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	 Background:	 This study aimed to evaluate the effects of lidocaine treatment on cognitive impairment in aged patients un-
dergoing spine surgery and to explore the underlying mechanism.

	 Material/Methods:	 Patients were randomly divided into 2 treatment groups: (1) saline (control) and (2) lidocaine. After induction 
of anesthesia, the lidocaine group received lidocaine as a bolus of 1 mg/kg over 5 minutes, followed by a con-
tinuous infusion at 1.5 mg/kg/h until the end of the surgery. We examined the effects of lidocaine treatment 
on the improvement of cognitive function using the Mini-Mental State Examination (MMSE) at preoperation 
and 3 days postoperation. Serum samples were collected to assess the levels of IL-6, TNF-a, MDA, S100b, and 
NSE before inducing anesthesia, at the end of surgery, and 3 days after the end of surgery.

	 Results:	 We found that the MMSE scores in the lidocaine group were markedly higher than those in the control group 
at 3 days after surgery. Moreover, lidocaine treatment markedly suppressed the release of IL-6, S100b, and NSE 
into the serum at the end of surgery and 3 days after the end of surgery. In the control group, serum MDA lev-
els increased by 3 days after the end of surgery. The lidocaine group had lower serum MDA levels than those 
in the control group.

	 Conclusions:	 Lidocaine may be an effective neuroprotective agent in treating early postoperative cognitive dysfunction in 
elderly patients undergoing spine surgery.
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Background

Postoperative cognitive dysfunction (POCD) is a major com-
plication characterized by disordered thinking and impaired 
consciousness following surgeries and anesthesia, especially 
in elderly individuals [1,2]. Early studies focused on POCD after 
cardiac surgery, but a recent study conducted by Evered et al. 
showed that it was associated with non-cardiac surgery and 
even with minor non-invasive procedures under sedation, such 
as coronary angiography [3]. A large multi-center study report-
ed that the incidence of POCD was 25% 1 week after non-car-
diac surgery and about 10% 3 months after non-cardiac surgery 
[4]. Cognitive changes after surgery prolong hospital stay, ele-
vate perioperative medical cost, decrease postoperative qual-
ity of life, and increase surgical morbidity and mortality [5].

The underlying mechanisms of POCD are not yet fully under-
stood. Clinical studies have consistently suggested that the 
main causes of this injury include an exaggerated systemic 
inflammation [6], endothelial dysfunction [7], cerebral hypo-
perfusion, and microembolism [8]. Others have specifically re-
ported that POCD is indeed correlated with the serum protein 
levels of IL-6, TNF-a, S100b, neuron-specific enolase (NSE), and 
malonaldehyde (MDA) [9–11]. In addition, animal studies have 
also shown that neuroinflammation and brain cell death af-
ter surgery and anesthesia may contribute to the brain func-
tional changes [12–14].

Although many drugs have been studied as neuroprotective 
during surgery and anesthesia, such as thiopental [15], pro-
pofol [15], ulinastatin [11], sevoflurane [9], and morphine [16], 
there is no agreement on the efficiency of prophylactic neu-
roprotectants in cardiac or non-cardiac surgery. Lidocaine, an 
inexpensive, widely available, and relatively safe compound, 
is a local anesthetic and class IB antiarrhythmic that readily 
crosses the blood-brain barrier [17]. Evans et al. initially dem-
onstrated cerebral protection of lidocaine in a feline model 
of cerebral arterial gas embolism [18]. Later clinical studies 
have also demonstrated the effects of lidocaine on perioper-
ative neuroprotection [19–21]. However, the mechanisms un-
derlying lidocaine treatment-induced neuroprotection remain 
incompletely understood. Therefore, in the present study, we 
hypothesized that lidocaine ameliorated early cognitive dam-
age in patients undergoing spine surgery. Also, we determined 
the effects of lidocaine treatment on the levels of IL-6, TNF-a, 
S100b, NSE, and MDA in serum.

Material and Methods

The study was approved by the Ethics Committee of Jining No. 
1 People’s Hospital and written informed consent was obtained 
from all patients before the study.

Participants

The study included 87 American Society of Anesthesiologists 
(ASA) physical status I or II patients aged greater than 65 
years scheduled for a spine surgery from September 2013 to 
February 2015. Seven patients were excluded because of refus-
al to neuropsychological evaluation after operation. Exclusion 
criteria included: Mini-Mental State Examination (MMSE) score 
<23 before surgery; history of neurological diseases (including 
Alzheimer’s disease and stroke history), psychological disor-
der, and drug or alcohol abuse; history of diabetes mellitus, 
severe hypertension, severe anemia, hepatic or renal dysfunc-
tion; unwillingness to comply with the protocol or procedures; 
inability to speak and read Chinese.

Protocol and general anesthesia

Patients were randomly allocated to 2 treatment groups: (1) 
lidocaine treatment group (n=40), a bolus of 1 mg/kg of lido-
caine over 5 minutes administered after induction of anesthe-
sia and followed by a continuous infusion at 1.5 mg/kg/h un-
til the end of the surgery; or (2) control group (n=40), normal 
saline administered as a bolus and an infusion with the same 
volume and rate changes as the lidocaine group.

All patients were anesthetized using standard proto-
cols, as follows. Anesthesia was induced with midazolam 
(0.03~0.05 mg/kg), sufentanil (0.2~0.3 μg/kg), cisatracurium 
(0.15~0.2 mg/kg) and propofol (2 mg/kg). Anesthesia was main-
tained by intravenous injection of propofol (4~12 mg/kg/h) 
and remifentanil (0.1~0.15 μg/kg/min). Depth of anesthesia 
was maintained to achieve a Bispectral Index Score of 40–60. 
Electrocardiogram, respiratory rate, pulse oximetry, PETCO2 
and hemoglobin oxygen saturation (SpO2) were continuously 
monitored during surgery.

Serum samples

The blood samples were collected to observe changes in the 
levels of IL-6, TNF-a, S100b, NSE and MDA before inducing an-
esthesia (T1), at the end of surgery (T2) and three days after 
the end of surgery (T3). Blood samples (5 ml) were allowed to 
clot for 2 h at room temperature and were then centrifuged 
for 15 min at 2000×g at 4°C. The serum fraction was removed 
and stored at −80°C for further analysis. The levels of IL-6, 
TNF-a, S100b and NSE were measured using an Enzyme-linked 
immunosorbent assay (ELISA) kit (Neobioscience Technology 
Company, Beijing, China) according to the manufacturer’s pro-
tocol. MDA concentrations were determined using enzymatic 
methods following the manufacturer’s instructions (Jiancheng 
Biologic Project Company, Nanjing, China). All study personnel 
were blinded to the results of the laboratory analysis.
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Measurement of neurocognitive function

Cognitive function was evaluated pre-operatively and three days 
post-operatively in a quiet room with only the patient and the 
experienced psychometrician. Subjects were examined using 
the MMSE [22]. The psychometrician trained in MMSE com-
pleted all data scoring and interpretation. Both patients and 
the psychometrician were blinded to the treatment and group.

Statistical analysis

All measurement data are presented as the means ±SD. 
Intergroup numerical data, including IL-6, TNF-a, MDA, S100b 
and NSE concentrations were analyzed with the Student’s 
t-test; intragroup numerical data were analyzed with repeat-
ed measures ANOVA. Nominal data were analyzed by c2 test. 
The differences between the values were considered to be sig-
nificant at P<0.05. All statistical tests and graphs were per-
formed using Statistical Program for Social Sciences 20.0 soft-
ware (SPSS, Inc., Chicago, IL,USA).

Results

Eighty-seven patients were enrolled in the study. Seven pa-
tients were excluded because of refusal to neuropsychological 
evaluation after operation, thus leaving eighty patients who 
completed the blood sample collection and neurocognitive 
tests. Demographic data of patients were shown in Table 1. 
There were no significant differences in age, sex, body weight, 
ASA classification, operation time, and hospital stay between 
groups (p>0.05).

MMSE was performed at preoperation and 3 days postoper-
ation. Compared with the preoperative MMSE scores, those 
on three days after surgery were significantly decreased in 
the control group. However, the MMSE scores in the lidocaine 
group were markedly higher than those in the control group 

at T3 (Figure 1, p<0.05). The MMSE scores did not differ be-
tween groups at T1 (p>0.05).

Serum assays were performed at 3 time points: preopera-
tion (T1), at the end of surgery (T2), and 3 days after the end 
of surgery (T3). In the control group, serum IL-6 concentra-
tion increased at T2 and T3. However, the lidocaine group 
had lower serum IL-6 concentration than that in the control 
group (Figure 2A, p<0.05). There were no significant differenc-
es between groups in TNF-a concentration at 3 time points 
(Figure 2B, p>0.05). Serum levels of MDA were higher at 3 days 
after surgery when compared with preoperative levels in the 
control group. However, the elevated levels were dramatically 
attenuated by lidocaine treatment (Figure 3, p<0.05). Obviously, 
no significant differences in the level of MDA were observed 
between groups at T2 (p>0.05). In the control group, there was 
a marked increase in the serum concentrations of S100b and 
NSE at T2 and T3 compared with those at T1. However, lido-
caine treatment clearly inhibited the up-regulation of S100b 
and NSE in serum (Figure 4, p<0.05).

Discussions

The present study revealed that lidocaine can improve cogni-
tive performance in elderly patients undergoing spine surgery. 
In addition, we reported for the first time that lidocaine can ef-
fectively decrease serum levels of IL-6, MDA, S100b, and NSE 
after non-cardiac surgery. Therefore, a potential mechanism 
underlying lidocaine treatment-induced neuroprotection may 
be to inhibit the release of IL-6, MDA, S100b, and NSE. These 
findings indicate that lidocaine may be a promising therapeu-
tic approach for the treatment of POCD.

Lidocaine confers cerebral protection via many mechanisms, 
including reducing the cerebral metabolic rate, reducing the 
ischemic excitotoxin release, and decelerating the ischemic 
transmembrane ion shift [7]. Additionally, recent evidence has 

Group control
(n=40)

Group lidocaine
(n=40)

p-Value

Gender* (male/female) 25/15 23/17 0.65

ASA classification* (I/II) 18/22 16/24 0.65

Weight (kg)** 	 63.8±4.3 	 64.7±4.3 0.37

Age (year)** 	 71.8±1.9 	 71.3±2.0 0.31

Operation time (min)** 	 128.3±7.3 	 129.2±7.4 0.61

Hospital stay (day)** 	 11.1±0.9 	 10.7±1.2 0.15

Table 1. Group demographics.

ASA – American Society of Anesthesiologists; p-values are based on * c2 test; ** the Student’s t-test.
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suggested that the neuroprotective effects of lidocaine may 
be associated with its anti-inflammatory and anti-apoptotic 
properties [12]. However, previous clinical trials on the effects 
of lidocaine on POCD are contradictory, with improvements 
[20] and no effect [8]. This variability may arise from differ-
ent timing and dose of lidocaine administered and different 

patient selection [23]. In our study, the infusion protocol was 
designed to deliver a 1 mg/kg “bolus” over 5 minutes after 
induction of anesthesia, followed by a continuous infusion at 
1.5 mg/kg/h until the end of the surgery. Our results suggest-
ed that the MMSE scores of patients in the lidocaine group 
were markedly higher than those in the control group 3 days 

Figure 1. �MMSE scores in the 80 patients prior to and 3 days 
after surgery. All data are expressed as the means ±SD. 
n= 40 per group. * p<0.05 compared with preoperative 
MMSE scores; ** p<0.05 compared with control group.
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Figure 3. �Serum MDA concentrations (nmol/ml) at different time 
points. All data are expressed as the means ±SD. n=40 
per group. * p<0.05 compared with preoperative MDA 
levels; ** p<0.05 compared with control group.
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Figure 2. �Serum IL-6 (A) and TNF-a (B) concentrations (pg/ml) at different time points. All data are expressed as the means ±SD. n=40 
per group. * p<0.05 compared with preoperative IL-6 or TNF-a levels; ** p<0.05 compared with control group.
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Figure 4. �Serum S100b (A, pg/ml) and NSE (B, ng/ml) concentrations at different time points. All data are expressed as the means ±SD. 
n=40 per group. * p<0.05 compared with preoperative S100b or NSE levels; ** p<0.05 compared with control group.
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after surgery, implying that lidocaine may attenuate cognitive 
function in patients undergoing spine surgery.

Studies suggest that the magnitude of inflammatory response 
is a risk factor for cognitive dysfunction after major surgery [6]. 
Surgical trauma activates the peripheral innate immune system, 
resulting in the release of inflammatory mediators, which im-
pairs cognitive function [13,24]. Serum IL-6 is a sensitive mark-
er of tissue damage. Xu and colleagues found that serum levels 
of IL-6 increased after general anesthesia in abdominal surgery 
and the increase may be associated with the occurrence of 
POCD [11]. Peng et al. [6] performed a meta-analysis to inves-
tigate the relationship between POCD and inflammatory mark-
ers. Their results showed that IL-6 might serve an indicator to 
guide the prevention and treatment of POCD. Serum TNF-a lev-
el is also suggested to be a critical mediator of inflammation-
induced neuronal dysfunction. It is the first cytokine to be re-
leased following surgery and its peripheral blockade could limit 
the release of neuroinflammation and cognitive impairment in 
a mouse model of surgery-induced cognitive dysfunction [14]. 
However, the studies mentioned above did not demonstrate 
the relationship between POCD and the levels of serum TNF-a. 
In agreement, our results showed that concentration of serum 
IL-6 increased at the end of surgery and 3 days after the end 
of surgery. However, lidocaine may inhibit the release of IL-6. 
There were no significant differences in TNF-a level between 
the 2 groups at the 3 time points studied. Our results and those 
of others indicate that inflammatory response may be respon-
sible for POCD and that lidocaine may prevent or reverse the 
cognitive deficits by inhibiting the response.

Numerous studies support that oxidative stress precedes the 
development of neurodegenerative diseases such as POCD, 
mild cognitive impairment (MCI), Parkinson’s disease, and 
Alzheimer’s disease (AD) [25,26]. Lipid peroxidation-induced 
oxidative DNA damage is believed to contribute to neuronal 
death and neurological dysfunction. MDA, a marker of lipid per-
oxidation, is diffusible and neurotoxic. Previous studies have 
provided experimental evidence that increased levels of MDA 
in peripheral blood are associated with development of AD and 
MCI [27,28]. Also, recent evidence suggests that elevated MDA 
levels are a risk factor for cognitive decline in aged patients 
after orthopedic surgery [25] and total hip-replacement sur-
gery [10]. Therefore, intervention using serum MDA could be 
a primary prevention strategy for POCD. In the present study 
we have shown a steady increase in serum MDA levels in the 
control group but not in the lidocaine group. This suggests 
that lidocaine suppresses the release of MDA.

S100b and NSE are serum markers of neuronal injury and 
are increasingly used in diagnosis and prognosis of cognitive 

impairment after different kinds of surgery [9,29]. S100b, in 
astrocytes, is a calcium-binding protein that has been regard-
ed as highly brain-specific. Normally, S100b cannot pass the 
blood-brain barrier to enter the blood stream. However, serum 
concentrations are increased after damage to central nervous 
cells as well as blood-brain barrier dysfunction [30]. Studies 
have confirmed the value of S100b in assessment of cogni-
tive deficits after various surgeries [11,31]. Therefore, S100b 
protein release is a plausible candidate in assessment of inci-
dence, course, and outcome of POCD. NSE is an isoenzyme of 
the glycolytic enzyme enolase, usually found in the cytoplasm 
of neurons and cells of neuro-endocrine differentiation [30]. 
Experimental findings have suggested that NSE corresponds 
with the degree of cognitive impairment [9,32]. Our study has 
demonstrated that both the serum S100b protein and NSE lev-
els significantly increased at the end of the surgery and on 
postoperative day 3, suggesting that spine surgery may cause 
damage to brain tissue. Interestingly, S100b protein and NSE 
levels were reduced after the administration of lidocaine, sug-
gesting the neuroprotective effect of lidocaine.

A limitation of this study is that we did not measure the serum 
concentration of lidocaine during or after surgery. The thera-
peutic and adverse effects of lidocaine are generally related 
to its serum concentration [8]. An accepted therapeutic range 
is 2 to 5 μg/mL, and detrimental effects, including arrhythmia, 
tremors, confusion, visual disturbances, impaired concentra-
tion, or even seizures and coma, usually occur at levels above 
6 to 10 μg/mL [33]. However, we did not find any adverse ef-
fects caused by lidocaine in our study, which could be attrib-
uted to the relatively low lidocaine dose.

Conclusions

Our results indicate that lidocaine treatment attenuated cog-
nitive impairment in elderly patients undergoing spine sur-
gery. Furthermore, serum IL-6, S100b, NSE, and MDA were in-
volved in the mechanism underlying the therapeutic effect of 
lidocaine on cognitive function. Therefore, the results indicat-
ed that lidocaine may be an effective neuroprotective agent 
for the treatment of POCD. Further clinical investigation is war-
ranted to determine its potential on the subsequent develop-
ment and progression of POCD.
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