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Abstract: Over the last decade, plasmodesmata (PD) symplasmic nano-channels were reported to
be involved in various cell biology activities to prop up within plant growth and development as
well as environmental stresses. Indeed, this is highly influenced by their native structure, which is
lined with the plasma membrane (PM), conferring a suitable biological landscape for numerous plant
receptors that correspond to signaling pathways. However, there are more than six hundred members
of Arabidopsis thaliana membrane-localized receptors and over one thousand receptors in rice have
been identified, many of which are likely to respond to the external stimuli. This review focuses
on the class of plasmodesmal-receptor like proteins (PD-RLPs)/plasmodesmal-receptor-like kinases
(PD-RLKs) found in planta. We summarize and discuss the current knowledge regarding RLPs/RLKs
that reside at PD–PM channels in response to plant growth, development, and stress adaptation.

Keywords: plasmodesmata; receptor-like protein; receptor-like kinase; environmental stresses;
plant development

1. Plasmodesmata-RLPs/RLKs

Plant cells have remarkably evolved symplasmic channel structures, Plasmodesmata (PD), to create
a bridge for cell-to-cell transport of essential molecules such as water, ions, nutrients, phytohormones,
and macromolecules including RNAs and proteins [1–9]. In general, PD structures are composed of
three major components: a plasma membrane (PM), a cytoplasmic sleeve (CS) and an endoplasmic
reticulum (ER) called desmotubule (D) [10,11]. By controlling intercellular trafficking of numerous
essential factors, PD are indeed particularly linked to plant growth and development as well as playing
a critical role in the response to abiotic and biotic stresses [12–26]. The existence of PM and PM-lipid raft
at the PD channels [27,28] provides a suitable platform for cell surface receptors to be localized and/or
relocalized at PD in response to either developmental or environmental-related stimuli [23,29–32].
These cell surface PD receptors include receptor-like proteins (RLPs) and receptor-like kinases (RLKs)
that possess distinct extracellular domains (such as cysteine-rich domains, leucine-rich repeat domains
or lysin motifs) to relay intracellular signaling [15,21,22,29,32–41]. Typical PD-RLPs contain the
unique extracellular ligand-binding domain, a single transmembrane domain and a short cytoplasmic
tail [21,36,42]. In another case, a PD-RLP uses a glycosylphosphatidylinositol (GPI) anchor to attach the
extracellular membrane instead of transmembrane domain [23,43,44]. Meanwhile, PD-RLKs carry out
an extracellular domain, a single transmembrane domain, and an intracellular kinase domain [32,43].
In general, extracellular domains of RLKs/RLPs recognize the ligands with high specificity and
selectivity; they subsequently modulate the activation of the cytoplasmic kinase domain and the

Plants 2020, 9, 216; doi:10.3390/plants9020216 www.mdpi.com/journal/plants

http://www.mdpi.com/journal/plants
http://www.mdpi.com
http://dx.doi.org/10.3390/plants9020216
http://www.mdpi.com/journal/plants
https://www.mdpi.com/2223-7747/9/2/216?type=check_update&version=2


Plants 2020, 9, 216 2 of 12

downstream signaling cascades [45]. In Arabidopsis thaliana, several membrane-localized receptors
have been identified, and some of them localize to PD (Table 1.) Moreover, in other plant species such
as Oryza sativa and Populus trichocarpa, some PD receptors have been reported, but their roles are still
elusive [46–48].

2. Abiotic Stress-Involved PD-RLKs

Plants are challenged by many environmental stresses including abiotic and biotic stress. Therefore,
plants have advanced sophisticated recognition systems to detect environmental stimuli mediated
by cell surface/membrane-localized receptors. Biologically, plant receptors perceive the ligands,
subsequently transduce the extracellular signals to the downstream signaling of the receptor complexes
through activation of phosphorylation events [35,45,49]. These phosphorylation occasions are the key
signaling modules for regulating diverse cellular and physiological responses to establish the proper
plant growth, development, and defense responses against various environmental conditions [50,51].
Abiotic stress is defined as a negative effect caused by non-living factors which are often encountered
by plants such as extreme levels of light, radiation (UV–B and UV–A), low (cold/chilling/freezing)
or high temperature (heat), flooding, submergence, drought, chemical factors (aluminum, arsenate,
cadmium, and pH), excessive salt in the soil, deficient or excessive macro/micronutrients, gaseous
pollutants (ozone, sulfur dioxide, etc.), and other abiotic factors [52,53]. Moreover, drought and
salinity are prominent abiotic stressors with a serious and detrimental impact on plant development as
well as agricultural yield productivity [54–57]. These two abiotic stressors have been fundamentally
linked to plant hormonal pathways, which is abscisic acid (ABA), a plant phytohormone designated
as a key regulator in the activation of osmotic stress-responsive genes upon drought and salinity
conditions [58–60]. Additionally, there are several leucine-rich repeat receptor like-kinases (LRR-RLKs)
that have been proven to be involved in the response to drought- and salinity-activated ABA signaling
pathways, however, most of them are localized at the PM compartment [61–68]. A recent report
showed that two LRR-RLKs of Arabidopsis thaliana, QSK1 (Qian Shou kinase) and IMK2 (inflorescence
meristem kinase 2) localized in the PM upon the normal condition, but this PM-located QSK1/IMK2 is
phosphorylated and subsequently relocalized at PD–PM channels in response to salt and mannitol
treatments [32]. QSK1 plays a key role in lateral root (LR) formation by regulating callose deposition
upon mannitol treatment [32], but the biological function of IMK2 remains to be identified. In addition
to salinity and mannitol conditions, a cysteine-rich receptor-like kinase 2 (CRK2) mainly localizes to
the PM under standard growth conditions, but in the presence of excess salt and mannitol conditions,
this protein is accumulated at PD–PM and required for salt-induced callose deposition (Table 1.) [69].
The formation of callose at PD is induced by environmental stimuli, and the emergence of these
PD-RLKs in response to abiotic factors provides a key attention to uncovering the biological mechanisms
that detail the unanswered questions which need future research to be answered.
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Table 1. Plasmodesmal-receptor like proteins (PD-RLPs) and plasmodesmal-receptor-like kinases
(PD-RLKs) involved in plant development and environmental stimuli.

Gene Name Type Organism Gene ID Proposed Role References

ARABIDOPSIS CRINKLY 4
(ACR4) RLK Arabidopsis thaliana AT3G59420 Growth and

Development [40,70].

BARELY ANY MERISTEM 1
(BAM1) RLK Arabidopsis thaliana AT5G65700 Biotic stress [38,71].

CLAVATA1 (CLV1) RLK Arabidopsis thaliana AT1G75820 Growth and
Development [40,70,72–74].

CYS-RICH RECEPTOR-LIKE
KINASE2 (CRK2) RLK Arabidopsis thaliana AT1G70520 Abiotic stress and

Biotic stress [44,69,75].

INFLORESCENCE MERISTEM
RECEPTOR-LIKE KINASE 2

(IMK2)
RLK Arabidopsis thaliana AT3G51740 Abiotic stress [28].

LYSIN MOTIF
DOMAIN-CONTAINING
GLYCOSYLPHOSPHAT

IDYLINOSITOL-ANCHORED
PROTEIN 2 (LYM2)

RLP Arabidopsis thaliana AT2G17120 Biotic stress [23].

LYSIN MOTIF-CONTAINING
RECEPTOR-LIKE KINASE 4

(LYK4)
RLK Arabidopsis thaliana AT2G23770 Biotic stress [43].

PLASMODESMATA-LOCATED
PROTEIN 1 (PDLP1) RLP Arabidopsis thaliana AT5G43980 Biotic stress [24,76].

PLASMODESMATA-LOCATED
PROTEIN 2 (PDLP2) RLP Arabidopsis thaliana AT1G04520 Biotic stress [24,76].

PLASMODESMATA-LOCATED
PROTEIN 3 (PDLP3) RLP Arabidopsis thaliana AT2G33330 Biotic stress [24,76].

PLASMODESMATA-LOCATED
PROTEIN 5 (PDLP5) RLP Arabidopsis thaliana AT1G70690 Biotic stress [15,21,77,78].

PLASMODESMATA-LOCATED
PROTEIN 6 (PDLP6) RLP Gossypium barbadense - Biotic stress [79].

PLASMODESMATA-LOCATED
PROTEIN 7 (PDLP7) RLP Arabidopsis thaliana AT5G37660 Biotic stress [78].

QIAN SHOU KINASE1 (QSK1) RLK Arabidopsis thaliana AT3G02880 Abiotic Stress [32].

STRUBBELIG (SUB) RLK Arabidopsis thaliana AT1G11130 Growth and
Development [29,39,80,81].

SUPER NUMERARY NODULES
(SUNN) RLK Medicago truncatula

Genotype A17 - Growth and
Development [33,34,41,82–84].

3. Biotic Stress-Involved PD-RLPs/RLKs

Biotic stress in plants is defined as a negative impact of living organisms (including pathogens),
specifically viruses, bacteria, fungi, nematodes, or insects. Plants also have various chemical and
physical defense layers to protect themselves from pathogens. In terms of callose related to physical
defense, the most influential physical resistance, Powdery mildew resistant4 (PMR4) or Glucan
synthase-like 5 (GSL5) are the rapid response of callose deposition on plasmodesmata to powdery
mildew in the papillae formation [85]. On the other hand, to perceive the pathogens and herbivores,
plant immunity relies on innate immune receptors expressed in each cell, which recognize invasion
signals to mount pattern-triggered immunity (PTI) or effector-triggered immunity (ETI) (The plant
immune system). PTI is the first active defense layer of the plant immune system and can be
considered as the basal resistance of interaction between plants and microbes via the recognition of
conserved pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs) by plant pathogen-
or pattern-recognition receptors (PRRs). Recently, PD-callose homeostasis regulation has been reported
to be a non-cell-autonomous process regulated by pathogen perception defense or an immune response
activated by PAMPs [23,30,35].

In the case of plant fungal-triggered PTI response, it has been reported that PAMPs chitin could
trigger a reduction in the PD flux or PD permeability. In chitin response, the receptor-like protein LYSIN
MOTIF DOMAIN-CONTAINING GLYCOSYLPHOSPHATIDYLINOSITOL-ANCHORED PROTEIN
(LYM2) is employed to increase callose deposition upon Botrytis cinerea infection [23]. LYM2 locates to
PM and PD but the mechanism of LYM2-mediated plasmodesmal closure remains unknown. Recently,
Faulkner’s group provided the evidence that LYK4 and LYK5 (LysM-CONTAINING RECEPTOR-LIKE
KINASE4 and 5, respectively) were also involved in response to chitin-triggered plasmodesmal closure,
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raising the question of how LYM2, LYK4, and LYK5 integrate to regulate PD permeability in response
to chitin [43]. However, based on the subcellular localization study, LYK5 and LYK4 are mainly
localized to PM at the steady condition and only LYK4 is strongly accumulated at PD–PM in the
presence of chitin. Although LYK5 is not located at PD–PM in the absence or presence of chitin,
this protein still has a function in the chitin-triggered plasmodesmata closure by regulating the LYK4
function. Phosphorylation of LYK4 is necessary for PD–PM-relocalized LYK4 upon chitin-triggered
plasmodesmata closure. The modification of LYK4 by LYK5 does not occur in the PD and it most
likely happens in the PM. Faulkner’s group mentioned that the mechanism of RLKs response to chitin
required the complex formation of family proteins. It also suggested that the reactive oxygen species
(ROS) burst together with calcium wave downstream of the LYM2-mediated chitin, signaling that
pathway plays the key role in callose accumulation for plant innate immune systems. Subsequently,
the PD–PM relocation event of cell surface RLKs takes place presumably in order to perceive the
ligand from the pathogens and then regulate callose deposition at PD. Moreover, LYM2 is required to
induce callose accumulation in response to chitin but not to flg22 response [23]. Nonetheless, flg22
peptide-triggering callose deposition has been well studied [86–88].

ROS perception or signaling transmission is recognized by the cysteine-rich receptor-like kinases
(CRKs) [44]. CRKs are one of the largest groups of RLKs in Arabidopsis with 44 members [89]. CRK2
is identified as a receptor that contains duplicated domains of the unknown function 26 (DUF26)
structure C-X8-C-X2-C. Moreover, it has been reported that CRK2 also relocalized from PM to PD
under salt stress [69]. In a crk2 mutant plant, the callose level is attenuated compared with a wild
type plant in response to an excessive salt condition. In terms of biotic stress, crk2 a mutant plant is
susceptible to Pseudomonas syringae pv. Tomato DC3000 is an avirulent bacterial pathogen, indicating
that CRK2 is involved in the PTI response [75]. Even though Ca2+ cytosolic signaling is reduced in the
absence of CRK2, flg22-dependent MAPK activation is rapidly increased. This is similar to CML41,
in which CRK2 acts independently of the ROS generation to regulate the accumulation of callose in
response to flg22. In the downstream pathway, flg22-induced callose is linked to GSL5 function [74]
and CALMODULIN-LIKE PROTEIN 41 (CML41) [75]. CML41 functions specifically in response to
bacterial flg22, but not fungal chitin. However, the downstream signaling pathways connecting the
CML41 protein and the regulation of callose turnover have not been elucidated. It has been reported
that CRK2 facilitates MAPK activation and negatively regulates callose deposition through GSLs after
MAMP recognition.

On the other hand, the PD LOCATED PROTEIN (PDLP) family consists of eight receptor-like
proteins that contain a cytoplasmic domain, a single transmembrane domain and two extracellular
DUF26 (specific targeting of a plasmodesmal protein affecting cell-to-cell communication). PDLP1 and
PDLP5 (originally named HOPW1-1-INDUCED GENE1 (HWI1)) are functionally designated to biotic
stress such as fungal, virus, and bacterial pathogens. It has been reported that PDLP5 interacts with
GSL8 but the mechanism and function remain unknown [90]. At any rate, PDLP5 may induce callose
deposition through physical interaction with GSL8 to form the PDLP-GSLs protein complex.

PDLP5 confers a resistance phenotype upon P. syringae infections through interacting with a
mechanism for salicylic acid (SA)-induced plant immunity. [91]. Consistent with the function of PDLP5
in this response, the authors demonstrated that PDLP5 is induced by a P. syringae pv maculicola (Pma)
infection and plays a critical role in regulating PD continuity [21]. Furthermore, the activation of
SA-mediated PD closure requires the action of PDLP5 during bacterial infection [14]. In addition, GSL4
also works together with PDLP5 to maintain basal callose levels at PD but does not require PDLP5 for
ROS-dependent plasmodesmal regulation. It can be assumed that the CRKs or other PD-RLKs/RLPs
may interact directly or indirectly with GSL4 to regulate ROS-dependent plasmodesmal regulation [92].

It has been postulated that PDLP5 enhances plant tolerance against the fungal-wilt pathogen
Verticillium dahlia and bacterial P. syringae pv tomato DC3000 (Pst DC3000) in the absence of sphingolipid
long-chain base ∆8 desaturase (SLD) 1 and 2, whereas sld1 sld2 pdpl5 triple mutant enhances the plant
susceptibility [77]. In the sld1 sld2 double mutant, t18:0-based sphingolipids are elevated and a PDLP5
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expression is induced in the leaf epidermal cells. It has been reported that the accumulation of PDLP5
in sld1 sld2 double mutant is particularly caused by the specific interaction of phytosphinganine t18:0
with a sphingolipid binding motif at the C-terminus domain of PDLP5. In plants, free d18:0 acts as
a second messenger-triggered programmed cell death (PCD) dependent on cytosolic calcium [93].
Therefore, t18:0 might also act as a signaling molecule to elevate PDLP5 expression. Furthermore, the
latest discovery demonstrated that the bacteria effector of Pst DC3000, HopO1-1, physically interacts
with PDLP5 and PDLP7 in arabidopsis. Together, double mutants of these genes showed similar
susceptibility to bacterial infection, suggesting that PDLP5 and PDLP7 are required for pathogen
immunity. Finally, it is interesting to speculate about PD callose regulation in biotic stimuli, in which
PDLP members and the other sphingolipid compositions or lipid raft components are associated to
maintain plant growth and development upon biotic stress [27,28].

PDLP5 plays a key role in the systemic acquired response (SAR), where PDLP5 interacts with
PDLP1, then recruits the AZA1 protein to form a protein [94]. This protein complex regulates the
SAR pathway via glycerol-3-phosphate (G3P) and azelaic acid (AzA) [15]. PDLP1 and PDLP5 are
essential for SAR as well as for the stabilization of the lipid transfer-like protein AZI1, a key SAR
molecule. The loss-of-function of either PDLP1 or PDLP5 induces the chloroplastic relocalization of
AZI1, a similar pattern to pathogen infection by Pst DC3000. Moreover, it has been reported that
PDLP1 is not essential for the basal plasmodesmal permeability even when located at the PD [42].
However, upon the downy mildew pathogen Hpa infection, PDLP1 rapidly interacts with SNARE
VAMP721 (vesicle-associated membrane protein) to elevate callose accumulation [24]. Additionally,
the pdlp1,2,3 triple mutant is susceptible to Hpa infection by reducing callose deposition around the
haustoria and host membrane, suggesting that PDLPs are involved in the basal immunity-mediated
callose accumulation. In cotton species, PDLP1 and PDLP6 have been proposed to regulate callose
accumulation through the SA-dependent transcriptional pathway in response to Verticillium dahlia [79].

To attack a host plant, viruses favorably target PD channels to spread out the viral genomes by
modulating the size exclusion limit (SEL). It has been remarkably postulated that the movement
proteins (MPs) are encoded by the tobacco mosaic virus (TMV) and the fungal pathogen Fusarium
oxysporum modify PD SEL [95,96]. Through the open PD, MP-RNA genome or effectors such as Avr2
move from infected cells to the adjacent cells. Furthermore, a cell surface PD receptor-like kinase,
BARELY ANY MERISTEM 1 (BAM1) acts in the cell-to-cell movement of RNAi via PD channels through
physical interaction with a C4 protein from the tomato yellow leaf curl virus (TYLCV). However,
the bam1 single mutant does not interfere with the intercellular spread of RNAi, only the bam1 bam2
double mutant exhibits cell-to-cell RNAi movement suppression, indicating BAM1 and BAM2 play a
redundant function in this mechanism. A recent study on the BAM1 and BAM2 revealed that these
two proteins are required for cell-to-cell movement of miR165/6 to regulate xylem patterning in the
Arabidopsis root [38,71].

4. PD-RLKs Govern Plant Growth and Development

Growth is considered one of a living being’s most basic and recognizable characteristics. Growth
can be described as a permanent irreversible increase in the size of an individual cell, tissue, organ or
organism. Growth is typically followed by metabolic (both anabolic and catabolic) processes. Plant
growth is remarkable because some plants can grow unlimitedly during their lives. This ability of plants
is due to the presence of meristems in their bodies at certain places. Plant development can be defined
as a cycle of processes from the beginning of the plant component to its death (germination of the seed
to senescence). Plant development encompasses both growth and differentiation with quantitative and
qualitative changes [97]. In addition, plants use a range of PD–PM receptors to sense endogenous and
exogenous signals for plant growth stimulation and development. These PD–PM receptors include
the leucine-rich repeat (LRR) receptor kinase CLAVATA1 (CLV1) and the non-LRR receptor kinase
ARABIDOPSIS CRINKLY4 (ACR4), which are required for shoot and root stemness maintenance in
arabidopsis, respectively [40,70,72–74,98–100]. Moreover, tissue morphogenesis is another key factor
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in the biological process during plant growth and development, which usually involves an alteration
in cell number, size, shape, and position. These alterations are particularly achieved through several
cellular mechanisms such as cell proliferation, cell elongation, and cell-to-cell communication [101,102].
In particular, in PD, the gates of cell-to-cell communication are occupied by the atypical leucine-rich
repeat receptor-like kinase (LRR-RLK) STRUBBELIG (SUB), which plays a pivotal role during tissue
morphogenesis in Arabidopsis. It has been reported that SUB localizes to PD–PM and plants lacking
SUB activity show severe defects at plant growth and developmental stages such as floral patterning,
stemness maintenance, plant height, and root hair formation [29,39,80,81,103–105]. To encourage the
optimal growth and developmental processes, plants often cooperate with other living organisms,
such as microorganisms (archaea, protists, bacteria, and fungi). These mutually beneficial interactions
between two living organisms are often called symbiosis, which involve multidirectional changes in
the genome, metabolism, and signaling network. However, plant-microbe interactions can be either
beneficial or harmful to one another [106]. The most common study in the beneficial plant-microbe
interaction comes from leguminous plants and one of the Rhizobia species. This interaction results in
the formation of a root nodule, wherein rhizobia reside and actively fix nitrogen that is used directly by
the host plant. Furthermore, to maintain the symbiotic balance between the host plants and rhizobia,
negative feedback systems known as autoregulation of nodulation (AON) have evolved in plants.
AON inhibits the number of root nodules through short- and long-distance signaling via shoot–root
communication and is particularly mediated by an LRR-RLK SUNN (SUPER NUMERARY NODULES)
localized to PD–PM in the Medicago truncatula (Mt) plant [33,34,41,82–84,107,108].

5. Conclusions

In summary, several PD-RLKs/RLPs have been characterized in plants, mostly in A. thaliana
(Table 1), but questions remain about their functions in PD regulation. In response to plant development
along with environmental stresses, PD-RLKs/RLPs rapidly relocalize from the PM to PD–PM apertures
and subsequently stimulate the callose accumulation. Which-type ligands (for example, ROS-like
chemicals, chitin-like oligosaccharides, and flagellin-like peptides) are involved, but how these proteins
recognize and sense the ligand and interact with their substrates involved in the downstream signaling
pathways remain elusive. Recent proteomics-based approaches such as PD proteomic analysis and
proximity-dependent biotin identification (Bio-ID) may provide a platform to identify and characterize
the new PD-RLKs/RLPs and PD-interacting proteins. Additionally, molecular cell biology and molecular
genetic approaches will be helpful in gaining insights into the functional aspects. These approaches
include genetic analyses of PD-related mutants to understand their role in signaling pathways and
amino acid substitution or domain swapping analyses in the ectodomain or intracellular domain to
know signal perception or transduction. CRISPR/Cas-based genome editing tools will be useful for
generating knock-out mutations in PD-RLKs/RLPs of which T-DNA tagging lines are not available [109].
Cryo-electron microscopy (cryo-EM) might provide deep insight on PD structure or PD proteome
structure. Callose is a key molecular player in PD regulation. Callose or its degradation derivatives
can act as a potential ligand to alarm the status of PD opening or closing. Although the existence
of a plant β-glucan receptor carrying a dectin domain was proposed by Fesel and Zuccaro [110],
it remains to be tested. The ROS cause the PD callose accumulation, but how ROS are sensed during
callose homeostasis is not yet known. Cysteine residues might sense ROS, thus it will be interesting to
identify ROS-sensing receptors among RLKs carrying cysteine-rich ectodomain in order to uncover
the ROS-mediated PD regulation pathway. Overall, these insights could be used to explore the role
of plant PD-RLKs/RLPs in PD regulation regarding the plant growth and development as well as
environmental stimuli.
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