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Radiosensitization by a novel Bcl-2 and Bcl-XL

inhibitor S44563 in small-cell lung cancer

Y Loriot1,2,3, P Mordant1,2,3, D Dugue1,2, O Geneste4, A Gombos1,2, P Opolon1,2, J Guegan5, J-L Perfettini1,2,3, A Pierre4, LK Berthier4,
G Kroemer6,7,8,9, JC Soria1,3,10, S Depil4 and E Deutsch*,1,2,3

Radiotherapy has a critical role in the treatment of small-cell lung cancer (SCLC). The effectiveness of radiation in SCLC remains
limited as resistance results from defects in apoptosis. In the current study, we investigated whether using the Bcl-2/Bcl-XL

inhibitor S44563 can enhance radiosensitivity of SCLC cells in vitro and in vivo. In vitro studies confirmed that S44563 caused
SCLC cells to acquire hallmarks of apoptosis. S44563 markedly enhanced the sensitivity of SCLC cells to radiation, as
determined by a clonogenic assay. The combination of S44563 and cisplatin-based chemo-radiation showed a significant tumor
growth delay and increased overall survival in mouse xenograft models. This positive interaction was greater when S44563 was
given after the completion of the radiation, which might be explained by the radiation-induced overexpression of anti-apoptotic
proteins secondary to activation of the NF-jB pathway. These data underline the possibility of combining IR and Bcl-2/Bcl-XL

inhibition in the treatment of SCLC as they underscore the importance of administering conventional and targeted therapies in an
optimal sequence.
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Identifying the mechanisms leading to radioresistance includ-
ing resistance to apoptosis is essential to improve clinical
outcome in cancer patients. Disabled apoptosis has been
catalogued among the fundamental hallmarks of cancer1 and
the proteins of the Bcl-2 family play a fundamental role in
regulating this modality of cell death. The Bcl-2 family
comprises both pro- and anti-apoptotic members; the latter
(Bcl-2, Bcl-XL and Mcl-1) are often overexpressed in cancer
cells to facilitate the survival of cells that under normal
circumstances should have undergone apoptosis.2 The mole-
cular interactions between pro- and anti-apoptotic Bcl-2 family
members determine cellular sensitivity to multiple lethal
triggers, including many standard chemotherapeutic agents
and ionizing radiation (IR).3,4 Overexpression of Bcl-2 is known
to increase clonogenic survival and inhibit IR-induced apopto-
sis.3,4 Bcl-XL expression also shows a strong correlation with
resistance to cytotoxic anticancer therapies including IR.5,6

Lung cancer is the leading cause of cancer deaths in
western countries.7 Small-cell lung cancer (SCLC) accounts
for 15% of all lung cancer cases and is distinguished from non-
SCLC by its characteristic cytomorphology, rapid proliferation
and early dissemination to metastatic sites.8 The standard of
care to patients with limited-stage SCLC and good perfor-
mance status is based on a combination of IR and cisplatin-
based chemotherapy, resulting in a complete response rate

as high as 50–80% coupled to a deceptive 12–20% 5-year
survival.9 Initially, SCLC is responsive to chemo- and radio-
therapy. However, SCLC recurs within the first 12 months.10

To date, the pathways mediating chemo- and radioresistance
in SCLC are largely unknown.

Deletion of pro-apoptotic gene and amplification of anti-
apoptotic gene are frequently observed in SCLC, especially
amplification of the BCL2L1 and BCL2L2 genes.11 At the
protein level, increased expression of Bcl-2 has been reported
in up to 90% of metastatic SCLC. Bcl-2 overexpression,
downregulation of the pro-apoptotic Bcl-2 antagonist Bax and
a shift in the Bcl-2/Bax ratio to levels 41 are correlated with
lower apoptotic index in tumors12 and are associated with
chemotherapeutic resistance in SCLC cell lines.13 In contrast
with most solid tumor cell lines, where apoptosis does not
appear as a predominant cell death mechanism after IR,14

overexpression of Bcl-2 can abrogate chemotherapy-induced
apoptosis in SCLC cell lines.13 Apoptosis may be one of the
mechanisms that cause SCLC cells to die in response to
radiotherapy.15,16

Recently, a small synthetic compound ABT-737 and its
orally bioavailable form ABT-263 (Navitoclax) were shown to
efficiently antagonize Bcl-2 and Bcl-XL by binding to their BH3
receptor domain. ABT737 or its derivatives mediate anti-
tumoral effects in chronic lymphocytic leukemia (CLL) and
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SCLC in preclinical and early clinical trials.17,18 However,
there is no published study that evaluates the combination of
new Bcl-2/Bcl-XL inhibitors, IR and chemo-radiotherapy.

Results

Anti-apoptotic proteins are frequently expressed in
localized SCLC specimens. To investigate the frequency
of anti-apoptotic proteins in SCLC, we first assessed whether
anti-apoptotic proteins such as Bcl-2, Bcl-XL and Mcl-1 were
overexpressed in a tissue microarray including 29 localized
SCLC that had been surgically removed (Supplementary
Figure 1). Bcl-2, Bcl-XL and Mcl-1 were expressed at high
levels in 17 (60%), 24 (85%) and 20 specimens (70%). To
assess whether overexpression of these proteins might be
related to gene amplification, we extracted in silico micro-
array data from a public database including 40 SCLC
samples and 23 cell lines.19 In this study, no copy number
alteration was found for BCL2 and BCL-XL gene. By
contrast, MCL1 gene amplification was observed in 57% of
samples. In contrast, none of the SCLC tumors or cell lines
exhibited copy number alteration for BCL2 and BCL-XL gene
(Supplementary Figure 2). We also assessed the expression
of various pro- and anti-apoptotic proteins in the three SCLC
cell lines that we used in preclinical experiments
(Supplementary Figure 1), confirming the expression of
Bcl-XL in all cell lines, that of Mcl-1 in H196 (but not H69
and H146), and that of Bcl-2 in H69 and H146 (but not in
H196). Expression of various pro- and anti-apoptotic proteins
in the three SCLC cell lines were also consistent with a
previous report.20

S44563 is a potent binder of Bcl-2 and Bcl-XL. We
determined the capacity of a new BH3 peptide mimetic,
S44563 (Figure 1a), to displace a fluorescent Puma BH3
peptide from recombinant Bcl-2 or Bcl-XL by fluorescence
polarization (FP) assays, using recombinant Bcl-2 or Bcl- XL

and a fluorescent Puma BH3 peptide. Figure 1b shows the
inhibition of Bcl-2 and Bcl- XL, respectively, by S44563
demonstrating that S44563 is a potent binder of Bcl-2 and
Bcl-XL. The half-inhibitory concentration (IC50) of S44563
required to inhibit them in a Bcl-2/F-Puma BH3 interaction
assay and the Bcl-XL/F-Puma BH3 interaction were mea-
sured as 131 nM (95% CI:123–139 nM) and 140 nM (130–
150 nM), respectively.

S44563 potently induces apoptosis in Bcl-2 overexpres-
sing SCLC cells. The H146 SCLC cell line is known to
overexpress Bcl-2 because of a gene amplification and
depends in its survival on Bcl-2.21,22 To evaluate Bcl-2
target hitting in a cell-based experiment, Bcl-2/Bax co-
immunoprecipitation assays were performed from lysates of
H146 cells that were left untreated or were treated with
S44563 for 2 h. As shown in Figure 1c, S44563 efficiently
disrupted the Bcl-2/Bax interaction in H146 cells in a dose-
dependent manner that was compatible with its in vitro
effects on Bcl-2 and Bcl-XL. The effect of S44563 on this
interaction is clearly visible at 0.1 mM and is more
pronounced at 1 mM. Upon prolonged treatment (6 h),
H146 cells exposed to S44563 exhibited a significant

increase in a caspase-3-like enzymatic activity capable of
cleaving a synthetic substrate containing the peptide motif
DEVD (Figure 1d). The rapid kinetics of induction of this is a
strong inducer of DEVDase activity and is consistent with
the mechanism of action of S44563, which directly releases
the apoptotic machinery from inhibition by anti-apoptotic
proteins (Bcl-2 and Bcl- XL). The capacity of S44563 to
reduce the viability of H146 cells was measured by means
of the cell proliferation assay, revealing an IC50 of 311 nM
(238–407). Side-to-side comparison showed that S44563
and ABT-263 in several cancer cell lines including H146 cell
line did not show any difference for efficacy and toxicity in a
cell viability assay (Supplementary Table 1). These data
demonstrate that S44563 potently triggers apoptosis in Bcl-
2-dependent H146 cells.

S44563 has a differential effect on three distinct SCLC
cell lines. To examine the sensitivity of SCLC cell lines to
S44563, we assessed the impact of S44563 on cell viability
by means of a cell proliferation assay (Figure 1e) and a
clonogenic survival assay (Supplementary Figure 3). S44563
was particularly effective on Bcl-2-overexpressing H146
cells, less so on H69 cells and had no major effect on
Mcl-1-expressing H196 cells, which resisted micromolar
concentrations of S44563. Addition of the caspase inhibitor
Z-VAD-FMK strongly reduced the negative effect of S44563
on the viability of H146 cells (Supplementary Figure 4).

To determine whether the effect on cell survival was
mediated by apoptosis induction, we assessed the generation
of cleaved caspase-3 and the dissipation of the mitochondrial
inner transmembrane potential. Whereas the sensitive cell
line (H146) accumulated proteolytically mature caspase- 3,
the resistant cell line (H196) did not manifest such an effect
(Figure 2a). H146 cells cultured with S44563 manifested a
dose- and time-dependent dissipation of the mitochondrial
inner transmembrane potential (D2m, as assessed by
staining with the D2m potential-sensitive probe DiOC6(10))
and the permeabilization of the plasma membrane (as
measured by staining with the vital dye propidium iodide)
(Figure 2b). These results suggest that monotherapy with
S44563 induces apoptosis (rather than other cell death
modalities) in H146 cells.

S44563 induces the mitochondrial caspase activation
pathway. To investigate the cellular effects of S44563, we
assessed the effects of S44563 on mitochondrial pathways
using immunoblot and cytometry analysis. We showed that
the lethal effect of S44563 is mediated through induction and
activation of mitochondrial apoptosis pathway. Thus, H146
cells treated with S44563 manifested caspase-3 activation,
as determined by immunoblotting (Figure 2c). S44563
activated caspases that contribute to the mitochondrial
pathway, including caspase-9 and caspase-3 (Figure 2c),
yet failed to induce the proteolytic maturation of caspase-8,
which characterizes the extrinsic pathway of apoptosis.
Blockade of caspase activation by the broad-spectrum
inhibitor Z-VAD-FMK delayed cell death induced by S44563
and blocked the accumulation of cells with a hypoploid (sub
G1) DNA content induced by S44563 (Figure 2d). In another
model using BAX knockout HCT116 cells, we did not find any
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cytochrome c in the cytosol sub-fraction whereas in BAX
wild-type HCT116 cells, cytochrome c was released from
mitochondria with a dose-dependent manner indicating that

S44563 induces the release of cytochrome c from mitochon-
dria (Supplementary Figure 5). Consistent with the in vitro
activity of S44563 against SCLC cells, S44563 showed a
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Figure 1 Effect of S44563 on cell viability and cell survival. (a) Chemical structure of S44563. (b) Inhibition of the interaction between Bcl-2 or Bcl-XL and fluorescent Puma
BH3 peptide measured by the decrease of fluorescence polarization as a function of S44563 concentrations. Three independent experiments are presented. FP data are
presented in millipolarization units (mP). Each experiment was performed in triplicates (mean þ /�S.E.M., three experiments). (c) Bcl-2/Bax complex disruption by S44563
measured by co-immunoprecipitation assays. Cell lysates were subjected to immunoprecipitation with an anti-Bcl-2 antibody and immunoprecipitates and lysates were
analyzed by immunoblot with an anti-Bax antibody. (d) Caspase 3 activation by S44563 in H146 cell line. Caspase 3 enzymatic activity is presented as Relative Fluorescent
Unit (RFU) per minute and per mg of protein (mean þ /� S.E.M., three experiments). (e) Inhibition of SCLC cell proliferation by S44563. The cells were seeded 24 h before
S44563 was administered with various concentrations from 10 nmol/l to 10mmol/l for 72 h. The number of viable cells was determined by using WST-1 assay according to the
manufactrurer’s instructions (Roche). Absorbance values were normalized to the values obtained from untreated cells to determine survival rates. Each assay was performed
in triplicate (points, mean; bars, standard error deviation, three experiments)
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Figure 2 The effect of S44563 on apoptosis activation. (a) Distinct apoptotic response to S44563 in SCLC cells lines. SCLC cells were incubated with S44563 at a dose of
100 nmol/l for 24 h and then were harvested for immunoblotting. The monoclonal mouse anti-human cleaved caspase 3 clone 100 (1 : 500 dilution; Cell signaling), was used.
(b) Effect of S44563 on the dissipation of the mitochondrial transmembrane potential. H146 cells were harvested after different time exposure to S44563 at different
concentrations. Cells were then washed with PBS and stained with the following probes to assess apoptosis-associated modifications: propidium iodide (2mg/ml, Sigma-
Aldrich) for viability and dihexyloxacarbocyanine iodide (DiOC6(3), 40 nmol/l, Molecular Probes) for Dcm dissipation (columns, mean: bars, standard error deviation; *Po0.05
for DiOC6low fractions as compared with control). Experiments were performed in triplicate. Results from two experiments were pooled. (c) Effect of S44563 on caspase
activation. H146 cells were incubated with S44563 at different doses of S44563 with or without (Z-VAD-FMK, 20 mmol/l) for 24 h and then were harvested for immunoblotting.
The monoclonal mouse anti-human cleaved caspase-3 clone 100 (1 : 500 dilution; Cell signaling), cleaved and full-length caspase-9 (1 : 500 dilution, Cell signaling), and
cleaved caspase- 8 (1 : 500 dilution; Cell signaling) were used. (d) Effect of S44563 on sub-G1 phase induction. Cells were harvested after 24 h exposure to S44563 at
different concentrations with or without the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-FMK, 20 mmol/l, from Bachem, Weil am
Rhein, Germany). Resulting DNA distributions were analyzed by Modfit (Verity Software House, Inc., Topsham, ME, USA) for the proportion of cells in sub-G0, G1, and G2-M
phases of the cell cycle (columns, mean; bars, standard deviation). Experiments were performed in triplicate. Results from two experiments were combined
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significant antitumor activity when administered intraperito-
neally once a day for 21 days in a H146 xenograft model.
This tumor regression lasted for more than 50 days after the
end of treatment (Supplementary Figure 6a). No weight loss
was observed over the time course of the experiment
(Supplementary Figure 6b), suggesting that S44563 can
mediate anticancer effects at an acceptable level of toxicity.

S44563 sensitizes SCLC cell lines to radiation. To
determine the radiosensitivity of SCLC cells, we performed
a clonogenic survival assay using IR at different doses.
SCLC cells exhibited different sensitivity to radiation.
Surviving fraction at 2 Gy (SF2) values ranges from 0.35 to
0.86 (data not shown). In this assay, 100 nmol/l of S44563
radiosensitized H69 and H146 cells, yet had no effect on
H196 cells. For this latter cell line, a 100 times higher
concentration of S44563 (10 mM) was required to mediate
radiosensitization (Figure 3a).

Radiosensitization by S44563 was associated with an
increase in sub-G1 fraction and caspase-3 activation. To
determine the mechanisms of S44563-mediated radiosensi-
tization, we performed cell cycle profiling of H146 and H196
cells treated with S44563 or radiation, alone or in combina-
tion. In S44563-sensitive cells (H146 cells), the combination
of radiation and S44563 significantly enhanced radiation-
induced apoptosis at 72 h (Figure 3b, Po0.05). Conversely,
in the resistant H196 cells, the combination of S44563 and
radiation induced the induction of apoptosis at 72 h only at a
dose of 10mmol/l of S44563 (data not shown). In both cell
lines, S44563 had a minimal effect on the radiation-induced
G2/M arrest. The combination of IR and low concentration of
S44563 (100 nmol/l) also was more efficient in inducing the
proteolytic maturation of caspase-3 expression than the
monotherapies in H146 cells (Figure 3c). Taken together,
these results suggest that S44563-mediated radiosensitiza-
tion may be mediated by enhanced apoptosis.

The combination of radiation and S44563 results in
better survival in SCLC xenografts. Both H146 and H69
cells that were xenotransplanted into immunodeficient mice
developed tumor that could be treated particularly efficiently
by the combination of S44563 and IR, as determined by
mouse survival in Kaplan–Meier curves (Figure 4a,
Supplementary Table 2). In the H146 and H69 xenograft
models, there was a significant antitumor effect in the mice
treated with radiation (Figure 4b). S44563 plus radiation
induced more apoptosis than either S44563 or radiation
alone, as determined by immunohistochemical detection of
active caspase-3 on H146 tumors excised 24 h after the last
treatment (Figure 4c). All treatments appeared to be well
tolerated, with no evidence of treatment-related weight loss
(data not shown). Moreover, we did not observe any S44563-
mediated increase in radiation-induced endothelial damage
and fibrosis-like lesions (21) suggesting that the combination
of radiation and S44563 is safe (Supplementary Figure 7).

S44563 plus chemoradiotherapy prolongs survival in
mice bearing H146 xenografts. Because the standard of
care of localized SCLC is radiochemotherapy, that is, the

association of IR and cisplatin-based chemotherapy, we
assessed the potential value of adding S44563 to chemo-
radiotherapy. The triple combination resulted in more
frequent complete response of H146 xenografts and
decreased median tumor growth, as compared with IR alone
and all other groups including S44563 alone or IRþ cisplatin
alone (Supplementary Table 3). Median tumor volume were
analyzed using two-way analysis (ANOVA: Treatment and
Time) of variance with repeated measures on factor Time
(post hoc analysis of Treatment effect at fixed Time levels
with Dunnett test). The triple combination induced significant
reduction of tumor volumes as compared with other therapies
(Supplementary Table 3). Kaplan–Meier survival plots con-
firmed that the triple combination was more efficient than any
of its components alone or in dual combinations (Figure 5a).
Similar results were obtained on H69 xenografts,
although no complete responses were obtained (Figure 5b,
Supplementary Table 3).

Radiation increased anti-apoptotic proteins expression.
To investigate the effects of radiation on anti-apoptotic
proteins expression, we irradiated xenograft-bearing mice
at baseline, as well as when the tumors recurred after the
first round of radiotherapy (Supplementary Figure 8). We
observed an upregulation of some anti-apoptotic proteins
mainly with Bcl-XL in both situations following fractionated
radiation. These data were consistent in different indepen-
dent experiments with the different cell lines (H146 and H69)
(Figure 6a). As we detected an increased expression of anti-
apoptotic proteins following fractionated radiation, we
hypothesized that S44563 after (rather than concomitant
with) tumor irradiation would be particularly efficient because
the BH3 mimetic would target Bcl-XL when the levels of this
protein is particularly high.

To test this hypothesis, mice bearing H69 xenografts were
treated as above (with concomitant IR and S44563) or
sequentially, when S44563 was administered only during
the 5 days following the completion of radiotherapy. On day
49, mean tumor volume was significantly reduced in the
sequential group (465 mm3) as compared with the concomi-
tant group (704 mm3) and radiation alone (1261 mm3)
(P¼ 0.04, two-way ANOVA test) (Figure 6b).

To characterize the mechanisms through which S44563
induces radiosensitization, we determined its transcriptional
effects at 24 h, as measured at the concentration of S44563
that would kill 50% of the cells at 48 h (100 nmol/l for H146 and
1 mmol/l for H69 cells) by microarray experiments. At 24 h,
S44563 did not cause any consistent upregulation or the
downregulation of genes involved in DNA reparation or
checkpoint control (data not shown). However, when tumor
cells were treated with radiation alone, we observed an
upregulation of genes, such as RELB, NF-kB1 and LTB, of
NF-kB pathway known for being involved in resistance to
apoptosis (Supplementary Table 4) qPCR assays confirmed
that several genes belonging to NF-kB pathway are upregu-
lated in SCLC cell lines at an early time (Figure 6c), especially
TNF and LTB, which may promote the nuclear translocation of
RELA (p65).23,24 Indeed, RelA/p65 could be detected in the
nuclei from the nuclei of H146 cells following radiation of
SCLC (Figure 6d), concomitant with the upregulation of Bcl-XL
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Figure 3 The effects of S44563 on tumor cell radiosensitivity. (a) Effect of S44563 on SCLC cells radiosensitivity. The SCLC cells were seeded for colony formation in
35 mm dishes containing methylcellulose-based medium at 500–10 000 cells/dish with various doses of S44563 for 21–28 days period. Radiation was given 2 h after
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were combined. (c) The H146 cells were treated as experiment 3B and immunoblotting for cleaved caspase 3 was performed. The ratio of cleaved caspase 3/GAPDH was
measured using dedicated software. The combination of radiation and S44563 results in 2.5-fold enhancement of cleaved caspase 3/GAPDH ratio
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(Figure 6e). Silencing p65 prevented radiation-induced
expression of Bcl-2 in H146 cells and Bcl-XL in H196 cells
(Figure 6f).

Taken together, these data suggest that S44563 might be
advantageously employed as a radiosensitizing agent,
especially when it is used during the IR-induced increase in
the expression of its targets, Bcl-2 and Bcl-XL.

Discussion

The data contained in this work outline a strategy for the
treatment of SCLC, based on concomitant and adjuvant
administration of a novel Bcl-2 and Bcl-XL inhibitor, S44563
with IR. This strategy of radiosensitization (to improve
the outcome of radiotherapy) or radiochemosensitization
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pictures are representative of two experiments. For each experiment, 6–10 mice were used for each group. Kaplan–Meier survival curves reflect significantly enhanced
antitumor efficacy using IRþ S44563 regimen. The endpoint was relative tumor volume triple the initial tumor volume (RTV3). Log-rank test analysis demonstrated that the
combination resulted in improved survival compared with S44563 or radiation alone (P¼ 0.1 in H146 xenografts; Po0.05 in H69 xenografts). (b) Tumor growth volumes
curves. Volume growth was analyzed on day 50 for H146 (P¼ 0.1) and on day 37 for H69 xenografts (P¼ 0.1). Standard deviations are shown. (c) H146-bearing mice were
treated with S44563 (100 mg/kg, d1–d5), IR (four fractions, 2 Gy per fraction) or both and then were killed 2 h after the last treatment. Tumors were excised and stained for
cleaved caspase-3
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(to improve the outcome of radiotherapy combined with
cisplatin-based chemotherapy) may be particularly efficient
when S44563 is applied to cancers that exhibit high levels of
Bcl-2 of Bcl-XL. Indeed, there is a molecular heterogeneity
among SCLC in thus far that some tumors depend on Bcl-2 of
Bcl-XL (and hence can be expected to respond to S44563)
and others depend on Mcl-1 (and hence must be refractory to
S44563). Moreover, Bcl-2 of Bcl-XL apparently constitute
‘moving targets’ in the sense that radiotherapy can induce
the expression of these proteins, meaning that S44563 is
particularly efficient when administered after (rather than
during) radiotherapy. This interaction resulted from chemo-
sensitization through the inhibition of radiation-induced Bcl-2
and Bcl-XL upregulation. The IR-induced upregulation of
anti-apoptotic proteins might be mediated through a signal
transduction pathway involving NF-kB activation. Activation
of NF-kB components such as RELA or RELB by DNA
damage has been shown to be involved in resistance to
radiotherapy in many cancers.

Many reports have shown that resistance of SCLC to
standard treatment may be related to decreased apoptotic
response in a subset of SCLC cells. We found that in a
collection of localized SCLC removed surgically, anti-
apoptotic proteins such as Bcl-2, Bcl-XL and Mcl-1 were
frequently upregulated. Overexpression of Bcl-2 and Bcl-XL

are not fully explained by common gene alterations in SCLC.
BCL2L1 and BCL2L2 gene amplifications have been
reported in previous studies,11 although others showed that
low-level gains of the BCL2 gene are present in 40% of cases
in an array including 62 SCLC samples and high-level gains

are observed in only 8% of the tumors.22 These results are
consistent with publicly accessible data banks revealing
MCL1 gene amplification in 57% of samples but no copy
number alteration for the genes encoding BCL2 and
BCL2L1. Thus, Bcl-2 and Bcl-XL overexpression could result
from alternative mechanisms such as activation of their
promoters by transcriptional factors. Furthermore, chemo-
therapy induces Bcl-2 and Bcl-XL expression, perhaps
explaining in part the acquisition of resistance to cisplatin-
based regimens. Here, we showed that radiation itself
resulted in the enhanced expression of Bcl-XL at the mRNA
and protein levels, both in vitro and in vivo through
transcriptional event. Intriguingly, several mRNA species
involved in the NF-kB pathway were activated following
radiation, coupled to enhanced expression of anti-apoptotic
proteins expression. Previous studies reported that NF-kB
activation by DNA damage played a critical role in the
response to radiation through the regulation of anti-apoptotic
genes and cell survival induction.23,24 These data are
consistent with a recent study investigating a specific BCl-
XL inhibitor BXI-72 in NSCLC.25 In this study, increased
levels of Bcl-XL and Bcl2 were observed in A549-IRR cells as
compared with A549 parental cells providing evidence that
IR-enhanced Bcl-XL contributes to acquired radioresistance.
BXI-72 repressed tumors derived from both A549-P and
A549-IRR cells, indicating that BXI-72 can overcome
acquired radioresistance in vivo. The majority of the
candidate proteins upregulated following radiation were
proteins such as, TNF, LTB and NFKB1, that are either
expressed in response to stimulation by pro-inflammatory
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Figure 5 S44563 enhanced the efficacy of cisplatin-based chemo-radiotherapy in SCLC xenograft tumors. H146 (a) and H69 xenograft tumor (b) Kaplan–Meier and tumor
growth volume curves after treatment with fractionated X-ray irradiation and S44563, cisplatin alone or in combination. When tumors reached the appropriate size, the mice
were randomized into 10 mice per group and treated with either S44563 100 mg/kg i.p., � 5 days or X-ray irradiation 2 Gy � 4, � 1 week, cisplatin 1 mg/kg daily given twice
per week for 2 weeks or their combination
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Figure 6 Radiation induced the expression of anti-apoptotic proteins and sensitized SCLC to S44563. (a) H69 xenografts were given 3 Gy radiation from day 1 to day 4 (IR),
twice (IR*2) when tumors recurred upon the first course of radiation and then were excised when the tumors recurred again. Protein lysates were obtained and blots were stripped
with excised for Bcl-2 and Bcl-XL antibodies expression analysis. Protein/GAPDH ratio (from 0 to 1) were quantified and reported at the top of each lane. (b) H69 xenograft tumor
curves after treatment with fractionated X-ray irradiation and S44563, alone or in concomitant and sequential combination. When tumors reached appropriate size, the mice were
randomized into 5–10 mice per group and treated with either S44563 100 mg/kg i.p., � 5 days or X-ray irradiation 2 Gy � 4, � 1 week, or their combination as in Figure 5.
A group in which mice were received S44563 only within the 5 days of the completion of radiotherapy was added. Standard errors are shown (columns, mean; bars, standard error
deviation; *Po0.05, permutational t-tests two-way ANOVA test). (c) TNF and LTB gene expression induction following radiation in H16 and H69 cells using real-time PCR. H146
and H69 cells were treated with 2 Gy radiation and harvested either 2 or 24 h after the treatment (columns, mean; bars, standard error deviation; *Po0.05 as compared to GAPDH
level). Each experiment has been carried out in triplicate. The pictures are representative of three experiments. (d) Accumulation of p65/RelA in cell nuclei after irradiation. Nuclear
extracts from H146 cells were immunoblotted with specific antibodies to show p65/RelA. Blots were stripped and reprobed with mouse monoclonal anti-nucleoplasmin (NPM) as a
control protein loading. Unirradiated cells served as a control. Data from three experiments were combined. (e) H146 cells were given one 3-Gy fraction and were then harvested
24 h later for Bcl-2 and, Bcl-XL immunoblotting. GAPDH was used as the loading control. (f) H146 cells and H196 cells were transfected with silencing RNA (siRNA) against p65/
RelA (Santa Cruz, sc-29410, final concentration: 15 nmol/l ) using Amaxa Nucleofector Technology for 24 h and then were irradiated at a dose of 6 Gy. Total lysates were obtained
24 h after irradiation and blots were stripped with p65/RelA, Bcl2 and Bcl-Xl proteins. GAPDH were used as loading control
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cytokines or are involved in inflammatory networks.24,26

These data are consistent with recent reports demonstrating
that pro-inflammatory cytokines and inflammatory response
pathways play an important role in radioresistance.26–28

RELA (NF-kB p65) has been shown to promote the
expression of BCLXL

23,24 as well as other anti-apoptotic
genes such as BCL2 and MCL1.26–28 These findings suggest
that tumors resistant to radiation may exhibit cancer stem
cell-like features. Several studies have shown that cancer
stem cell-like cells may promote a pro-inflammatory micro-
environment by constitutive NF-kB activity and cytokine and
chemokine production.29–32 However, such data are not
available in SCLC.

Recently, a new Bcl2Bcl-XL inhibitor, ABT-737, has
demonstrated some efficacy in SCLC and CLL cells through
induction of apoptosis.33,34 Phase I/II clinical trials are
assessing the safety and utility of navitoclax, an ABT-737
derivative that can be administered orally, on SCLC and
CLL.17,18 A platelet-sparing potent BCL-2-selective inhibitor
ABT-199 has recently been developed35 and was recently
shown to elicit promising tumor responses in BCL-2-
dependent hematopoietic malignancies.36 Some studies
have shown a benefit from combining chemotherapy and
ABT-737, so far, the molecular bases of this interaction are
not well-known although it has been hypothesized that
induction of Noxa by CPT-11 in colorectal carcinoma37,38 or
Mcl-1 downregulation by various chemotherapy regi-
mens38,39 may explain positive interaction. One study
demonstrated that combining ABT-737 and carboplatinum
resulted in an enhancement of chemotherapy efficacy in a
sequence-dependence manner.39 Only the sequence of
administration in which carboplatin was followed by that of
ABT-737 revealed synergistic interactions in ovarian cancer
both in vitro and in vivo. In our study, we showed that using
S44563 during fractionated irradiation increases the efficacy
of radiation and that this effect was greater when S44563
was given after the completion of the radiation in SCLC.
These data are consistent with a model in which radiation
sensitizes tumor cells ready for apoptosis induction by
S44563 because the upregulation of S44563 targets Bcl-2
and Bcl-XL. Previous studies described that Mcl-1 and
Bcl2A1 expression was associated with primary and
secondary resistance to Bcl-2/Bcl-XL inhibitors,40–44 a
finding that was confirmed in our study. These proteins are
not inhibited by current BH3 mimetics including S44563 and
may result in resistance and relapse to the triple
combination.

We also investigated the value of the combination of
S44563 with cisplatin-based chemo-radiotherapy. Most pre-
clinical studies assessing the association between a new drug
and radiation are performed out of the context of standard
care. Epidermal growth factor receptor in combination with
radiation using the C225 antibody was effective in terms of
local control and survival.45,46 However, cisplatin-based
radiochemotherapy represents the standard approach for
advanced head and neck cancer. The combination of
radiation, cisplatin and C225 has been tested clinically before
a thorough preclinical evaluation of the combined therapy.
The results of a phase 3 trial assessing the triple combination
did not show any benefit from the addition of cetuximab to

cisplatin in combination with radiation.47 Recently, guidelines
for preclinical and early phase clinical assessment of novel
radiosensitizers recommended to design preclinical experi-
ments including standard treatment such as the combination
of radiation and chemotherapy.48 Here, we demonstrated that
S44563 enhanced the efficacy of the standard cisplatin-based
chemo-radiotherapy used to treat localized SCLC. Indeed,
some mice cured exhibited long-lasting complete responses
with a follow-up greater than 260 days. Of note, we did not
observe any signs of severe lung damage such as endothelial
damage and fibrosis-like lesions that would have been
exacerbated by S44563. These data suggested that S44563
has no major toxic effects on normal lung tissue, even in the
context of IR.

In summary, pharmacological inhibition of Bcl-2 and Bcl-
XL proteins could restore sensitivity to radiation in a model of
SCLC both in vitro and in vivo. Radiation-induced over-
expression of anti-apoptotic proteins made SCLC suscep-
tible to apoptosis induction by S44563. S44563 synergized
with cisplatin-based chemoradiotherapy and did not cause
any significant lung toxicity. Altogether, these results
prepare the bases for the design of future clinical trials in
SCLC patients.

Materials and Methods
Reagent. S44563 (dihydrochloride) has a molecular weight of 912.4
(839.479þ 72.922) and its molecular formula is C44H47ClN6O5S2, 2 HCl. It has
two asymmetric carbons. The purity of the batches ranges between 97.8 and
99.9% and the optical purity was 99%. S44563-2 was synthesized at Institut de
Recherches Servier, the synthesis will be published elsewhere (initial patent
application filed in France 02/02/2007 under N 07/00741) (Figure 1a). P65 siRNA
(Santa Cruz, Santa Cruz, CA, USA; sc-29410, final concentration: 15 nmol/l)
was transfected into cells using Amaxa Nucleofector Technology (Lonza Inc,
Levallois-Perret, France) according to the manufacturer’s recommendations.

Cells and culture conditions. Human SCLC cell lines, H146, H69 and H196
were purchased from ATCC (Manassas, VA, USA). These cells were maintained in
RPMI 1640 supplemented with 2 mM L-glutamine, 10% fetal bovine serum (Gibco,
Cergy-Pontoise, France), 100 units/ml of penicillin and 10 000mg/ml of streptomycin.
MV4-11, RS4;11 and HCT116 cell lines were purchased from ATCC. All cells were
incubated at 37 1C in a humidified atmosphere of 5% CO2 in air.

X-ray irradiation. Cells were irradiated at room temperature using a 200-kV
X-ray irradiator at a dose rate of 0.85 Gy/min. For in vivo irradiation, radiation was
given using mouse jigs designed to expose only the tumor bed to radiation at a
dose rate of 1.1 Gy/min.

Fluorescence polarization assays. A fluorescent BH3 peptide (BH3
motif from the protein Puma) was incubated with either recombinant Bcl-2 or
Bcl-XL protein (20 mM Na2HPO4 pH 7.4, 50 mM NaCl, 1 mM EDTA, 0.05%
pluronic acid). Upon binding, the fluorescence emitted by the BH3 peptide
becomes polarized. The inhibition of the interaction between the fluorescent BH3
peptide and Bcl-2 or Bcl-XL is followed by measuring a decrease in fluorescence
polarization. In these assays, Bcl-2 or Bcl- XL concentration was 100 nM, the
fluorescent BH3 peptide concentration was 15 nM and S44563 was titrated from
1 nM to 100mM.

DEVDase assay. H146 SCLC cells were exposed to increasing concentra-
tions of S44563 for 6 h and DEVDase activity (Promega, Lyon, France) was
measured in cell extracts prepared in lysis buffer.

Co-immunoprecipitation assays. H146 cells were exposed to increasing
concentrations of S44563-2 for 2 h and cell lysates were prepared in
immunoprecipitation buffer (Hepes 10 mM pH 7.5, KCl 150142 mM, MgCl2
5 mM, EDTA 1 mM, Triton 0.4%) supplemented with protease inhibitors.
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Cell lysates were then subjected to an immunoprecipitation with an anti-Bcl-2
antibody (sc-509). The presence of Bax in the anti-Bcl-2 immunoprecipitate (IPs)
and lysates was then evaluated by immunoblot analysis using an anti-Bax
antibody (Santa Cruz, sc-493).

Measurement of cell growth. Cells were seeded in 96-well plates, 24 h
before incubation with various concentrations of S44563 for 72 h. The number of
viable cells was determined by using WST-1 assay according to the
manufacturer’s instructions (Roche, Meylan, France).

Clonogenic survival. Clonogenic assays were performed without irradiation
and with various doses of S44563 to assess dose response and calculate the
concentration of S44563 to inhibit 50% of cells (IC50). After exposure with S44563
at doses ranging from 100 nmol/l to 10 mmol/l for 12 h, cells were exposed to
radiation at doses ranging from 2 to 6 Gy using 200 kV X-rays; they were then
separated, counted and seeded for colony formation in 35-mm dishes at 500–
10 000 cells/dish. Upon incubation intervals of 21–28 days, colonies were stained
with crystal violet and manually counted. All colonies of 50 cells or more were then
counted. For floating cells (H146 and H69), the cells were incubated in
methylcellulose-based medium as described previously.49 The SF was estimated
according to the formula: SF¼ number of colonies formed/number of cells seeded
plating efficiency of the control group. The radiation dose enhancement ratio
(DER) by S44563 was calculated using the following formula: DER¼ (SF at an
indicated dose of radiation alone)/(SF at an indicated dose of radiationþS44563).
DER¼ 1 suggests an additive radiation effect and DER41, a supra-additive
effect as against a sub-additive effect in the case of DERo1.

Cytofluorometric analysis. Cells were stained with the following probes to
assess apoptosis-associated modifications: propidium iodide (final concentration of
2mg/ml, Sigma-Aldrich, Lyon, France) for viability and dihexyloxacarbocyanine
iodide (DiOC6(3), 40 nmol/l, Molecular Probes, Saint-Aubin, France) for Dcm

dissipation (after overnight fixation of the cells in glacial 70% ethanol, DNA content
was quantified by staining with propidium iodide (20mg/ml), RNase (100mg/ml,
Sigma) and EDTA (20 mmol/l) for 30 min at room temperature.50 Stained nuclei
were analyzed for DNA-propidium iodide fluorescence using a Becton Dickinson
(Rungis, France) FACSCaliburs flow cytometer.

Microarrays studies and multiplex PCR. For transcriptome analysis,
106 cells were seeded in T25 flasks, allowed to grow for 24 h and then left
untreated or treated with 2 Gy radiation. After 24 h, cells were harvested, lysed for
the extraction of RNA and processed to analyze gene expression, as previously
reported.50 Raw data have been submitted to ArrayExpress (accession numer:
E-MTAB-966). For PCR analysis, 106 cells were seeded in T25 flasks, allowed to
grow for 24 h and then left untreated or treated 6 Gy radiation and harvested either
2 or 24 h after the treatment. Apoptosis TaqMan Low Density Array (TLDA)
custom-designed format from Applied-Biosystems (Villebon-sur-Yvette, France)
were used as duplicates for each gene expression per sample using the Applied
Biosystems 7900HT Real-Time PCR system. The results of each plate were
analyzed using ABI PRISM software to calculate the CT value of each well and
compare these values in studied gene wells with endogenous control wells.

Analysis of protein expression. Protein samples of SCLC cells were
prepared in lysis buffer, according to standard established protocols.49 Extracted
proteins were separated by 12% SDS-PAGE and subjected to immunoblots using
mouse monoclonal IgG1 antibodies specific for active caspase-8 (Cell Signalling
Technology, Leiden, Netherlands), or glyceraldehyde-3-phosphate dehydrogenase
(GAPDH; Millipore, Guyancourt, France) and rabbit polyclonal antibodies against
caspase-3, active caspase-9 (Cell Signalling Technology). To fractionate
cytoplasmic and nuclear proteins, cells were washed and incubated on ice for
10 min in buffer A (10 mM HEPES pH 7.9, 10 mM KCl, 0.1 mM EDTA, 0.5%
NP-40, 1 mM phenylmethylsulfonyl fluoride and a cocktail of protease inhibitor).
Supernatants containing the cytoplasmic extracts were separated by centrifugation
(10 000 g, 5 min). Pellets were suspended in buffer B (20 mM HEPES pH 7.9,
400 mM KCl, 1 mM EDTA, 10% glycerol, 1 mM phenylmethylsulfonyl fluoride and a
cocktail of protease inhibitors) and incubated at 4 1C for 1 h with mixing. The
resulting nuclear lysates were clarified with high-speed centrifugation. RELA/p65
antibody was obtained from BD Biosciences (Le Pont de Claix, France) (1 : 500).

A tissue array that includes localized SCLC samples at diagnosis from the 29
patients was constructed at the Department of Pathology, Institut Gustave Roussy.

Immunostainings were carried out for Bcl-2 (clone 124, Dako Cytomation, Les Ulis,
France; 1 : 25 dilution), Bcl-XL (Ab-2, clone 7D9; Lab Vision, Thermo scientific,
Villebon-sur-Yvette, France; 1 : 150 dilution), Mcl-1 (clone ab28147, Abcam, Paris,
France; 1 : 50 dilution). Bcl-2, Bcl-XL and Mcl-1 expressions were evaluated by a
composite score that consisted in the product of intensity and percentage of tumor
cells stained.

Assay for tumor growth in immunocompromised mice. The
in vivo experiments were carried out at the Institut Gustave Roussy under
the Animal Care license n1C94-076-11 (French Ministry of Agriculture).
Female athymic nude or nod/scid mice (6–8-weeks old) obtained from Janvier
CERT (Le Genest St. Isle, France) were used. H146 and H69 cells were harvested
in exponential phase growth and 5� 106 cells were injected subcutaneously into
the flank area of 6–8-week-old female mice on day 0. H196 cells were not used for
in vivo studies as we are unable to obtain H196 xenografts in nude or SCID mice.

For antitumor activity in the SCLC H146 model, S44563 was administered daily in
1% Tween80/water for 21 days at two doses: 100 and 150 mg/kg by the intra
peritoneal (i.p.) route.

For combination studies, mice were randomized into 6–10 mice per group
when tumors reached appropriate size and treated with S44563 or saline
solution 100 mg/kg i.p q.d � 5, � 1 week, or irradiation with 2 Gy/day for
4 days or the combination of S44563-2 and irradiation. When cisplatin was
administered, the dose was 1 mg/kg daily given twice per week for 2 weeks. Mice
were weighed, and the tumor size was measured twice a week. The tumor
volume was estimated from two-dimensional tumor measurements by the
formula:

Tumor volume ¼ lengthðmmÞ�width2ðmm2Þ=2:

In each group, the relative tumor volume was expressed as the Vt/Vo ratio (Vt is
the mean tumor volume on a given day during the treatment and Vo is the mean
tumor volume at the beginning of the treatment). The absolute growth delay was
calculated to compare the efficacy of each regimen. Absolute growth delay is
defined as the time in days for tumors in the treatment arm to triple their initial
volume (RTV3) minus the time in days for tumors untreated to reach RTV3. Dose
enhancement factor (DEF) by S44563 was calculated using the following
formula: DEF¼ (Absolute growth delay in combination group)/(Absolute growth
delay in radiation group).

Assessment of lung toxicity. The potential fibrotic effects triggered by
S44563 and the combination of S44563 with radiation were assessed in the well-
characterized model of bleomycin (BLM)-induced lung fibrosis.51 Intra-peritoneal
injection of BLM (40 mg/kg) was performed for 5 days. Fibrosis occurrence was
monitored 4 weeks after initiation of BLM administration. Nude mice were divided
in six groups: control, BLM, IR (19 Gy), S44563, BLM-S44563 and IR-S44563.
At week 4, the lungs from control, BLM (positive control), S44563 and S44563-
BLM groups were collected for histology and were fixed in Finefix (Milestone
Medical, Sorisole, Italy) and paraffin embedded. At week 15, the lungs from
control, S44563, IR and IR-S44563 groups were collected as others groups.
Sections were stained with Hematoxylin-Eosin-Safranin and examined using
conventional light microscopy. Tissue lesions were scored as fibrotic in each of the
subpleural, vascular and intraparenchymal areas. Inflammatory infiltrates were
also scored by the same pathologist (PO).

Statistical analysis. Statistic significance was evaluated using two-tailed
Student t tests or ANOVA. When ANOVA was significant, pairwise comparisons
using permutational t-tests using false discovery rate correction were used.
P values o0.05 were considered statistically significant. For in vivo studies, two-
way ANOVA was used with R software for statistical comparisons involving
multiple groups to determine the significance of each of two groups (Po0.05).
Paired or unpaired two-tailed Student’s t test was used in comparisons between
two groups. Survival was determined using Kaplan–Meier method and compared
using log-rank tests.
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