whole-exome sequencing NCT04987268

Impact of Donor Clonal Hematopoiesis of Indeterminate 
Potential (CHIP) on Recipient Outcome Following Allo-
geneic Hematopoietic Stem Cell Transplantation (Allo-
HSCT)

CHIP Prospective nanopore long-read sequencing NCT04689750

Screening of Clonal Hematopoiesis of Indeterminate Poten-
tial in Venous Thromboembolism

CHIP Retrospective NCT04477564

Phase 2 Trial of High Dose Intravenous Ascorbic Acid as an 
Adjunct to Salvage Chemotherapy in Relapsed/Refractory 
Lymphoma and Patients with Clonal Cytopenia of Unde-
termined Significance

CHIP High dose intravenous ascorbic acid NCT03418038

Is Clonal Hematopoiesis of Indeterminate Potential Associ-
ated with Unprovoked Pulmonary Embolism?

CHIP DNA-sequencing NCT04711746

A Single centre cohort study to determine if clonal hemat-
opoiesis of indeterminate potential (CHIP) is a risk factor 
for chemotherapy-related complications in lymphoma 
patients ≥ 60 of age receiving cytotoxic chemotherapy

CHIP DNA-sequencing NCT04053439
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were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.
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