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ABSTRACT 

Background. Reduced kidney function is a risk factor of cardiovascular and all-cause mortality. This association was 
demonstrated for several kidney function markers, but it is unclear whether integrating multiple measured markers may 
improve mortality risk prediction. 
Methods. We conducted an exploratory factor analysis ( EFA) of serum creatinine– and cystatin C–based estimated 
glomerular filtration rate [eGFRcre and eGFRcys; derived by the Chronic Kidney Disease Epidemiology Collaboration 

( CKD-EPI) and European Kidney Function Consortium ( EKFC) equations], blood urea nitrogen ( BUN) , uric acid and serum 

albumin among 366 758 participants in the UK Biobank without a history of kidney failure. Fitting Cox proportional 
hazards models, we compared the ability of the identified latent factors to predict overall mortality and mortality by 
cardiovascular disease ( CVD) , also considering CVD-specific causes like coronary heart disease ( CHD) and 
cerebrovascular disease. 
Results. During 12.5 years of follow-up, 26 327 participants died from any cause, 5376 died from CVD, 2908 died from 

CHD and 1116 died from cerebrovascular disease. We identified two latent factors, EFA1 and EFA2, both representing 
kidney function variations. When using the CKD-EPI equation, EFA1 performed like eGFRcys, with EFA1 showing slightly 
larger hazard ratios for overall and CVD-related mortality. At 10 years of follow-up, EFA1 and eGFRcys showed moderate 
discrimination performance for CVD-related mortality, outperforming all other kidney indices. eGFRcre was the least 
predictive marker across all outcomes. When using the EKFC equation, eGFRcys performed better than EFA1 while all 
other results remaining similar. 
Conclusions. While EFA is an attractive approach to capture the complex effects of kidney function, eGFRcys remains 
the most practical and effective measurement for all-cause and CVD mortality risk prediction. 
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GRAPHICAL ABSTRACT 

Keywords: cardiovascular disease, cystatin C, eGFR, factor analysis, kidney function 

KEY LEARNING POINTS 

What was known: 

• Reduced kidney function is a risk factor for all-cause and cardiovascular mortality.
• eGFRcys predicts incident CVD and mortality better than eGFRcre across different age groups and conditions.
• Although utility of single kidney-related biomarker was examined, it is unclear whether integrating multiple biomarkers 

improves mortality prediction.

This study adds: 

• The present study applied exploratory factor analysis ( EFA) to integrate five kidney-related biomarkers using the UK Biobank 
dataset.

• The main identified latent factor and eGFRcys are the best predictors of all-cause and cardiovascular mortality.
• Among the studied kidney function biomarkers, eGFRcre is the worst predictor for all-cause and CVD mortality.

Potential impact: 

• eGFRcys remains the most practical and effective marker for all-cause and cardiovascular mortality risk prediction.
• EFA should be expanded to include specific molecular markers that may reflect the different dimensions of kidney function.
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NTRODUCTION 

hronic kidney disease ( CKD) affects > 700 million people world- 
ide [1 ] and is increasing to become the fifth leading cause of 
eath, surpassing diabetes and most non-communicable dis- 
ases [2 ]. CKD is a risk factor for the incidence of kidney fail- 
re and cardiovascular disease ( CVD) as well as all-cause and 
e
VD mortality [3 , 4 ]. CKD is defined as a reduced kidney func-
ion, which is normally quantified by the glomerular filtration 
ate ( GFR) , estimated using serum creatinine ( eGFRcre) [5 ] or cys- 
atin C ( eGFRcys) [6 ]. 

Previous studies have suggested that eGFRcys predicts in- 
ident CVD and mortality better than eGFRcre across differ- 
nt age groups and conditions [7 –10 ]. However, it is unclear 
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hether combining eGFRcys with other commonly measured 
iochemical parameters of kidney function may further im- 
rove the prediction of overall mortality as well as mortality
y cardiovascular-specific causes. Multivariate statistical anal- 
sis techniques include exploratory factor analysis ( EFA) and 
tructural equation modelling, which aim to identify latent, un- 
bservable structures underlying observable markers measured 
ith error. In the specific case of kidney function assessment,
uch markers include eGFRcre, eGFRcys, blood urea nitrogen 
 BUN) , uric acid ( UA) and serum albumin. Each of them is infor-
ative about kidney function but also reflect variability caused 
y the marker-specific metabolism. Additionally, eGFRcre and 
GFRcys are just approximations of the real, underlying GFR,
hich is not measurable in large population samples. 
To address this issue, we conducted an integrated analysis of

ve kidney function markers, typically assessed in clinical prac- 
ice, in 366 758 participants to the UK Biobank ( UKBB) followed 
ver 12.5 years. Through EFA, we estimated latent signatures of
idney function, which were compared against the Chronic Kid- 
ey Disease Epidemiology Collaboration ( CKD-EPI) and European 
idney Function Consortium ( EKFC) GFR estimating equations in 
erms of ability to predict all-cause mortality as well as cause-
pecific mortality, namely CVD-, coronary heart disease ( CHD) - 
nd cerebrovascular-related mortality. 

ATERIALS AND METHODS 

tudy participants 

he UKBB is a population-based study involving general popula- 
ion individuals, approved by the North West–Haydock Research 
thics Committee ( no. 16/NW/0274) and described in detail else- 
here [11 ]. We acquired a dataset including biochemical and de-
ographic data for 502 410 participants ( application no. 20272) .
e excluded 605 participants with a diagnosis of kidney failure
t baseline and 135 781 participants with missing values on any
undamental variable ( Supplementary Table S1) , leaving 366 629 
articipants for analysis ( Supplementary Fig. S1) . 

utcome definition 

nformation on participation date and cause of death was ob-
ained through linkage to the National Health System registry.
e classified International Classification of Diseases, Tenth Re- 
ision ( ICD-10) codes I00–I99 as CVD mortality, I20–I25 as CHD 

ortality and I60–I69 as cerebrovascular disease mortality. For 
ach participant, time to death was defined from the date of par-
icipation until the date of death or censoring ( 31 October 2021
n England and Wales, 30 September 2021 in Scotland) . 

iomarker definition 

e collected related information for five markers: serum cre- 
tinine, serum cystatin C, UA, BUN ( derived as 0.467 × urea) 
nd serum albumin ( information from the UKBB Data Show- 
ase; http://biobank.ctsu.ox.ac.uk/crystal/) . eGFRcr e, eGFRcys 
nd creatinine- and cystatin C–based eGFR ( eGFRcrecys) were 
stimated with the 2021 CKD-EPI formulas without a race vari-
ble [5 , 6 ]. Given that the CKD-EPI formula might not be con-
idered reliable among Europeans [12 ], we additionally derived 
GFRcre [13 ] and eGFRcys [14 ] using the EKFC formulas. All GFR
stimations were obtained using the R package ‘nephro’ ver- 
ion 1.3 ( https://cran.r-project.org/web/packages/nephro/index.
tml) [15 ]. 
FA 

FA is a statistical method to estimate unobserved factors, called
atent factors, underlying a set of measured variables, called
anifest variables. The technique exploits the network of pair-
ise correlations between the manifest variables to infer la-
ent factors that influence one or more manifest variables. Fac-
or loadings measure the influence of a latent factor on man-
fest variables. We conducted EFA of the five normally dis-
ributed kidney-related markers ( eGFRcre, eGFRcys, UA, BUN and 
lbumin) to identify factor loadings based on a maximum like-
ihood approach. The number of relevant factors to retain was
etermined via the scree plot, which reflects the specific and
umulative standardized ( returned by the respective eigenvalue) 
mount of variance explained by each ordered latent factor. We
pplied factor rotation to simplify the structure of the pattern
atrix of factor loadings and aid factor interpretations. Specifi-
ally, we chose the oblique promax rotation, which builds on the
rthogonal varimax rotation, in an attempt to further discrim-
nate the factor loadings assigned to each latent factor for the
ame items, at the cost of allowing for correlation among the
atent factors. EFA was performed with the R package ‘psych’
 version 2.2.3) . 

tatistical analysis 

ox regression models were fitted to assess associations of the
ve kidney markers with all-cause, CVD, CHD and cerebrovas-
ular mortality using the R package ‘Survival’ version 3.5.5. For
ll outcomes, we fitted unadjusted and fully adjusted models in-
luding sex and age, as well as baseline body mass index ( BMI) ,
elf-reported ancestry ( White versus non-White) , hypertension 
defined as systolic blood pressure ( BP) ≥140 mmHg or diastolic
P ≥90 mmHg or taking antihypertensive medication], type 2
iabetes ( T2D, defined as blood glucose levels ≥7.0 mmol/l or
aemoglobin A1c ≥6.5% or taking antidiabetic medication) and 
obacco smoking ( never versus ever) . Hazard ratios ( HRs) and 
5% confidence intervals ( CIs) were estimated per 1 standard de-
iation ( SD) change of each kidney biomarker. Sensitivity anal- 
ses were performed including adjustment for baseline albu-
in:creatinine ratio ( UACR) and C-reactive protein ( CRP) levels. 
Model discrimination ability was assessed using Harrell 

t al.’s [16 ] and Uno et al.’s [17 ] C-statistics. Calibration at a fixed
ime point of 10 years was assessed by comparison of the ob-
erved outcome rate versus the expected survival probability
sing 10-fold cross-validation. All statistical analyses were per-
ormed using the R version 4.1.0 ( http://www.R-project.org) . 

ESULTS 

tudy participants’ characteristics 

ver a median follow-up of 12.5 years ( interquartile range 11.8–
3.2) , 26 327 participants died from any cause, 5376 died from
VD, 2908 died from CHD and 1116 died from cerebrovascular
isease ( Table 1 and Supplementary Table S2) . At baseline, the 
ean age of the alive group was 61.7 years ( SD 6.4) and the mean
ge of the deceased group was 56.2 years ( SD 8.1) . The baseline
evels of eGFR, UA and BUN were substantially altered in those
ho died of any specific cause. Regarding the CVD-specific
auses of death, we observed a higher percentage of males
mong CHD-related compared with cerebrovascular-related 
eaths ( 79.8% versus 52.3%) . At baseline, among individuals 
ho died from CHD, we observed higher percentages of diabetes

https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae207#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae207#supplementary-data
http://biobank.ctsu.ox.ac.uk/crystal/
https://cran.r-project.org/web/packages/nephro/index.html
http://www.R-project.org
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae207#supplementary-data
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Table 1: Baseline characteristics of UK Biobank participants by different causes of mortality. 

Deceased 

Sample characteristics 
Alive 

( n = 340 302) 
All-cause 

( n = 26 327) 
CVD 

( n = 5376) 
CHD 

( n = 2908) 
Cerebrovascular 

( n = 1116) 

Age ( years) , mean ( SD) 56.2 ( 8.1) 61.7 ( 6.4) 62.0 ( 6.3) 61.7 ( 6.3) 63.0 ( 5.5) 
Male, n ( %) 153 878 ( 45.2) 15 742 ( 59.8) 3791 ( 70.5) 2321 ( 79.8) 584 ( 52.3) 
Non-White, n ( %) 4911 ( 1.4) 240 ( 0.9) 45 ( 0.8) 17 ( 0.6) 11 ( 1.0) 
Ever-smokers, n ( %) 33 408 ( 9.8) 4928 ( 18.7) 1119 ( 20.8) 658 ( 22.6) 197 ( 17.7) 
Hypertension, n ( %) 176 863 ( 52.0) 18 394 ( 69.9) 4272 ( 79.4) 2333 ( 80.2) 865 ( 77.5) 
T2D, n ( %) 16 456 ( 4.8) 3144 ( 11.9) 918 ( 17.1) 593 ( 20.4) 144 ( 12.9) 
BMI ( kg/m2 ) , mean ( SD) 27.3 ( 4.7) 28.3 ( 5.4) 29.2 ( 5.7) 29.5 ( 5.4) 28.0 ( 5.2) 
Systolic BP ( mmHg) , mean ( SD) 137.5 ( 18.5) 142.6 ( 19.6) 145.1 ( 20.8) 145.4 ( 20.9) 145.6 ( 20.9) 
Diastolic BP ( mmHg) , mean ( SD) 82.2 ( 10.1) 82.5 ( 10.6) 83.0 ( 11.5) 82.7 ( 11.4) 83.2 ( 11.4) 
Serum creatinine ( mg/dl) , mean ( SD) 0.80 ( 0.2) 0.86 ( 0.3) 0.91 ( 0.3) 0.93 ( 0.3) 0.86 ( 0.3) 
Cystatin C ( mg/l) , mean ( SD) 0.90 ( 0.1) 1.01 ( 0.3) 1.06 ( 0.3) 1.07 ( 0.3) 1.02 ( 0.3) 
BUN ( mg/dl) , mean ( SD) 15.1 ( 3.7) 16.0 ( 5.2) 16.9 ( 6.3) 17.0 ( 6.7) 16.6 ( 5.7) 
UA ( g/dl) , mean ( SD) 5.2 ( 1.3) 5.6 ( 1.5) 5.9 ( 1.6) 6.0 ( 1.5) 5.5 ( 1.5) 
Serum albumin ( g/l) , mean ( SD) 4.5 ( 0.3) 4.5 ( 0.3) 4.4 ( 0.3) 4.5 ( 0.3) 4.5 ( 0.3) 
eGFRcre ( ml/min/1.73 m2 ) , mean ( SD) 95.0 ( 12.7) 90.3 ( 15.1) 88.3 ( 16.5) 88.6 ( 17.0) 88.6 ( 14.8) 
eGFRcys ( ml/min/1.73 m2 ) , mean ( SD) 89.2 ( 15.6) 78.1 ( 17.9) 75.0 ( 18.7) 75.2 ( 19.2) 76.4 ( 17.5) 
eGFRcrecys ( ml/min/1.73 m2 ) , mean ( SD) 95.6 ( 14.0) 86.9 ( 16.8) 84.0 ( 18.0) 84.2 ( 18.4) 85.2 ( 16.6) 
EFA1, mean ( SD) 0.05 ( 1.0) −0.62 ( 1.1) −0.78 ( 1.1) −0.77 ( 1.1) −0.71 ( 1.0) 
EFA2, mean ( SD) −0.03 ( 0.9) 0.43 ( 1.2) 0.67 ( 1.4) 0.68 ( 1.4) 0.58 ( 1.2) 

According to the ICD-10 codes, the mortality definitions of CVD, CHD and cerebrovascular disease were I00–I99, I20–I25 and I60–I69, respectively. 

A B

Figure 1: The results from EFA. ( A) Standardized factor loadings of five kidney indices for EFA1 and EFA2. ( B) Correlation heatmap of EFA-derived variables ( EFA1 and 
EFA2) with eGFR values ( eGFRcre, eGFRcys and eGFRcrecys) . We applied maximum likelihood estimation with promax rotation to estimate factor loadings ( see Methods 

for details) . 
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 20.4%) and ever-smokers ( 22.6%) than in those who died from 

erebrovascular disease ( 12.9% and 17.7%, respectively) . 

xploratory factor analysis ( EFA) 

cree plot inspection ( Supplementary Fig. S2) supported reten- 
ion of two latent factors that we labelled EFA1 and EFA2. Both 
actors were compatible representations of kidney function, as 
hey displayed direction-concordant factor loadings between 
GFRcre and eGFRcys and between BUN and UA and direction- 
iscordant loadings of eGFR versus BUN and UA. For both fac- 
ors, the loading of serum albumin was negligible. Specifically,
FA1 was dominated by eGFRcys, while EFA2 was character- 
zed by a balanced combination of eGFRcre and both BUN and 
A, with a lower loading on eGFRcys ( Fig. 1 A) . EFA1 and EFA2 
ere negatively correlated ( Pearson’s r = −0.65; Fig. 1 B) . EFA1 

https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae207#supplementary-data
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howed nearly perfect correlation with eGFRcys ( r = 0.99) . EFA2 
as positively correlated with BUN ( r = 0.84) and UA ( r = 0.45)
nd negatively correlated with eGFRcys ( r = −0.77) and eGFR- 
re ( r = −0.75) . For interpretation, lower levels of EFA1 re-
ect lower kidney function, whereas higher levels of EFA2 re-
ect lower kidney function. According to linear regression, a 
-SD lower EFA1 corresponded to 6.73 ml/min/1.73 m2 ( 95% 

I 6.70–6.76) lower eGFRcre and 16.00 ml/min/1.73 m2 ( 95% CI 
5.99–16.01) lower eGFRcys. A 1-SD larger EFA2 corresponded to 
0.98 ml/min/1.73 m2 ( 95% CI 10.95–11.01) lower eGFRcre and 
3.84 ml/min/1.73 m2 ( 95% CI 13.80–13.88) lower eGFRcys. 

urvival analysis 

ll five kidney indices were associated with all-cause and each
ause-specific mortality without adjustment for potential con- 
ounders ( Fig. 2 A) . EFA1 and eGFRcys showed the largest effects.
e observed HRs of 1.85 ( 95% CI 1.83–1.87) and 1.87 ( 95% CI 1.85–
.90) for all-cause mortality per each SD lower EFA1 and eGFRcys,
espectively. eGFRcrecys showed smaller effects compared with 
FA1 and eGFRcys. eGFRcre displayed the smallest HR across 
ll outcomes in this study. When adjusting for cardiovascular,
etabolic and lifestyle factors, we observed an attenuation of 
ll HRs ( Fig. 2 B) . This reflects the identification of relevant causal
athways that did not nullify the effect of kidney function on
ortality, pointing towards a partially independent effect. Rela- 

ive to each other, the ranking performance of each marker re-
ected the same pattern observed in the unadjusted analysis,
ith slightly smaller effects of kidney function markers on cere-
rovascular mortality compared with other types of CVD mortal- 
ty. However, despite the demographic and clinical differences at 
aseline between cerebrovascular and CHD mortality cases, ob- 
erved differences were minor. 

odel performance 

he same pattern observed for the HR was observed for the
odel’s discrimination performance ( Fig. 3 A) : in models using 
nly biomarkers, EFA1 and eGFRcys performed better than all 
ther markers and comparably well with respect to each for
VD mortality, with C-statistics of 0.71 ( 95% CI 0.71–0.72) and 
.71 ( 95% CI 0.70–0.72) , respectively. eGFRcre showed the worst 
erformance for any cause of mortality. Discrimination perfor- 
ances improved when additionally accounting for cardiovas- 
ular, metabolic and lifestyle factors for every cause of mortality
 Fig. 3 B) . Similar results were obtained with Uno et al.’s C-statistic
 Supplementary Fig. S3) . Prediction accuracy was also assessed 
ith calibration for the observed and expected survival probabil- 

ty at 10 years ( Supplementary Table S3) . For all-cause mortality,
here was almost perfect agreement between the predicted sur- 
ival probabilities and the observed data, while there was weak
greement for predicting CVD mortality. 

nalyses based on the EKFC equations 

nstead of the CKD-EPI equations, we reassessed our analyses 
y estimating eGFRcre and eGFRcys with the EKFC equations.
KFC-based eGFRcys ( Fig. 2 D) showed larger HRs for all-cause 
nd CVD mortality than CKD-EPI-based eGFRcys ( Fig. 2 B) . The 
ffect sizes of eGFRcre were substantially equivalent. While re- 
ults were essentially consistent with those observed using the 
KD-EPI equations, in the EKFC analysis, EFA1 was no longer
quivalent to eGFRcys, leaving eGFRcys as the best mortality 
redictor. For discriminatory ability, there was no substantial 
ifference in model performance between EKFC-based eGFRcys 
 Fig. 3 C) and CKD-EPI eGFRcys ( Fig. 3 A) . Similar to the CKD-EPI
quation ( Fig. 3 B) , including clinical risk factors into the model
niversally improved discriminatory performance across kidney 
ndices ( Fig. 3 D) . 

ensitivity analyses 

e incorporated UACR into the EFA based on the CKD-EPI equa-
ions ( Supplementary Fig. S5) : this new analysis identified only 
ne factor from five biomarkers. The standardized factor load-
ng of UACR was almost null ( λ = −0.08) , while factor loadings
f eGFRcre and eGFRcys were of 0.81 and 0.72. The estimated
atent factor performed much worse than eGFRcys and eGFR-
recys to predict CVD mortality. Finally, when the analysis was
epeated including CRP ( a marker of inflammation) as a covari-
te in all Cox proportional hazards models, the results did not
hange ( right column; Supplementary Table S4) . 

ISCUSSION 

educed kidney function is a powerful predictor of cardiovascu-
ar and all-cause mortality. While eGFRcys is known as the best
ortality predictor among kidney function indices, it was un-
lear whether a combination of multiple kidney function mark-
rs could further improve mortality prediction models. Here we
how that combining multiple markers provides negligible or no
ain to using eGFRcys alone. In contrast, the commonly used in-
ex eGFRcre had the worst predictive performance across causes
f death. Our results present a compendium of the relevance of
idney function on all-cause mortality and on mortality by spe-
ific causes such as CVD, CHD and cerebrovascular disease. 

Our analysis involved five kidney markers and was con-
ucted on ≈360 000 adults from the general population, with
ore than 10 years of follow-up, enabling the observation of sev-
ral events linked to different causes of death. In the absence
f objectively measured kidney function, which is unfeasible in
arge population studies, the EFA provided an opportunity to de-
ive a latent signature of the true kidney function, overcoming
he disadvantages related to each single marker. We identified
wo correlated factors, EFA1, essentially corresponding to eGFR-
ys, and EFA2, representing a balanced covariation of eGFRcre,
UN and urate. Both factors are consistent with the identifica-
ion of kidney function–related variability. However, EFA1 pre-
icted any type of cardiovascular and overall mortality better
han EFA2. This may reflect either a relatively stronger relation
f cystatin C with CVD-related factors or the more detrimental
ffect of kidney function on mortality compared with the kid-
ey functionality captured by the other markers net of cystatin,
egardless of the type of equation used [18 ]. 

Comparison of unadjusted versus adjusted models high- 
ights the extent to which kidney function–based prediction of
ll-cause and cause-specific mortality is attenuated by the in-
luded confounders across markers. After removing the effect of
ardiometabolic and behavioural determinants of mortality, ad- 
usted analysis results enable appreciation of the independent
nd non-negligible effect of kidney function on mortality. When
ooking at the C-statistics, the unadjusted model shows the dis-
riminatory ability of each individual marker in isolation and al-
owing for confounding. However, the adjusted C-statistic does
ot show the unconfounded discrimination ability of the indi-
idual markers, but rather the joint effect of the markers and all
onfounders to predict the outcome. That is why the C-statistics

https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae207#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae207#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae207#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae207#supplementary-data
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Figure 2: HRs and 95% CIs for all-cause and cause-specific mortality from ( A) unadjusted and ( B) fully adjusted models using CKD-EPI eGFRcre and eGFRcys equations 
and ( C) unadjusted and ( D) adjusted models using EKFC eGFRcre and eGFRcys equations. The HRs and 95% CIs are expressed with a 1-SD change in each kidney index. 

A 1-SD change in eGFRcre, eGFRcys and eGFRcrecys corresponded to 13.0, 16.0 and 14.4 ml/min/1.73 m2 , respectively. Estimated by the linear regression model, a 1-SD 
lower EFA1 corresponded to 6.73 ml/min/1.73 m2 ( 95% CI 6.70–6.76) lower eGFRcre and 16.00 ml/min/1.73 m2 ( 95% CI 15.99–16.01) lower eGFRcys. A 1-SD larger EFA2 
corresponded to 10.98 ml/min/1.73 m2 ( 95% CI 10.95–11.01) lower eGFRcre and 13.84 ml/min/1.73 m2 ( 95% CI 13.80–13.88) lower eGFRcys. Fully adjusted models included 
sex, age, self-reported ancestry, BMI, hypertension, T2D and tobacco smoking as potential confounders. 
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Figure 3: C-statistics and 95% CIs for all-cause and cause-specific mortality from ( A) unadjusted and ( B) fully adjusted models using CKD-EPI eGFRcre and eGFRcys 
equations and ( C) unadjusted and ( D) adjusted models using EKFC eGFRcre and eGFRcys equations. Fully adjusted models included sex, age, self-reported ancestry, 
BMI, hypertension, T2D and tobacco smoking as potential confounders. 
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1  
f the adjusted models were nearly identical across kidney func- 
ion markers for all outcomes. 

Our complementary analysis with EKFC instead of CKD-EPI 
quations showed that eGFRcys was the best mortality predic- 
or overall, with larger effects than EFA1 across all outcomes.
he HR for eGFRcys estimated by the EKFC equation was larger 
han that of eGFRcys using the CKD-EPI equation, in line with re- 
ent evidence from non-black population samples reporting su- 
erior discriminatory ability of the EKFC equation for all-cause 
nd CVD mortality compared with the CKD-EPI equation [19 ]. 

Our study has several limitations. The young age and selec- 
ion towards a healthy status of UKBB participants [20 ] recom- 
ends that the transportability of findings is tested in alterna- 

ive population and patient samples. However, our findings are 
n line with previous results obtained from both different clini- 
al status [21 , 22 ] and in different age groups [9 , 23 ]. Additionally,
he results are in line with our recent investigation of a structural 
quation model for eGFRcre, eGFRcys, UA and BUN in the longi- 
udinal evaluation of incident CVD risk in an Alpine community 
24 ], where the identified latent factor showed comparable dis- 
rimination performance for CVD risk as eGFRcys alone. Con- 
rary to naïve principal component analysis, which is a descrip- 
ive dimensionality reduction technique centred on variables,
actor analysis is a model-based technique prone to measure- 
ent error components centred on observations, which exploits 

he correlation structure among them to identify latent vari- 
bles that may help explain this structure in a simplified way.
espite the limited number of kidney function markers avail- 
ble in the present study, there is no preclusion on their num- 
er to perform EFA. While correlated due to oblique rotation for 
ase of interpretation, the two factors identified, EFA1 and EFA2,
re both compatible with a multifaceted representation of kid- 
ey function. EFA1 almost exclusively loads on eGFRcys, which is 
nown to capture a portion of non-GFR determinants in contrast 
o other markers [25 ], whereas EFA2 highlights ‘general’ kidney 
unction reflected in consistent levels of BUN, UA and eGFRcre.
deally, if available, but this was not the case, we would have in- 
luded additional biomarkers relevant to kidney function, such 
s to capture aspects of filtration, excretion or damage, and com- 
are our results with alternative approaches that used multi- 
le kidney biomarkers, including e.g. fibroblast growth factor 23 
nd kidney injury molecule 1 [26 ]. Further including proteomics 
r metabolomic markers could be another line of investigation.
uch omics data are not typically available in routine biochemi- 
al examinations, but they certainly offer an important perspec- 
ive in the effort to identify the underlying, unobserved signa- 
ures of kidney function alterations. We did not consider apply- 
ng factor analysis directly on serum creatinine and cystatin C 

o separate the effect of age and sex embedded within the eGFR 
quations, as we have already shown that factor analysis based 
n eGFRcre and eGFRcys instead of crude serum creatinine and 
ystatin C has better predictive performance [24 ]. In addition,
he use of age and sex in the GFR estimating equations is in- 
trumental in obtaining the best possible approximation of the 
eal GFR [27 ], so that eGFRcre and eGFRcys should be consid- 
red as the best possible approximations of kidney function. In 
ur analysis, a moderate proportion ( ≈27%) of the cohort with 
issing data was excluded. Among those who were included 

 n = 366 629) and those who were excluded ( n = 135 781) from 

he analysis, we compared the proportion of all-cause mortal- 
ty cases ( 7.2% versus 8.2%) and the mean levels of eGFRcre ( 94.7 
ersus 94.7) and eGFRcys ( 88.1 versus 88.1) , resulting in similar 
idney-related health risk profiles. In view of these considera- 
ions, we are confident that the adjusted complete case analy- 
is is sufficiently robust to the possible effects of selection. Fi- 
ally, competing causes of deaths beyond those listed in the 
anuscript were not considered. However, the comparison be- 

ween overall mortality and cause-specific mortality somehow 

ncludes the possibility of competitive events that should factor 
nto the overall mortality. The performance of the markers on 
ause-specific mortality follows the same order as for the over- 
ll mortality. Furthermore, the five markers of kidney function 
nd the two estimated latent factors are closely representative 
f kidney function itself, making it unlikely that any competitive 
vent may have influenced the markers differentially. 

In conclusion, our results suggest that EFA is a valuable 
ethod to disentangle different factors underlying the distri- 
ution of kidney function–related biochemical markers and un- 
over possible relevant latent signatures of kidney health. How- 
ver, until additional biomarkers are integrated and explored 
urther within a similar analytical framework, eGFRcys may rep- 
esent the index of choice for both all-cause mortality as well as
ardiovascular mortality, advocating for a better understanding 
nd use of this marker in clinical practice. 
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