11165 measured reflections

 $R_{\rm int} = 0.096$

meters refined

 $\Delta \rho_{\rm max} = 0.59 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.48 \text{ e} \text{ Å}^{-3}$

2914 independent reflections

1850 reflections with $I > 2\sigma(I)$

Only H-atom displacement para-

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

rac-(6S)-6-Hydroxy-6-{2-[2-(propan-2-ylidene)hydrazinylidene]propyl}indolo-[2,1-b]quinazolin-12(6H)-one

Matthew E. Rodstein, Paul D. Steffen, Bogdana Krivogorsky and Peter Grundt*

Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, MN 55812, USA Correspondence e-mail: pgrundt@d.umn.edu

Received 6 September 2011; accepted 14 September 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.006 Å; R factor = 0.062; wR factor = 0.161; data-to-parameter ratio = 11.9.

The chiral title compound, C₂₁H₂₀N₄O₂, crystallizes as a racemic mixture. In the crystal, molecules form centrosymmetric π -overlapping dimers [interplanar distance] 3.338 (6) Å], which are further connected along the *a* axis forming centrosymmetric dimers via O-H···N hydrogen bonds. C-H···O interactions are also observed. The indolo-[2,1-b]quinazoline group is somewhat bent, with a small dihedral angle of 6.3 $(4)^{\circ}$ between the plane of the quinazoline system and the plane of the benzene ring of the indole moiety. The C = N - N = C atoms of the azine group is oriented almost perpendicular [84.1 (2) $^{\circ}$] to the mean plane of the quinazoline system.

Related literature

The title compound is a derivative of the natural product tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione). For reactions occurring at the 6-keto group of tryptanthrin with nucleophiles including CH-acidic compounds, see: Grandolini et al. (1997); Bergman & Tilstam (1985); Jao et al. (2008); Zou & Huang (1985). For related strutures, see: Brufani et al. (1971); Bergman et al. (1987); Jao et al. (2008); Grundt et al. (2010). For the Chebychev weighting scheme, see: Prince (1982); Watkin (1994).

Experimental

Crystal data

$H_{20}N_4O_2$	V = 1718.4 (6) Å ³
= 360.42	Z = 4
noclinic, $P2_1/n$	Mo $K\alpha$ radiation
8.6788 (17) Å	$\mu = 0.09 \text{ mm}^{-1}$
15.117 (3) Å	$T = 100 { m K}$
13.283 (3) Å	$0.20 \times 0.20 \times 0.20$ mm
99.58 (3)°	
noclinic, $P2_1/n$ 8.6788 (17) Å 15.117 (3) Å 13.283 (3) Å 99.58 (3)°	Mo K α radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 100 K $0.20 \times 0.20 \times 0.20 \text{ m}$

Data collection

Rigaku R-AXIS RAPID II imageplate diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.98, \ T_{\max} = 0.98$

Refinement

 $\begin{array}{l} R[F^2>2\sigma(F^2)]=0.062\\ wR(F^2)=0.161 \end{array}$ S = 1.012899 reflections 244 parameters

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$\begin{array}{c} C20 - H10 \cdots O18^{i} \\ D19 - H9 \cdots N5^{ii} \end{array}$	0.98 0.83	2.57 2.08	3.381 (6) 2.872 (6)	140 (1) 160 (1)

Symmetry codes: (i) x + 1, y, z; (ii) -x + 2, -y + 1, -z + 1.

Data collection: CrystalClear (Rigaku Americas, 2009); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: CrystalClear; program(s) used to solve structure: CrystalStructure (Rigaku Americas, 2009) and SIR2004 (Burla et al., 2005); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

This study was supported by the Stanley Medical Research Institute (grant ID 08R-2032) and the NSF (grant CHE-0922366 for X-ray diffractometer).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2027).

References

- Bergman, J. & Tilstam, U. (1985). Tetrahedron, 41, 2883-2884.
- Bergman, J., Tilstam, U. & Tornroos, K. W. (1987). J. Chem. Soc. Perkin Trans. 1, pp 519-527.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Brufani, M., Fedeli, W., Mazza, F., Gerhard, A. & Keller-Schierlein, W. (1971). Experientia, 27, 1249-1250.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388
- Grandolini, G., Ambrogi, V., Perioli, L., Giannangeli, M., Jovicevic, L. & Rossi, V. (1997). Farmaco, 52, 679-683.
- Grundt, P., Douglas, K. A., Krivogorsky, B. & Nemykin, V. N. (2010). Acta Crvst. E66, 01474-01475.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Jao, C. W., Lin, W. C., Wu, Y. T. & Wu, P. L. (2008). J. Nat. Prod. 71, 1275–1279.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Prince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.

Rigaku Americas (2009). CrystalClear and CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA.

Watkin, D. (1994). Acta Cryst. A50, 411-437.

- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.
- Zou, J. & Huang, L. (1985). Acta Pharmacol. Sin. 20, 45-51.

Acta Cryst. (2011). E67, o2695-o2696 [doi:10.1107/S1600536811037408]

rac-(6*S*)-6-Hydroxy-6-{2-[2-(propan-2-ylidene)hydrazinylidene]propyl}indolo[2,1-*b*]quinazolin-12(6*H*)-one

M. E. Rodstein, P. D. Steffen, B. Krivogorsky and P. Grundt

Comment

The 6-keto group of the natural product tryptanthrin (indolo[2,1-*b*]quinazoline-6,12-dione) has been shown to react with numerous nucleophiles including CH-acidic compounds (Grandolini *et al.*, 1997, Bergman & Tilstam, 1985, Jao *et al.*, 2008, Zou & Huang, 1985). The title compound was obtained by reacting tryptanthrin with hydrazine in acetone as a solvent.

In the structure of the title compound, the azine moiety was determined to possess *E*-configuration in respect to the C21=N23 double bond with a *trans*-orientation around the N23—N24 bond (dihedral angle 158.6 (4)°). The CN double bonds of the azine moiety were found to be slighly shorter than the corresponding conjugated CN bonds in the quinazoline system. The C=O bond clearly has double bond character and was observed to be 1.226 (4) Å in length.

Experimental

1.0 mL (20 mmol) hydrazine hydrate was added dropwise to a suspension of 0.25 g (1.0 mmol) tryptanthrin in 10 mL of acetone and the reaction mixture was heated to reflux for 30 min. Upon cooling the title compound crystallized from the reaction mixture. The precipitate was collected and washed with a small amount of acetone to give 0.26 g (72%) of the title compound I. Crystals suitable for X-ray analysis were grown by slow diffusion of hexane into a solution of the title compound in ethylacetate/chloroform 1:1. The crystal was diffracted in the cold stream of an X-Stream2000 Liquid nitrogen generator with an open-flow nitrogen cryostat with a nominal stability of 0.1°K.

Refinement

Only hkl indices better than 0.85 Å resolution were integrated. The H atoms - except O-H - were all located in a difference map, but were repositioned geometrically. The positions of Me groups were optimized rotationally using default algorithm implemented in the *CRYSTALS* software. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.94 Å, O—H in the range 0.82–0.84 Å, O) and $U_{iso}(H)$ (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 2. Packing diagram for the title compound showing intermolecular O—H…N bonds.

rac-(6S)-6-Hydroxy-6-{2-[2-(propan-2-ylidene)hydrazinylidene]propyl}indolo[2,1-b]quinazolin-12(6H)-one

Crystal data

$C_{21}H_{20}N_4O_2$	F(000) = 760
$M_r = 360.42$	$D_{\rm x} = 1.393 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 1820 reflections
a = 8.6788 (17) Å	$\theta = 25 - 2^{\circ}$
b = 15.117 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 13.283 (3) Å	T = 100 K
$\beta = 99.58 \ (3)^{\circ}$	Block, colourless
V = 1718.4 (6) Å ³	$0.20\times0.20\times0.20~mm$
Z = 4	

Data collection

Rigaku R-AXIS RAPID II image-plate diffractometer	2914 independent reflections
Radiation source: Mo Sealed tube tube	1850 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.096$
Detector resolution: 10 pixels mm ⁻¹	$\theta_{\text{max}} = 24.7^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
$\omega/2\theta$ scans	$h = -10 \rightarrow 9$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	$k = -17 \rightarrow 17$
$T_{\min} = 0.98, \ T_{\max} = 0.98$	$l = -14 \rightarrow 15$
11165 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.062$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.161$	Only H-atom displacement parameters refined
<i>S</i> = 1.01	Method, part 1, Chebychev polynomial,(Watkin, 1994; Prince, 1982) [weight] = $1.0/[A_0*T_0(x) + A_1*T_1(x) \dots + A_{n-1}]*T_{n-1}(x)]$ where A_i are the Chebychev coefficients listed be- low and $x = F /F$ max Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sig- maF) ²] ² A_i are: 5.56 6.74 1.72
2899 reflections	$(\Delta/\sigma)_{\rm max} = 0.0001471$
244 parameters	$\Delta \rho_{\text{max}} = 0.59 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$
13 constraints	

Special details

Experimental. ¹H NMR (DMSO-d⁶, 500 MHz): δ 0.82 (s, 3H), 1.63 (s, 6H), 3.38 (d, J 16.6, 1H), 3.44 (d, J 16.5, 1H), 6.88 (s, 1H), 7.35 (t, J 7.3, 1H), 7.46 (t, J 7.7, 1H), 7.59 (t, J 7.2, 1H), 7.62 (d, J 6.7, 1H), 7.78 (d, J 8.0, 1H), 7.87 (t, J 8.3, 1H), 8.28 (d, J 7.8, 1H), 8.39 (d, J 7.7, 1H). ¹³C NMR (DMSO-d⁶, 125 MHz): δ 16.5, 17.3, 24.3, 45.5, 75.3, 115.9, 121.2, 123.4, 126.2, 126.3, 127.0, 127.3, 129.2, 134.4, 134.6, 139.2, 147.2, 157.6, 158.9, 159.0, 161.2.

Refinement. Crystals for Windows program eliminates all reflections with $[\sin\theta/\lambda]^2 < 0.01$ in order to eliminate reflections that may be poorly measured in the vicinity of the beam stop. Such filter eliminated 15 reflections, which resulted in difference between 2914 measured unique reflections and 2899 reflections used for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	Uiso*/Ueq
O19	0.8991 (3)	0.37375 (18)	0.4708 (2)	0.0293
C6	0.8330 (4)	0.4137 (3)	0.3753 (3)	0.0247
C14	0.7388 (4)	0.4957 (2)	0.3956 (3)	0.0236
N11	0.5809 (3)	0.4758 (2)	0.3731 (2)	0.0246
C16	0.5590 (4)	0.3890 (2)	0.3310 (3)	0.0244
C15	0.7034 (4)	0.3519 (3)	0.3277 (3)	0.0252
C7	0.7135 (5)	0.2688 (3)	0.2869 (3)	0.0333
C8	0.5753 (5)	0.2223 (3)	0.2529 (3)	0.0340
С9	0.4329 (5)	0.2595 (3)	0.2605 (3)	0.0344
C10	0.4209 (5)	0.3440 (3)	0.2997 (3)	0.0310
C12	0.4659 (4)	0.5369 (3)	0.3857 (3)	0.0259
O18	0.3266 (3)	0.51841 (19)	0.3656 (2)	0.0338
C17	0.5287 (4)	0.6229 (3)	0.4227 (3)	0.0252
C13	0.6913 (4)	0.6366 (3)	0.4431 (3)	0.0258

N5	0.7978 (3)	0.5697 (2)	0.4294 (2)	0.0260
C4	0.7479 (5)	0.7207 (3)	0.4739 (3)	0.0312
C3	0.6455 (5)	0.7880 (3)	0.4861 (3)	0.0356
C2	0.4848 (5)	0.7732 (3)	0.4689 (3)	0.0348
C1	0.4268 (4)	0.6917 (3)	0.4381 (3)	0.0294
C20	0.9621 (4)	0.4328 (3)	0.3137 (3)	0.0272
C21	0.9162 (4)	0.4779 (2)	0.2122 (3)	0.0258
N23	0.7732 (4)	0.4958 (2)	0.1820 (2)	0.0301
N24	0.7448 (4)	0.5367 (2)	0.0842 (3)	0.0341
C25	0.6178 (5)	0.5803 (3)	0.0657 (3)	0.0370
C27	0.5820 (5)	0.6268 (3)	-0.0346 (3)	0.0413
C26	0.5009 (6)	0.5914 (4)	0.1369 (4)	0.0487
C22	1.0477 (5)	0.4992 (3)	0.1570 (3)	0.0363
Н5	0.8117	0.2442	0.2822	0.0396*
Н6	0.5785	0.1667	0.2260	0.0411*
H7	0.3403	0.2271	0.2407	0.0409*
H8	0.3245	0.3690	0.3040	0.0364*
H4	0.8560	0.7312	0.4877	0.0372*
Н3	0.6855	0.8437	0.5051	0.0417*
H2	0.4150	0.8196	0.4786	0.0419*
H1	0.3181	0.6816	0.4280	0.0349*
H10	1.0397	0.4707	0.3542	0.0334*
H11	1.0097	0.3759	0.3019	0.0321*
H20	0.4768	0.6120	-0.0675	0.0614*
H18	0.5915	0.6909	-0.0245	0.0623*
H19	0.6553	0.6078	-0.0779	0.0617*
H15	0.4565	0.6506	0.1315	0.0720*
H16	0.5516	0.5824	0.2069	0.0725*
H17	0.4179	0.5475	0.1194	0.0723*
H13	1.0232	0.4842	0.0867	0.0554*
H14	1.0673	0.5604	0.1619	0.0561*
H12	1.1415	0.4695	0.1848	0.0554*
Н9	0.9793	0.4019	0.4925	0.0440*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
019	0.0221 (13)	0.0337 (15)	0.0307 (15)	-0.0019 (12)	0.0004 (11)	0.0048 (12)
C6	0.0199 (18)	0.030 (2)	0.0239 (19)	0.0019 (16)	0.0029 (15)	0.0069 (16)
C14	0.0199 (18)	0.029 (2)	0.0214 (18)	-0.0007 (15)	0.0025 (14)	0.0016 (16)
N11	0.0198 (15)	0.0290 (17)	0.0247 (16)	-0.0018 (13)	0.0028 (12)	0.0013 (14)
C16	0.0276 (19)	0.025 (2)	0.0200 (18)	-0.0013 (16)	0.0023 (15)	0.0037 (15)
C15	0.0254 (19)	0.028 (2)	0.0224 (19)	-0.0033 (16)	0.0051 (15)	0.0065 (16)
C7	0.033 (2)	0.031 (2)	0.036 (2)	0.0001 (18)	0.0052 (17)	0.0031 (18)
C8	0.039 (2)	0.029 (2)	0.034 (2)	-0.0014 (18)	0.0058 (18)	-0.0013 (18)
C9	0.037 (2)	0.036 (2)	0.027 (2)	-0.0116 (19)	-0.0015 (17)	0.0008 (18)
C10	0.026 (2)	0.036 (2)	0.030 (2)	-0.0031 (17)	0.0006 (16)	0.0058 (18)
C12	0.023 (2)	0.033 (2)	0.0212 (19)	-0.0011 (16)	0.0028 (15)	0.0003 (16)

018	0.0193 (14)	0.0423 (17)	0.0384 (16)	-0.0002 (12)	0.0011 (12)	-0.0022 (13)
C17	0.0224 (19)	0.034 (2)	0.0189 (18)	0.0002 (16)	0.0035 (14)	0.0042 (16)
C13	0.0230 (19)	0.030 (2)	0.0244 (19)	0.0033 (16)	0.0049 (15)	0.0058 (16)
N5	0.0210 (16)	0.0290 (18)	0.0278 (17)	-0.0004 (14)	0.0033 (13)	0.0038 (14)
C4	0.026 (2)	0.029 (2)	0.039 (2)	-0.0041 (17)	0.0069 (17)	0.0003 (18)
C3	0.038 (2)	0.028 (2)	0.040 (2)	-0.0015 (18)	0.0060 (19)	-0.0028 (18)
C2	0.034 (2)	0.035 (2)	0.036 (2)	0.0072 (19)	0.0065 (18)	0.0013 (19)
C1	0.0231 (19)	0.035 (2)	0.030 (2)	0.0068 (17)	0.0040 (16)	0.0073 (17)
C20	0.0226 (19)	0.028 (2)	0.031 (2)	0.0020 (16)	0.0040 (16)	0.0020 (16)
C21	0.028 (2)	0.025 (2)	0.0245 (19)	0.0039 (16)	0.0060 (16)	-0.0017 (16)
N23	0.0278 (18)	0.0352 (19)	0.0271 (17)	0.0024 (15)	0.0042 (14)	0.0050 (15)
N24	0.0301 (18)	0.039 (2)	0.0329 (19)	0.0024 (16)	0.0034 (15)	0.0086 (16)
C25	0.034 (2)	0.040 (2)	0.037 (2)	-0.004 (2)	0.0052 (18)	0.003 (2)
C27	0.037 (2)	0.048 (3)	0.037 (2)	0.004 (2)	0.0009 (19)	0.008 (2)
C26	0.044 (3)	0.058 (3)	0.044 (3)	0.011 (2)	0.007 (2)	0.004 (2)
C22	0.032 (2)	0.043 (3)	0.035 (2)	0.0011 (19)	0.0101 (18)	-0.001(2)

Geometric parameters (Å, °)

O19—C6	1.436 (4)	C4—C3	1.379 (6)
О19—Н9	0.826	C4—H4	0.939
C6—C14	1.532 (5)	C3—C2	1.393 (6)
C6—C15	1.518 (5)	С3—Н3	0.929
C6—C20	1.520 (5)	C2—C1	1.367 (6)
C14—N11	1.386 (5)	С2—Н2	0.950
C14—N5	1.281 (5)	C1—H1	0.942
N11—C16	1.426 (5)	C20—C21	1.505 (5)
N11—C12	1.391 (5)	С20—Н10	0.975
C16—C15	1.380 (5)	C20—H11	0.979
C16—C10	1.381 (5)	C21—N23	1.268 (5)
C15—C7	1.377 (6)	C21—C22	1.491 (5)
C7—C8	1.399 (6)	N23—N24	1.423 (4)
С7—Н5	0.941	N24—C25	1.272 (5)
C8—C9	1.377 (6)	C25—C27	1.493 (6)
С8—Н6	0.916	C25—C26	1.507 (6)
C9—C10	1.390 (6)	С27—Н20	0.971
С9—Н7	0.941	С27—Н18	0.979
С10—Н8	0.928	С27—Н19	0.969
C12—O18	1.226 (4)	С26—Н15	0.973
C12—C17	1.463 (5)	С26—Н16	0.970
C17—C13	1.408 (5)	С26—Н17	0.979
C17—C1	1.402 (5)	С22—Н13	0.950
C13—N5	1.401 (5)	C22—H14	0.942
C13—C4	1.399 (5)	C22—H12	0.948
С6—О19—Н9	106.3	С3—С4—Н4	119.7
O19—C6—C14	109.3 (3)	C4—C3—C2	120.6 (4)
O19—C6—C15	105.5 (3)	С4—С3—Н3	118.8
C14—C6—C15	101.0 (3)	С2—С3—Н3	120.6
O19—C6—C20	109.4 (3)	C3—C2—C1	120.2 (4)

C14—C6—C20	113.8 (3)	C3—C2—H2	120.2
C15—C6—C20	117.0 (3)	C1—C2—H2	119.6
C6-C14-N11	108.9 (3)	C17—C1—C2	120.1 (4)
C6-C14-N5	125.1 (3)	C17—C1—H1	120.0
N11-C14-N5	126.0 (3)	C2—C1—H1	119.9
C14—N11—C16	110.3 (3)	C6—C20—C21	117.3 (3)
C14—N11—C12	122.3 (3)	C6—C20—H10	108.6
C16—N11—C12	127.4 (3)	C21—C20—H10	106.4
N11-C16-C15	108.9 (3)	C6—C20—H11	106.8
N11-C16-C10	128.6 (4)	C21—C20—H11	108.1
C15-C16-C10	122.5 (4)	H10-C20-H11	109.6
C6-C15-C16	110.5 (3)	C20—C21—N23	118.6 (3)
C6—C15—C7	129.4 (4)	C20—C21—C22	115.4 (3)
C16—C15—C7	120.1 (4)	N23—C21—C22	126.0 (4)
С15—С7—С8	118.5 (4)	C21—N23—N24	113.2 (3)
С15—С7—Н5	120.3	N23—N24—C25	114.4 (3)
С8—С7—Н5	121.2	N24—C25—C27	117.4 (4)
С7—С8—С9	120.2 (4)	N24—C25—C26	126.1 (4)
С7—С8—Н6	120.4	C27—C25—C26	116.5 (4)
С9—С8—Н6	119.3	C25—C27—H20	109.5
C8—C9—C10	121.8 (4)	С25—С27—Н18	110.1
С8—С9—Н7	120.1	H20—C27—H18	109.9
С10—С9—Н7	118.0	С25—С27—Н19	109.3
C9—C10—C16	116.7 (4)	H20—C27—H19	109.0
С9—С10—Н8	121.4	H18—C27—H19	109.0
С16—С10—Н8	121.9	C25—C26—H15	110.9
N11-C12-O18	121.6 (4)	C25—C26—H16	109.9
N11—C12—C17	113.4 (3)	H15—C26—H16	108.1
O18—C12—C17	125.0 (4)	C25—C26—H17	108.7
C12—C17—C13	120.0 (3)	H15—C26—H17	109.8
C12—C17—C1	120.0 (3)	H16—C26—H17	109.4
C13—C17—C1	120.0 (4)	C21—C22—H13	111.6
C17—C13—N5	122.1 (4)	C21—C22—H14	108.7
C17—C13—C4	118.8 (3)	H13—C22—H14	108.1
N5-C13-C4	119.1 (3)	C21—C22—H12	112.6
C13—N5—C14	116.3 (3)	H13—C22—H12	107.9
C13—C4—C3	120.2 (4)	H14—C22—H12	107.8
C13—C4—H4	120.1		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C20—H10···O18 ⁱ	0.98	2.57	3.381 (6)	140.(1)
O19—H9····N5 ⁱⁱ	0.83	2.08	2.872 (6)	160.(1)
Symmetry codes: (i) $r+1$ v_{7} : (ii) $-r+2$ $-v+1$ $-r+1$				

Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+1, -z+1.

