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A B S T R A C T   

Real-time detection of COVID-19 using radiological images has gained priority due to the increasing demand for 
fast diagnosis of COVID-19 cases. This paper introduces a novel two-phase approach for classifying chest X-ray 
images. Deep Learning (DL) methods fail to cover these aspects since training and fine-tuning the model’s pa-
rameters consume much time. In this approach, the first phase comes to train a deep CNN working as a feature 
extractor, and the second phase comes to use Extreme Learning Machines (ELMs) for real-time detection. The 
main drawback of ELMs is to meet the need of a large number of hidden-layer nodes to gain a reliable and 
accurate detector in applying image processing since the detective performance remarkably depends on the 
setting of initial weights and biases. Therefore, this paper uses Chimp Optimization Algorithm (ChOA) to 
improve results and increase the reliability of the network while maintaining real-time capability. The designed 
detector is to be benchmarked on the COVID-Xray-5k and COVIDetectioNet datasets, and the results are verified by 
comparing it with the classic DCNN, Genetic Algorithm optimized ELM (GA-ELM), Cuckoo Search optimized ELM 
(CS-ELM), and Whale Optimization Algorithm optimized ELM (WOA-ELM). The proposed approach outperforms 
other comparative benchmarks with 98.25 % and 99.11 % as ultimate accuracy on the COVID-Xray-5k and 
COVIDetectioNet datasets, respectively, and it led relative error to reduce as the amount of 1.75 % and 1.01 % as 
compared to a convolutional CNN. More importantly, the time needed for training deep ChOA-ELM is only 
0.9474 milliseconds, and the overall testing time for 3100 images is 2.937 s.   

1. Introduction 

The early detection of Coronavirus has become a challenge for sci-
entists due to the limited access to treatment and vaccines around the 
world. Polymerase Chain Reaction (PCR) tests have been introduced as 
one of the primary methods for detecting COVID-19 [1]. Nevertheless, 
this test is demanding and time-consuming; contrary, X-ray images are 
vastly accessible, and their scans are comparatively low in cost [2–5]. 

The need for designing an accurate and real-time detector has 
become increasingly necessitated. Considering the significant capabil-
ities of Deep Learning (DL) in cases [6–8], we propose to apply DCNN as 
a COVID-19 detector. A few research studies have been conducted since 

the beginning of the year 2020, having attempted to develop methods 
for identifying patients affected by the pandemic via DCNN [9,10]. 
Although the significant features of DL enable it to solve different 
learning tasks, it is difficult to train it [11–13]. Some instances of suc-
cessful methods for training Deep Learning (DL) are GD [14], Conjugate 
Gradient (CG) [15], Hessian-Free Optimization (HFO) algorithm [16, 
17], and Krylov Subspace Descent (KSD) [18]. 

Although stochastic GD training methods are simple in structure and 
rapid in process, they demand numerous manual parameters tuning to 
make them optimal [19,20]. Additionally, their strategies are inherently 
sequential; therefore, keeping their paces with Graphics Processing 
Units (GPU) is much demanding [21,22]; Although CG is stable for 
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training, yet it is almost slow and needs multiple CPUs and a large 
number of RAM’s resources [23–25]. 

Deep auto-encoder has used HFO to train the weights [16], being 
more efficient in pre-training and fine-tuning deep auto-encoders than 
the model proposed by Hinton and Salakhutdinov [17]. On the other 
side, KSD is more straightforward and stronger than HFO; it is addi-
tionally proven that KSD better classifies and optimizes than HFO. 
However, KSD requires more capacity than HFO [7]. 

Reference [26] proposes a Progressive Unsupervised Learning (PUL) 
approach to transfer pre-trained deep DCNN. This method is simple to 
conduct, and it can be viewed as a useful baseline for 
unsupervised-feature learning. As clustering results can be very noisy, 
this method adds a selecting operation between the clustering and the 
fine-tuning phases. 

An automatic DCNN architecture design method that uses genetic 
algorithms is proposed in [27] to optimize the image classification 
problems. The proposed algorithm’s main feature is related to its auto-
matic characteristic, meaning that users do not need any knowledge of 
the DCNN’s structure. However, this method’s major drawback is that 
the GA’s chromosomes become too large within large DCNNs getting the 
algorithm slowed down. 

The mentioned methods are, at least, throughout the training phase 
time-consuming. Therefore, it takes hours for users to obtain feedback in 
advance if the selected model for detecting works in the intended case. 
Additionally, self-learning X-ray image detection that trains based on 
the user’s feedback progressively may not have the right user experience 
since it takes a long time until the model enhances while operating with 
it [28–30]. A challenging point is an approach for X-ray image detection 
being efficient both in testing and in training phases. 

This study proposes to use ELM [31] yet with a fully connected layer 
to provide a real-time training phase. In the two-phase proposed 
approach, we compound the automatic feature of deep CNNs learning 
with efficient ELMs to tackle the mentioned shortcomings, i.e., manual 
feature extraction and training time extension. 

Consequently, the first phase is the deep CNN’s training considered 
as an automatic feature extractor. In the second phase, ELM will be 
replaced by a fully connected layer for designing a real-time classifier. 

The ELM’s origin is based on the Random Vector Functional Link 
(RVFL) [32–34], leading to ultra-fast learning and 
significant-generalization capability. Previous surveys show that ELM 
has widely been used in many engineering applications [35–38]. 
Although different types of ELM [39–41] are now accessible for 
detecting image and classifying problems, these problems, including the 
need for many hidden nodes to better generalization and the choice of 
activation functions, remain intact. Besides, ELM’s stochastic nature 
brings about an extra-uncertainty problem, particularly for 
high-dimensional image processing systems [42,43]. 

The ELM-based models randomly select the input weights and hid-
den biases from which the output weights are calculated during this 
procedure; ELMs attempt to minimize the training error and identify the 
smallest output weights’ norm. Due to the stochastic choice of the input 
weights and biases in ELM, the output matrix may not indicate full 
column rank; Instead, it leads to ill-conditioned matrices to system 
producing non-optimal solutions [44]. Consequently, we use a novel 
meta-heuristic algorithm called Chimp Optimization Algorithm(ChOA) 
[45,46] to improve ELM conditioning and ensure optimal solutions. To 
Sum up, we propose to use ELM rather than the last conventional 
fully-connected layer in deep CNN to have both a real-time training 
phase and a real-time testing phase. It is necessary to note that tradi-
tional ELM suffers from ill-conditioning and uncertainty, which leads to 
proposing ChOA [45] maintaining real-time structure and detecting 
with high accuracy. 

The remainder of this paper is structured as follows. Section 2 re-
views background materials; Section 3 introduces the proposed scheme; 
Section 4 presents simulation, discussion, and results. Finally, conclu-
sions are brought in Section 5. 

2. Background and materials 

This section represents the background knowledge, including the 
DCCN, ELM, ChOA, and COVID-19 datasets. 

2.1. Deep convolution neural network 

Deep learning models have rapidly become a methodology for 
analyzing X-ray images [47–49]. As shown in [50,51], the most suc-
cessful type of deep learning model for X-ray image analysis to date is 
CNN. CNNs consist of many layers that transform their input with 
convolution filters of a small extent. Various variants of CNNs have been 
proposed, such as LeNet-5 [52], AlexNet [53], ZFNet [54], GoogLeNet 
[55], VGGNet [56], ResNet [57], and etc. Given that the proposed model 
is supposed to evolve by metaheuristic algorithm, large networks can 
contribute to high computational cost since the evolutionary process is 
prolonged [58]. 

Having a big network can lead to overfitting [59]. LeNet is simple yet 
effective for grayscale and black and white images like chest X-ray im-
ages. Because of the limitations mentioned earlier, we propose LeNet as 
the primary classifier, to reduce the structural complexity and increase 
the chance of real-time processing. LeNet is the simplest type of CNNs 
introduced by Yann Le-Cun in the late 1990s, broadly considered as the 
first set of true CNNs [52]. Table 1 represents the details of the LeNet-5 
architecture. These concepts can be arranged into classes of two layers, 
including sub-sampling layers and convolution layers. As shown in 
Fig. 1, the processing layers comprise three convolution layers that are 
located between sub-sampling layers, organized as feature maps. The 
final output layers are three fully connected layers. 

Structurally viewed, any Feature Maps (FMs) is the outcome of a 
convolution from the previous layer’s maps by its corresponding kernel 
and a linear filter. The weights wk and the adding bias bk generate the kth 

(FM) FMk
ij using the tanh function as in Eq. (1). 

FMk
ij = tanh((Wk × x)ij + bk) (1) 

As the resolution of FMs gets reduced, the sub-sampling layer is led to 
spatial invariance to which each pooled FM refers one FM of the prior 
layer. The sub-sampling function is defined as Eq. (2). 

αj = tanh(β
∑

N×N
αn×n

i + b) (2)  

Where αn×n
i are the inputs; β and b are trainable scalar and bias, 

respectively. After different convolution and sub-sampling layers, the 
last layer is a fully connected structure carrying out the classification 
task. Only a neuron avails for each type of output; therefore, in the case 
of the COVID-19 dataset, this layer contains two neurons for their types. 

Table 1 
The details of the LeNet-5 architecture [52].  

Layers No. 
Kernels 

Kernel 
Size 

Padding Stride Output Features 

Convolution 
Layer (C1) 

6 5 × 5 0 1 (28,28) 

Average Pooling 
Layer (S2) 

6 2 × 2 0 2 (14,14) 

Convolution 
Layer (C3) 

16 5 × 5 0 1 (10,10) 

Average Pooling 
Layer (S4) 

16 2 × 2 0 2 (5,5) 

Fully Connected 
Layer (F5) 

– Fully Connected 
Layer (F5) 

Fully Connected 
Layer (F6) 

– Fully Connected 
Layer (F6) 

Fully Connected 
Layer (F7) 

– Fully Connected 
Layer (F7)  
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2.2. Extreme learning machine 

The ELM is one of the most widely used Single-hidden Layer Neural 
Network (SLNN) learning algorithms, which its variants are frequently 
used in sequential learning, batch learning, and incremental learning in 
consequence of its fast and effective learning speed, appropriate 
generalization capability, fast convergence rate, and simplicity of 
implementation [31]. Contrary to canonical learning algorithms, the 
primary aim of the ELM is to get better generalization performance by 
achieving both the output weights’ smallest norm and the minor training 
error. As stated in the feedforward neural networks theory of Bartlett 
[60], the smaller the weights’ norm is, the better generalization per-
formance the networks tend to have. 

ELM first randomly sets weights and biases of the input layer and 
then calculates the output layer weights using these random values. This 
algorithm has a faster learning rate and better performance than the 
traditional NN algorithms [61]. Fig. 2 indicates a typical SLNN to which 
n refers to the number of input-layer neurons, L refers to the number of 
hidden layer neurons, and m refers to the number of output-layer 
neurons. 

As indicated in [33], the activation function can be shown in Eq. (3). 

Zj =
∑L

i=1
Qif (wi, bi, xi) (3)  

Where wi refers to the input weight, bi refers to the ith hidden neuron’s 
bias, xj represents the inputs, and Zj is the output of the SLNN. Repre-
senting matrix of Eq. (3) is shown in Eq. (4). 

ZT = HQ (4)  

Where, Q = [Q1,Q2, ...,QL]
T , ZT is the transpose of matrix Z, H is a 

matrix named as hidden-layer output matrix calculated in Eq. (5). 

H =

⎡

⎣
f (w1, b1, x1)f (w2, b2, x1)⋯f (wL, bL, x1)

⋮⋯⋮
f (w1, b1, xβ)f (w2, b2, xβ)⋯f (wL, bL, xβ)

⎤

⎦

β×L

(5) 

The primary goal of training is to minimize the error or variance of 
the ELM. Input biases and weights have been stochastically selected. The 
activation function has to be infinitely differentiable within the con-
ventional ELM, yet in line with this regard, ELM training leads to obtain 
the output weight (Q) via optimizing the least-squares function indi-
cated in Eq. (6). The corresponding output weights are analytically 
computed by using the Moore-Penrose generalized in verse as done in 
ELM (cf. Eq. (7)) instead of any iterative tuning. 

min
Q

⃦
⃦HQ − ZT

⃦
⃦ (6)  

Q̂ = H+ZT (7) 

In this equation, H+ represents the generalized Moore-Penrose in-
verse of the H matrix. 

Since the ELM’s performance is dependent on the number of hidden 
layer neurons and the number of training epochs, the experiment was 
conducted with 100 epochs between the number of hidden neurons 
versus the Root Mean Square Error (RMSE) to specify the best number of 
hidden neurons. The proposed model’s final structure was determined as 
120 input neurons, 120 hidden neurons, and output neurons based on 
the number of classes. 

However, due to the random values of input weights and biases, the 
canonical ELM is not stable enough for real-world engineering problems. 

Fig. 2. Single-hidden layer neural network.  

Fig. 1. The design of LeNet-5 DCNN.  
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Besides, ELM may require a higher number of hidden neurons due to the 
random determination of the input weights and hidden biases [62,63]. 
Therefore, optimization algorithms can be employed for tuning input 
weights and biases to stable the outcomes. Thereby, ChOA is proposed to 
tune the ELM’s input weights and biases in the next section. 

2.3. The mathematical model for ChOA 

As proven in [45], ChOA was designed to alleviate the two problems 
of slow convergence speed and be trapped in local optima compared to 
other optimization algorithms to solve high-dimensional problems. 
Considering ELM’s parameters tuning dimension, ChOA was utilized to 
tune the mentioned parameters in this section. 

The ChOA is a novel group intelligence-based optimization algo-
rithm inspired by the chimp-hunting mechanism in their communities 
[45]. Four communal types of chimp are driver, chaser, barrier, and 
attackers. Although each member of a chimp colony has different ca-
pabilities, these differences are necessary for the hunting process. The 
behavior of the first two charges the driver and the chaser in the hunting 
group are mathematically defined as follows [46]: 

d =
⃒
⃒c.xprey(t) − m.xchimp(t)

⃒
⃒ (8)  

xchimp(t + 1) = xprey(t) − a.d (8)  

Where xprey xprey and xchimp xchimp represent the position vectors of the 
prey and the chimp, t refers to the current iteration indicator, and a, m, 
and c are the vectors determined by the following equations: 

a = 2.f.r1 − a (10)  

c = 2.r2 (11)   

m = Chaotic_value                                                                       (12) 

Where f is non-linearly reduced over iterations with a range of [0, 2.5], 
r1 and r2 are stochastic values between 0 and 1. The chaotic vector m 
represents the sexual motivations of chimps exploiting different chaotic 
maps. The stochastic population of the generation of chimps is the first 
step in the ChOA. The chimps are arranged stochastically into four 
categories: driver, barrier, attacker, and chaser in the next step. Each 
group’s strategy determines the location of updating method of specified 
chimps, determining fvector while all groups attempt to estimate the 
best position of the prey. The c and m vectors are tuned adaptively, and 
they will improve the local minima avoidance and convergence rate. 

Within conventional group intelligence-based meta-heuristic opti-
mization algorithms, different autonomous categories employ different 
strategies to update f, which can be any continuous function as long as it 
is reduced during iterations [24]. Two kinds of chimps with different 
autonomous categories named ChOA1 and ChOA2 out of a small number 
of evaluated methods had the best efficiency in the optimization tasks. 
The selection for f in four different groups is presented in Table 2. As it is 
tabulated, t and T refer to the current and maximum number of iteration, 
respectively. The attacker chimp leads the exploitation phase, and the 
hunt is now and then enrolled by the other chimps. Nevertheless, the 
prey’s best location is not accurately determined; the best-obtained so-
lutions are thus used for mathematical modeling of hunting behavior. 
The first attacker, driver, barrier, and chaser are considered as the best 
chimps, and the other chimps should update their positions based on 
these four solutions. 

Different dynamic strategies are allowed to update f in autonomous 
categories to explore search space, having diverse capabilities and ho-
mogeneity between local and global search. The adaptively autonomous 
types provide 

The following equations represent the position that updates the 
thumb rule. 

dAttacker = |c1xAttacker − m1x|, dBarrier = |c2xBarrier − m2x|,
dChaser = |c3xChaser − m3x|, dDriver = |c4xDriver − m4x| (13)  

x1 = xAttacker − a1(dAttacker), x2 = xBarrier − a2(dBarrier),

x3 = xChaser − a3(dChaser), x3 = xDriver − a4(dDriver)
(14)  

x(t + 1) =
x1 + x2 + x3 + x4

4
(15)  

Where, m vector models the chaotic behavior of chimps in the final 
phase of the hunting to catch more meat which means more social favors 
such as grooming or sex. Chaotic maps improve convergence rate and 

Fig. 3. The chaotic maps used in ChOA.  

Table 2 
The Mathematical Model for the f Vector’s Dynamic Coefficients [45].  

Category ChOA1 ChOA2 

one 1.95 − 2×t1/4/T1/3  2.5− (2×log(t)/log(T)) 

Two 1.85 − 3×t1/3/T1/4  (− 2×t3/T3) + 2.5  

Three (− 3×t3/T3) + 1.5  0.5 + 2×exp[− (4×t/T)2] 

Four (− 2×t3/T3) + 1.5  2.5 + 2×(t/T)2 − 2(2×t/T)  
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avoid local optima entrapping in complex and high-dimensional prob-
lems like image processing. Six chaotic maps have been exploited [24], 
which are deterministic equations with stochastic behaviors as indicated 
in Table 2 and Fig. 3. Assume in an algorithm that fifty percent of chimps 
in the final step of the hunting process will follow their normal behaviors 
while another fifty percent follow the chaotic strategies to update their 
successive positions. 

The updating model is then mathematically described as in Eq. (16): 

xchimp(t + 1) =
{

xprey(t) − a.d if μ < 0.5
Chatic value if μ > 0.5 (16)  

Where μ is a random number in a range of [0,1]. Firstly, ChOA is initi-
ated by producing random chimps (candidate solutions). Secondly, all 
chimps are divided into four mentioned autonomous categories. Thirdly, 
chimps update their f vectors using the assigned categorize strategy. 
Afterward, the four-categorized chimps evaluate the locations of prac-
ticable prey during the iteration. Then, the distances between chimps 
and the prey will be updated. Moreover, the c and the m being an 
adaptive tuning leads to a local optima avoidance and a faster conver-
gence rate simultaneously. Finally, chaotic maps lead to accelerating the 
convergence rate while avoiding local minima. 

2.4. COVID-19 dataset 

In this study, two datasets were utilized to evaluate the performance 
of the designed model. The first one is the COVID-X-ray-5k dataset 
comprises 2084 training samples and 3100 test images [64]. In this 
dataset, considering radiologist advice, only anterior and posterior 
COVID-19 X-ray images are used since the lateral photos are not appli-
cable for purposefully detecting. Expertise radiologists evaluated those 
images and eliminated those ones not having clear pieces of evidence for 
COVID-19. The COVID-X-ray-5k dataset includes 224316 chest X-ray 
images from 65240 patients. 2000 and 3000 non-COVID images were 
chosen from this dataset for the training and the testing sets, respec-
tively. In this way, 19 images out of 203 images were removed, and 184 
images remained, indicating clear pieces of evidence of COVID19. A 
group of a more clearly labeled dataset was introduced in this method. 
100 images out of 184 photos are considered for the test set, and 84 

images are intended for the training set. For increasing the number of 
positive cases to 420, data augmentation is applied. Since the number of 
normal cases was small in the covid-chestxray-dataset [64,65], the 
supplementary ChexPert dataset [66]was employed. The second dataset 
is extracted from the COVIDetectioNet study, produced based on publicly 
available X-ray image datasets [67]. Three X-ray image datasets ob-
tained from the Kaggle and Github databases were utilized to generate 
this hybrid dataset. The COVIDetectioNet dataset includes chest X-ray 
images of COVID-19, Normal, and Pneumonia cases, with 219, 1583, 
and 4290 samples, respectively. Table 4 represents the detailed infor-
mation on the utilized datasets and their sources. Fig. 4 indicates some 
stochastic sample cases from utilized datasets, including normal, Pneu-
monia, and COVID-19 samples. The final number of images related to 
different classes is reported in Table 5. 

3. Methodology 

This paper uses the LetNet-5 structure to detect COVID-19 positive 
cases. It consists of three convolutional layers and two pooling layers 
followed by a Fully-Connected (FC) layer using Gradient Descent-based 
Back Propagation (GDBP) algorithm for learning [68]. Regarding the 
aforementioned GDBP deficiencies, we propose to use a single-layer 
ELM instead of FC layers to classify the extracted features, as shown in 
Fig. 5. 

The convolutional layers’ weights are pre-trained on a large dataset 
as a complete LetNet-5 with a standard GDBP learning algorithm. After 
the pre-training phase, the FC layers are removed and remained layers 
are frizzed to exploit as a feature extractor. The ELM network’s input 
values will be provided by the features generated by the stub- CNN. The 
ELM has 120 hidden-layer neurons and two output neurons in the pro-
posed structure. It is to notify that the sigmoid function is used as an 
activation function. 

3.1. Stabilizing ELM using ChOA 

Despite the reduction of training time in ELMs compared to the 
standard FC layer, ELMs are not stable and reliable in real-world engi-
neering problems due to the random determination of the input layer’s 

Fig. 4. Some samples of a) Pneumonia, b) COVID-19, and c) normal cases from the utilized datasets.  
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weights and biases. As proven in [45], ChOA was designed to alleviate 
the two problems of slow convergence speed and get trapped in local 
optima compared to other optimization algorithms in solving 
high-dimensional problems. Considering ELM’s parameters tuning 
dimension, we apply the ChOA to adapt the input layer weights and 
biases of ELM to increase the network’s stability and reliability 
(ChOA-ELM) while keeping the real-time operation. 

Generally speaking, there are two main issues in adapting (tuning) a 
deep network using a meta-heuristic optimization algorithm. First, the 
structure’s parameters have been clearly represented by the searching 
agents (candid solution) of the meta-heuristic algorithm; second, the 
fitness function must be defined based on the problem’s interest. 

The presentation of network parameters is a distinctive phase in 
tuning a Deep Convolutional ELM using ChOA (DCELM-ChOA) algo-
rithm. Thereby, ELM’s input layer’s weights and biases should be clearly 
determined to make the best diagnostic accuracy. By and large, ChOA 
optimizes ELM’s input layer’s weights and biases, which are used to 
calculate the loss function as a fitness function. In fact, the values of 
weight and bias are used as searching agents (Chimps) in the ChOA. 

Three schemes are generally used to present weights and biases of a 
DCELM as candid solutions for the meta-heuristic algorithm: vector- 
based, matrix-based, and binary state [69–71]. Since the ChOA needs 
parameters in a vector-based model, the candid solution is shown as Eq. 
(10). 

Chimps = [W11,W12, ...,WnL, b1, ..., bL] (17)  

Where n is the number of the input nodes, Wij indicates the connection 
weight between the ith feature node, and jth refers to the input neuron of 
ELM, bj is the bias of the jth input neuron. As previously stated, the 
proposed design is a simple LeNet-5 structure [52]. In this section two 
structures named as in_6c_2p_12c_2p and in_8c_2p_16c_2p are used 
whereas c and p are convolution and pooling layers respectively. The 
kernel size of all convolution layers is 5 × 5, and the scale of pooling is 
down-sampled by a factor of 2. 

3.2. Loss function 

In the proposed meta-heuristic method, the ChOA algorithm trains 
DCELM to obtain the best accuracy and minimize evaluated classifica-
tion errors. This aim can be computed by the loss function of the met-
aheuristic searching agent or the Mean Square Error (MSE) of the 
classification procedure. Albeit, the loss function used in this method is 
as follows [72]: 

E =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

j=1 ‖
∑k

i=1Qif (wi.xj + bi) − tj‖
2
2

m × N

√

(18)  

Where n is the number of the input nodes, Wij indicates the connection 
weight between the ith feature node and jth refers to the input neuron of 
ELM, bj is the bias of the jth input neuron, xj represents the inputs, Q 
denotes the output weight, and N refers to the number of training 
samples. The proposed ChOA algorithm uses two termination criteria, 
including reaching maximum iteration or pre-defined loss function. 
Consequently, the general block diagram and the pseudo-code of 
DCELM-ChOA are shown in Figs. 6 and 7, respectively. 

4. Simulation results and discussion 

The hybrid method’s initial target is to enhance the diagnosis rate of 
classic DCNN by using the ELM and the ChOA learning algorithm. In the 
DCELM-ChOA simulation, the population and maximum iteration equal 
to 50 and 10, respectively. The parameter of DCNN, i.e., the learning 
rate α and the batch size equal to 0.0001 and 20 accordingly. Addi-
tionally, the number of epochs is considered between 1 and 10 for every 
evaluation. We down-sample all input images to 31 × 31 before 
applying them in DCNNs. The evaluation was run in the MATLAB- 
R2019a on a PC with Intel Core i7-4500 u processor 16 GB RAM in 
Windows 10 with five individual runtimes. The performance of DCELM- 
ChOA is compared with DCELM [73], DCELM-GA [27], DCELM-CS [74], 
and DCELM-WOA [75] on the utilized datasets. The parameters of the 
GA, the CS, the DA, and the WOA are shown in Table 6. 

4.1. Evaluation metrics 

Different metrics can be remarkably used to measure the classifica-
tion model’s efficiency, such as sensitivity, classification accuracy, 
specificity, precision, Gmean, Norm, and F1-score. Since the datasets are 

Fig. 5. the Conventional vs. Proposed Design.  
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significantly imbalanced (169 COVID19 images, 6000 NonCOVID im-
ages), we use specificity (true negative rate) and sensitivity (true posi-
tive rate) to report the performance of designed models as following Eqs 
correctly [76]: 

Sensitivity(TPR) =
TP
P

=
TP

TP + FN
(19)  

Specificity(TNR) =
TN
N

=
TN

TN + FP
(20)  

Where, TP represents the number of true positive cases, FN represents 
the number of false-negative cases, TN represents the number of true 
negative cases, and FP points to the number of false-positive cases. 

4.2. The analysis of chaotic maps’ effects 

This subsection evaluates the sensitivity analysis of chaotic maps 
employed in the ChOA on the overall performance. Considering the 
references [63,77], experiments were conducted using six chaotic maps 
(i.e., Chebyshev, Gauss/mouse, Singer, Bernoulli, Sine, Circle) defined 
in Table 2. The designed model is trained for each chaotic map. The 
calculated classification accuracy for chaotic maps is represented in 
Fig. 8. In which, Fig. 8a indicates the results for the COVID-X-ray-5k 
dataset, and Fig. 8b shows the results for the COVIDetectioNet dataset. As 
shown in this figure, the best performance is obtained for Gauss/mouse 
map. Therefore, this chaotic map is chosen for the following 
comparison. 

4.3. Structure expected probability grades 

As for the importance of time complexity we use two simple LetNet-5 
convolutional structures, i. e., in_6c_2p_12c_2p and in_8c_2p_16c_2p. The 

probability of each image is predicted by these structures, indicating the 
possibility of the image being identified as COVID-19. As comparing this 
similarity with a threshold, we can extract a binary label that indicates if 
the specified image is COVID-19 or not. A perfect structure must identify 
the similarity of all COVID-19 cases close to one and Non-Covid cases 
close to zero. 

Figs. 9 and 10 display Expected Probability Grades (EPG) distribu-
tion for the images in the COVID-X-ray-5k and COVIDetectioNet test 
datasets. Since the Non− COvid category comprises general cases and 
other types of infection, the EPG distribution is presented for three 
categories, i.e., COVID-19, Non-COVID, and Pneumonia Cases. As shown 
in Figs. 9 and 10, the Pneumonia Cases have slightly larger grades than 
the Non-COVID cases. That the Pneumonia images are more complex to 
be recognized from COVID-19 than Non-COVID general cases is logical. 
Positive COVID-19 cases are expected to have much higher probabilities 
than the Non-COVID cases, certainly stimulating, as it indicates that the 
structure is learning to recognize COVID-19 from Non-COVID samples. 
The confusion matrices for these two structures on COVID-Xray-5k and 
COVIDetectioNet are shown in Figs. 11 and 12. 

Considering the calculated results, we opt for the in_8c_2p_16c_2p 
structure as a benchmark structure named as conventional DCNN. 

4.4. The comparison of specificity and sensitivity 

Each structure of the EPG indicates the possibility of the image being 
COVID-19. These EPGs can be compared with a cut-off threshold to 
deduce if the image is a positive COVID-19 case or not. Researchers use 
calculated labels to evaluate the specificity and sensitivity of each de-
tector. Different specificity and sensitivity rates can be calculated based 
on the value of the cut-off threshold. The specificity and the sensitivity 
rates based on conventional DCNN, DCELM, DCELM-GA, DCELM-CS, 

Fig. 6. A general block diagram of the CELM-ChOA model.  

T. Hu et al.                                                                                                                                                                                                                                       



Biomedical Signal Processing and Control 68 (2021) 102764

8

DCELM-WOA, and DCELM-ChOA models are represented in Tables 7 
and 8 for COVID-Xray-5k and COVIDetectioNet datasets, respectively. 

The data presented in Tables 7 and 8 show that all benchmark net-
works obtain much favorable outcomes, and the best performing 
structure (DCELM-ChOA) achieves a sensitivity rate of 100 % and a 
specificity rate of 98.66 % for COVID-Xray-5k datasets and sensitivity 
rate of 100 % and a specificity rate of 98.89 % for COVIDetectioNet 
datasets. DCELM-ChOA and DCELM-WOA become slightly better in ef-
ficiency than other benchmark structures. 

4.5. The reliability analysis of imbalance dataset 

Considering the limitation of the number of approved labeled posi-
tive COVID-19 cases, the researchers have only 100 positive COVID-19 

cases put in the COVID-Xray-5k dataset; that is why sensitivity and 
specificity rates, which are reported in Table 5, might not be completely 
reliable. Theoretically, more numbers of positive COVID-19 cases are 
needed to conduct a more reliable evaluation of sensitivity rates. Albeit, 
95 % confidence interval of the obtained specificity and sensitivity rates 
can be evaluated to test what is the feasible interval of calculated values 
for the current number of test cases in each category. The confidence of 
interval for the accuracy rate can be calculated as in Eq. (21) [78,79]. 

r = p
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Accuracy.Rate(1-Accuracy.Rate)

N

√

(21)  

Where, p refers to the significance level of the confidence interval, i.e., 
Standard Deviation (SD) of the Gaussian distribution, N refers to the 

Fig. 7. The Pseudo-code for DCELM-ChOA model.  
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number of cases for each class, Accuracy. Rate refers to the evaluated 
accuracy, sensitivity, and specificity in this example. The 95 % used 
confidence interval is to lead the corresponding value of 1.96 top. 
Regarding the fact that a sensitive network is essential for the COVID-19 
detection problem, the particular threshold levels are selected corre-
sponding to a sensitivity rate of 98 % for each benchmark network, and 
their specificity rates are examined afterward. The comparison of the six 
model’s performance is presented in Tables 9 and 10 for COVID-Xray-5k 
and COVIDetectioNet datasets, respectively. The data presented in these 
tables show that the specificity rates’ confidence interval is about 1 %. 
Comparatively, it equals around 2.8 % for sensitivity since there are 
3000 images for the normal classes (Non-COVID and Pneumonia). 

Comparing different structures solely based on their specificity and 
sensitivity rates does not make enough sense of the detector’s perfor-
mance because different threshold levels cause different specificity and 
sensitivity rates. The precision-recall curve is a good presentation that 
can be used to evaluate comparison between these networks for all 
feasible cut-off threshold levels comprehensively. This presentation 
shows the precision rate as a function of the recall rate. Precision is then 
defined as the TPR divided by the TP (i.e., Eq. 19), and the recall has the 
same definition as TNR (i.e., Eq. 20). Figs. 13 and 14 show the precision- 
recall plot of these six benchmark models. The Receiver Operating 
Characteristic (ROC) plot is another appropriate tool showing the TPR as 
a function of FPR. Therefore, these figures show the ROC curve of these 
six benchmark structures as well. The ROC curves show that DCELM- 
ChOA significantly outperforms other DCELM-based networks and yet 
as well as conventional DCNN on the test dataset. It comes to notify that 
the Area Under Curve (AUC) of ROC curves might not rightly indicate 
the model’s efficiency since it can be very high for widely imbalanced 
test sets, including COVID-Xray-5k and COVIDetectioNet datasets. 

As figures are to show the results, the DCELM-ChOA detector pre-
sents significant COVID-19 detection as it is compared with other 
benchmark models. The proposed approach outperforms other 
comparative benchmarks with 98.25 % and 99.11 % as ultimate accu-
racy on the COVID-Xray-5k and COVIDetectioNet datasets, respectively, 
and it led relative error to reduce as the amount of 1.75 % and 1.01 % as 

compared to a convolutional CNN. 
Generally, the precision-recall plot shows the trade-off between 

recall and precision for different threshold levels. A high area under the 
precision-recall curve represents high precision and recall. High preci-
sion represents a low false-positive rate and high-recall represents a low 
false-negative rate. As it can be observed from the curves in Figs. 13 and 
14, the DCELM-ChOA has a higher area under the precision-recall 
curves; it thus means a lower false positive and false negative rate 
than other benchmark detectors. The results of the simulation indicate 
that DCELM-ChOA represents the best accuracy for all epochs. 

As shown from the ROC and precision-recall curves, the AUC of 
DCELM is reduced compared to the conventional DCNN. 

This reduction means that the performance of DCNN slightly de-
creases when the ELM is replaced with the fully connected layer since 
the merits of supervised learning are ignored. Nevertheless, it is stated 
that the other evolutionary DCNNs have better performance than stan-
dard DCNN. In reality, the advantage of the stochastic supervised nature 
of the evolutionary learning algorithm and unsupervised nature of the 
ELM is taken. Consequently, the detector’s performance is improved as 
advantages of these hybrid-supervised and -unsupervised learning al-
gorithms are compounded. 

4.6. The analysis of time complexity 

Measuring the time complexity is necessary for analyzing a real-time 
detector. Regarding the benchmark networks, researchers run the 
designed COVID-19 detector using NVidia Tesla K20 as the GPU and an 
Intel Core i7-4500u processor as the CPU. The testing time is the time 
demanded to process the whole test set of 3100 images. We use a non- 
parametric statistical procedure, Wilcoxon’s rank-sum test [80,81], at 
5% significance level to test whether the outcomes of DCELM-ChOA 
differ from other benchmark networks in a statistically significant way 
or not. The p-values are tabulated in Table 11 as well. In this Table, N/A 
represents "Not Applicable," i.e., in Wilcoxon’s rank-sum test, the cor-
responding network cannot be compared with itself. As notified, 
p-values less than 0.05 are referred to as strong evidence against the null 

Fig. 8. The classification accuracy for different chaotic maps.  
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Fig. 9. the EPG for COVID-Xray-5k dataset.  Fig. 10. the EPG for COVIDetectioNet dataset.  
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hypothesis. It is also necessary to assume that p-values greater than 0.05 
are underlined. It should be noted that the results in Table 11 are the 
average of the results of the two data sets used. 

From another point of view and based on the result of Table 11 taken, 
it is crystal clear that the training and the testing time of DCELMs are 
remarkably lower than the classic DCNN. It is also noteworthy that in 
GPU accelerated training, the proposed approach 538 times faster than 
the current DCNN. Perpending the number of testing and training im-
ages in Table 3 and also revolving of time of entire test and training 
processing in Table 11 that the DCELMs requires less than one milli-
second per image for both training and testing can easily be ramified and 
thus makes DCELMs perform in real-time in both phases. Since more 
than 90 % of the processing time is related to feature extraction, using 
other deep learning models can reduce processing time even further. 

4.7. Identifying the region of interest 

From the data science experts’ perspective, the best result can be 
shown under the confusion matrix, overall accuracy, precision, recall, 
ROC curve, etc. [82]. However, these optimal results might not be suf-
ficient for medical specialists and radiologists if they cannot be inter-
preted. Identifying the Region of Interest (ROI) that leads 
decision-making to the network will enhance medical experts and data 
science experts’ understanding. 

The results provided by designed networks for the utilized datasets 
were investigated and explored. The Class Activation Mapping (CAM) 
[83] results were displayed to localize the areas questionable for the 
COVID-19 virus. To emphasize the distinctive regions, the probability, 
predicted by the DCNN model for each image class, gets mapped back to 
the last convolutional layer of the corresponding model that is peculiar 

Fig. 11. The Confusion Matrix for COVID-Xray-5k dataset.  Fig. 12. The Confusion Matrix for COVIDetectioNet dataset.  

Fig. 13. The ROC Curves and Precision-recall Curves for COVID-Xray- 
5k dataset. 
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Fig. 14. The ROC Curves and Precision-recall Curves for COVIDetectio-
Net dataset. 

Table 7 
The Specificity and Sensitivity Rates of Benchmark Models for COVID-Xray-5k 
dataset.  

Model Threshold Sensitivity (%) Specificity (%) 

DCNN 

0.1 98 84.47 
0.2 95 85.73 
0.3 90 87.42 
0.4 84 90.82 

DCELM 

0.1 98 83.37 
0.2 94 86.21 
0.3 89 88.12 
0.4 83 89.52 

DCELM-GA 

0.1 98 92.26 
0.2 97 93.85 
0.3 92 94.85 
0.4 89 96.85 

DCELM-CS 

0.1 99 89.91 
0.2 97 92.85 
0.3 95 96.33 
0.4 91 97.33 

DCELM-WOA 

0.1 99 85.12 
0.2 96 92.98 
0.3 91 96.60 
0.4 80 97.90 

DCELM-ChOA 

0.1 100 84.34 
0.2 98 93.32 
0.3 97 95.33 
0.4 92 98.66  

Table 3 
Mathematical models of the chaotic maps [45].  

No Name Chaotic map Range 

1 Chebyshev xi+1 = cos(i× cos− 1(xi)) (-1,1) 

2 Gauss/ 
mouse xi+1 =

⎧
⎪⎨

⎪⎩

1 xi = 0
1

mod(xi,1)
otherwise  

(0,1) 

3 Singer xi+1 = μ× (7.86× xi − 23.31× x2
i + 28.75× x3

i −

13.302875× x4
i ), μ = 1.07  

(0,1) 

4 Bernoulli xi+1 = 2× xi(mod 1) (0,1) 
5 Sine xi+1 =

a
4
× sin(π × xi), a = 4  (0,1) 

6 Circle xi+1 = mod(xi + b −
( a

2 × π

)
× sin(2× π × xk),1),

b = 0.2 and a = 0.5  

(0,1)  

Table 4 
The detailed information on the utilized datasets and their sources.  

Dataset Normal COVID-19 Pneumonia Total 

Source datasets 
covid-chestxray-dataseta – 76 17 93 
COVID-19 Radiography Databaseb 1341 219 1345 2905 
Chest X-Ray Images (Pneumonia)c 1583 – 4273 5856 
Used datasets 
COVIDetectioNet 1583 219 4290 6092 
COVID-X-ray-5k 5000 520 – 5520  

a Source: https://github.com/tawsifur/COVID-19-Chest-X-ray-Detection. 
b Source: https://www.kaggle.com/tawsifurrahman/covid19-radiography-database. 
c Source: https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia. 

Table 6 
The Parameters of Benchmark Algorithms.  

Algorithm Parameters Values 

GA 
Cross-over Probability 0.7 
Mutation Probability 0.1 
Population Size 50 

CS 
Discovery Rate of Alien Eggs 0.25 
Population Size 50 

WOA 
a  Linearly Decreased from 2 to 0 
Population Size 50 

ChOA 

f Table 1 
m Chaotic 
r1, r2 Random 
Population Size 50  

Table 5 
The Categories of Images per Class in the utilized Datasets.  

Category COVID19 Normal  

COVID-X-ray-5k  
Training Set 420 (84 before augmentation) 2000 
Test Set 100 3000  

COVIDetectioNet  
Training Set 150 2873 
Test Set 69 3000  
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to each class. The CAM for a determined image class is the outcome of 
the activation map of the Rectified Linear Unit (ReLU) layer following 
the last convolutional layer. That to what extent each activation map-
ping contributes to the final grade of that particular class is identified. 
The novelty of CAM is the total average pooling layer that is applied 
after the last convolutional layer, which is based on the spatial location 
to produce the connection weights; thereby, it permits to identify of 
desired regions in an X-ray image that differentiates the class specificity 
preceding the Softmax layer leading to better predictions. Illustrations in 
Figs. 15 and 16 using CAM for DCNN models allow the medical spe-
cialists and radiology expertise to localize the areas questionable for the 
COVID-19 virus. Figs. 15 and 16 indicate the results for COVID-19 
detection in X-ray images. Fig. 15 shows the outcomes for the case 
marked as ’Covid19′ by the radiologist, and the DCELM-ChOA model not 
only predicts the same result but also indicates the distinctive area for 
making a decision. 

Fig. 16 shows the outcome for a ’normal’ case in X-ray images. 
Different regions are emphasized by comparing both models for their 
predictions of the ’normal’ subset. Now, medical specialists and radi-
ology expertise can choose the network design based on these decisions. 
This type of CAD visualization introduces a secondary but useful opinion 
for the medical specialists and radiology experts to improve their un-
derstandings of deep learning models. 

5. Conclusion 

In this paper, the ChOA is proposed to design an accurate DCNN 
model for detecting positive COVID-19 X-ray. The designed detector was 
benchmarked on the COVID-Xray-5k dataset, and the results were 
evaluated by a comparative study with classic DCNN, DCELM, DCELM- 
GA, DCELM-CS, and DCELM-WOA. The results indicated that the 
designed detector can present very competitive outcomes as it is 
compared to mentioned benchmark models. The concept of Class Acti-
vation Map (CAM) was also applied to detect regions potentially infected 
by the virus. It was also found that it correlates with clinical results, as 
confirmed by an expert in advance. Limited lines of research direction 
can be proposed and introduced for future works with the DCELM- 
ChOA, such as detecting and classifying SONAR submarine targets; 
additionally, changing ChOA to tackle multi-purpose optimization 
problems can be recommended as another potential contribution. The 
investigation of the effectiveness of chaotic maps to improve the per-
formance of the DCELM-ChOA can be another line of research direction. 
Although the results were promising, further studies are needed on a 
larger dataset of COVID-19 images for having a more comprehensive 
evaluation of the accuracy rates. 
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Table 8 
The Specificity and Sensitivity Rates of Benchmark Models for COVIDetectioNet 
dataset.  

Model Threshold Sensitivity (%) Specificity (%) 

DCNN 

0.1 97 84.32 
0.2 96 86.11 
0.3 91 87.93 
0.4 84 90.55 

DCELM 

0.1 98 82.92 
0.2 95 87.01 
0.3 90 87.98 
0.4 83 89.44 

DCELM-GA 

0.1 98 91.95 
0.2 97 94.11 
0.3 93 95.07 
0.4 90 97.01 

DCELM-CS 

0.1 99 90.01 
0.2 98 93.05 
0.3 96 96.91 
0.4 92 97.82 

DCELM-WOA 

0.1 98 84.44 
0.2 97 93.05 
0.3 92 96.82 
0.4 81 98.17 

DCELM-ChOA 

0.1 100 85.14 
0.2 99 94.01 
0.3 97 95.99 
0.4 93 98.89  

Table 11 
The Comparison of Test and Training Time of Benchmark Network Run on GPU 
and CPU.  

Model CPU vs. GPU Training time Testing time P-value 

DCNN 
GPU 11 min, 11 s 3152 ms 2.11E-07 
CPU 6 h, 32 min, 7 s 4 min, 29 s 1.41E-03 

DCELM GPU 1162 ms 2929 ms N/A 
CPU 1 min, 14 s 4 min, 03 s N/A 

DCELM-GA GPU 3632.7 ms 3107 ms 1.21E-05 
CPU 4 min, 27.5 s 4 min, 23 s 1.11E-05 

DCELM-CS 
GPU 2582.3 ms 3102 ms 1.58E-04 
CPU 3 min, 9.6 s 4 min, 28 s 1.29E-04 

DCELM-WOA 
GPU 1298.9 ms 3014 ms 0.505 
CPU 2 min, 5 s 4 min, 19 s 1.37E-08 

DCELM-ChOA GPU 1233 ms 2932 ms 0.538 
CPU 1 min, 69 s 4 min, 19 s 0.513  

Table 10 
The Reliability Analysis of Sensitivity and Specificity for COVIDetectioNet 
dataset.  

Model Sensitivity (%) Specificity (%) 

DCNN 98 ± 2.8 85.11 ± 1.28 
DCELM 98 ± 2.8 83.22 ± 1.29 
DCELM-GA 98 ± 2.8 91.92 ± 0.89 
DCELM-CS 98 ± 2.8 92.03 ± 0.92 
DCELM-WOA 98 ± 2.8 91.15 ± 0.89 
DCELM-ChOA 98 ± 2.8 94.02 ± 0.88  

Table 9 
The Reliability Analysis of Sensitivity and Specificity for COVID-Xray-5k dataset.  

Model Sensitivity (%) Specificity (%) 

DCNN 98 ± 2.8 84.47 ± 1.31 
DCELM 98 ± 2.8 83.37 ± 1.32 
DCELM-GA 98 ± 2.8 92.26 ± 0.90 
DCELM-CS 98 ± 2.8 91.85 ± 0.91 
DCELM-WOA 98 ± 2.8 91.33 ± 0.91 
DCELM-ChOA 98 ± 2.8 93.32 ± 0.89  
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