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Introduction

Breast cancer (BC) incidence is rising worldwide 
with an increase in aggressive neoplasia in young 
women (Chajès and Romieu, 2014), with 1 million 
new cases causing 375, 000 deaths worldwide per year. 
Breast cancer is the leading cause of cancer death in 
women in both developing and developed countries, 
and it is considered a major public health concern with 
tremendous socioeconomic implications (Ginsburg, 2013; 
Rivera-Franco and Leon-Rodriguez, 2018). Breast cancer 
incidence and mortality rates are increasing in the Arab 
world and the involved women are often diagnosed at 
advanced stages of the disease (Donnelly et al., 2013; 
Karim et al., 2015). Meanwhile, the incidence rates of BC 
being increased during the last 24 years in the Arab region, 
with high incidence rates in Egypt, Tunisia, Saudi Arabia, 
Syria, and Palestine, as it constitutes 13-42% of all female 
cancers (El Saghir et al., 2007; Saggu et al., 2015). While 
the incidence of breast cancer in the Middle East region is 
lower than in other western countries, it has substantially 
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increased in the last quarter century (Tarabeia et al., 2007). 
Furthermore, the diagnosis of breast cancer in this region 
often occurs at a later stage in the progress of the disease 
and in a higher proportion of women in their thirties and 
forties (Tarabeia et al., 2007; Al-Saad et al., 2007; Miller, 
2010) than in industrialized nations. Breast cancer that 
presents at a younger age is generally more aggressive 
with a possibly poorer prognosis (Cancello et al., 2010; 
Gnerlich et al., 2009; Kheirelseid et al., 2011). About 
50% of the breast cancer cases and 60% of the deaths 
are estimated to occur in developing countries (Mackay 
et al., 2006). Nevertheless, there is a large difference 
in breast cancer incidence among Caucasian, Hispanic, 
African, and Asian women with Caucasian women being 
the highest and Asian women being the lowest (Hea and 
Chenb, 2013).

Colorectal cancer is a major cause of morbidity and 
mortality throughout the world. It accounts for over 9% of 
all cancer incidence. It is the third most common cancer 
worldwide and the fourth most common cause of death 
(Haggar and Boushey, 2009). Colorectal cancer is one of 
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the most common human malignancies with a high rate 
of mortality. Most colorectal cancers are due to lifestyle 
factors and increasing age, with only a small number of 
cases due to genetic causes. The majority of patients are 
diagnosed at an advanced stage so that chemotherapy is 
required, with the incidence and mortality being high 
among young adults (Grivicich et al., 2007; Marley and 
Nan, 2016; Bhandari et al., 2017).

Epigenetic alterations are one of the most common 
molecular alterations in human neoplasia. In particular, 
aberrant promoter methylation occurs in numerous genes 
in cancer development and progression (Kim and Paik, 
2010). It was suggested that these CpG island methylation 
of tumor-related genes are an early event in breast cancer 
progression (Park et al., 2011). Meanwhile, epigenetic 
profiling represents a promising approach to discover 
novel disease-specific markers (Esteller, 2007), and might 
play a key role in most kinds of cancer, both in the early 
and late stages of disease. One of the most powerful 
epigenetic mechanisms is DNA hyper-/hypo-methylation 
(Szyf and Paknesha, 2004) that plays an important role in 
multi-stages of breast cancer and are considered the main 
epigenetic modification occurring in the early stages of 
carcinogenesis (Li et al., 2010). 

M e t f o r m i n  ( c h e m i c a l l y  d e s i g n a t e d  a s 
1,1-Dimethylbiguanide hydrochloride) is a drug of first 
choice for the treatment of type II diabetes as it functions 
to and its primary inhibit hepatic gluconeogenesis, but a 
clear mechanistic understanding of its effects has remained 
elusive (Hundal et al., 2000; Kirpichnikov et al., 2002; 
Castillo-Quan and Blackwell, 2016).

Several reports suggested that metformin slows cancer 
cell growth and protects against multiple human cancers 
(Pryor and Cabreiro, 2015; Bruno et al., 2015; Rodriguez-
Lirio et al., 2015; Wu et al. 2016), although the majority 
of available clinical data on the anti-cancer potential of 
metformin are based on observational studies (Gadducci 
et al., 2016). However, Garcia et al., (2017) observed no 
statistical significant association between metformin use 
and overall survival in a matched cohort of 360 ovarian 
cancer patients. 

Metformin regulates mitonuclear communication 
and modulate the epigenetic landscape in pre-cancerous 
cells, and this might guide the development of new 
metabolic-epigenetic strategies for cancer prevention and 
therapy (Cuyas et al., 2016; Liang et al., 2017). However, 
the molecular mechanisms underlying the anticancer 
properties of metformin remain elusive (Zhong et al., 
2017).

In the present study, we are aiming to investigate the 
role of metformin in modulating the methylation pattern 
(s) of two tumor suppressor genes; RASSF1A and RB in 
colorectal and breast cancer cells.

Materials and Methods

Cell line maintenance 
MCF-7 breast cancer cells and CaCo-2 colorectal 

cancer cells were purchased from the Holding Company 
for Biological Products and Vaccines (VACSERA), 
Giza, Egypt. Adherent cells were grown in RPMI 

1640 medium (Gibco, USA) supplemented with 10% 
fetal bovine serum (HyClone, Logan, UT, USA) and 
1% penicillin-streptomycin mix (Invitrogen Life 
Technologies). Cells were seeded in 12-well U-bottom 
microplates (Nunc, Denmark) and incubated for 24 h at 
37 °C in a fully humidified atmosphere of 5% CO2 before 
being treated with metformin.

Metformin doses
Metformin was kindly provided by Dr. Aya Salem, 

College of Biotechnology, Misr University for Science 
and Technology. Cells (1.8×104 cell/mL) were treated with 
metformin (dissolved in water) in final concentrations of 
5, 10, 20, 50, and 100 mM for 48h.

Cell counting 
Trypan blue test was employed in the present study to 

count the cells after being treated with metformin. Briefly, 
cells were harvested with 0.25% trypsin (Invitrogen, 
USA) and resuspended again in 1.5 mL fresh RPMI 
1640 media. About 50 µL of the cell suspension was 
mixed with an equal volume of trypan blue dye (Sigma 
Aldrich, Germany) for 2-4 min. at room temperature. An 
appropriate volume was loaded on hemocytometer slide, 
covered with glass coverslip, and read under an inverted 
microscope. The average of four readings for each sample 
was taken, and the cell count was calculated according to 
the following equation:

Number of cells/mL = average cell count x2 x 104.

Cytotoxicity assay
The cytotoxic/cytostatic effects of metformin in vitro 

on both MCF-7 breast cancer cells and CaCo-2 colon 
cancer cells was tested with a rapid colorimetric assay 
using MTT assay and compared with the untreated 
controls. This assay is based on the metabolic reduction 
of soluble MTT by mitochondrial enzyme activity of 
viable tumor cells, into an insoluble colored formazan 
product, which can be measured spectrophotometrically 
after dissolving in DMSO (Denizlt and Lang, 1986). To 
evaluate cell viability, 20 μL of MTT solution (5 mg/mL in 
PBS) was added to each well and incubated for 3 h. Then 
the media were replaced with 150 μL of DMSO, and the 
complete dissolving of formazan crystals was achieved 
by repeated pipetting of the solution. Optical density was 
then determined at 540 nm by an ELISA plate reader. 

The cytotoxic effect of metformin was expressed as the 
relative viability (% control). To calculate the percentages 
of cell viability, the following equation was applied: 

Relative viability = Experimental absorbance – 
background absorbance/absorbance of untreated cells 
– background absorbance X 100.

DNA extraction
Total DNA was extracted using the Quick-DNA Plus 

(Zymo research, USA) according to the kit’s instructions. 
DNA was extracted from treated and untreated cells, and 
stored in -20°C until being used.
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unmethylated promoters were separated on 2% agarose 
gels after being stained with ethidium bromide.

Statistical analysis
T-test was used in the present study to identify whether 

the differences between treated and untreated cell counts 
significant. Comparisons with p-values less than 0.05 were 
considered significant.

Results

Cell count 
In the present study, the role of metformin as an 

anticancer agent was evaluated. Colon and breast cancer 
cells were treated with elevated doses of metformin for 
48 h before being harvested. Cell count was performed 
using the trypan blue assay, and the obtained results 
indicated that, for breast cancer cells, the higher the 
concentration of metformin the lower count of viable 
cells (Figure 1). Metformin induced the apoptotic 
machinery (Saber et al., 2016), as it demonstrated an 
anti-proliferative activity in MCF-7 cells that was both 
time- and concentration-dependent (Queiroz et al., 2014). 
Metformin inhibited 70%, of MCF-7 cell viability at a 
final concentration of 25 mM (Queiroz et al., 2014; Lee 
et al., 2014). The present study revealed 35, 50, 91.6, 
91.6, and 93.3% inhibition of the viability of cells for the 
concentrations 5, 10, 20, 50, and 100 mM metformin, 
respectively. These results were in accordance with several 
researches (Zhuang and Miskimins, 2011; Ganjali and 
Ganjali, 2013; Ariaans et al., 2017), where the metformin 

Bisulfite conversion 
Bisulfite modification is the most widely used of all 

the pre-treatment options available for DNA methylation 
analysis. The extracted DNA was subjected to bisulfite 
conversion using EZ DNA Methylation Kit (Zymo 
research, USA). Bisulfite conversion involves the 
deamination of unmodified cytosines to uracil, leaving the 
modified bases 5-mC and 5-hmC unconverted. Treatment 
of denatured DNA with sodium bisulfite leads to 
deamination of unmethylated cytosine residues to uracil, 
leaving 5-mC or 5-hmC intact. The uracils are amplified 
in subsequent PCR reaction as thymines, whereas 5-mC 
or 5-hmC residues are amplified as cytosines. We followed 
the kit’s instructions with minor modification in terms of 
the time needed for incubation of DNA.

Methylation-specific PCR
Methylation-specific PCR was performed to detect 

the methylation status of two tumor suppressor genes; 
RASSF1A and RB. The reaction was performed in StepOne 
Plus (ABI). The primer sequences used in this study are 
presented in Table 1.

The thermal cycling conditions used for the two 
genes were as follows: For RB, 1 cycle at 95°C for 5 
min, followed by 39 cycles of 95°C for 45 sec, 63°C for 
60 sec and 72°C for 60 sec, with a final extension cycle 
of 72°C for 10 min. For RASSF1A, 1 cycle at 95°C for 5 
min, followed by 39 cycles of 95°C for 30 sec, 58°C for 
45 sec and 72°C for 45 sec, with a final extension cycle 
of 72°C for 5 min. MSP products for methylated and 

Gene name Primer status Primer sequence (5′ to 3′) Ref. 
RASSF1A Unmethylated Forward GGTTGTATTTGGTTGGAGTG Matthaios et al., 2016

Unmethylated Reverse CTACAAACCTTTACACACAACA
Methylated Forward GTTGGTATTCGTTGGGCGC
Methylated Reverse GCACCACGTATACGTAACG

RB Unmethylated Forward GGGAGTTTTGTGGATGTGAT
Unmethylated Reverse ACATCAAAACACACCCCA Liu et al., 2012
Methylated Forward GGGAGTTTCGCGGACGTGAC
Methylated Reverse ACGTCGAAACACGCCCCG

Table 1. The Methylated and Unmethylated Primer Sequences of RASSF1A and RB used in the Present Study

Figure 1. Breast Cancer Cell (MCF-7) Counts after being Treated with Elevated Doses of Metformin
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was found to inhibit CRC, breast, hepatic cancer cells 
growth. 

For colon cancer cells, metformin also induced cell 
death as indicated by trypan blue assay (Figure 2). In 
CaCo-2 colon cancer cells, the most effective metformin 
dose was, surprisingly, 5 mM, as it resulted in 95% 
inhibition of the cell viability compared to control. 

Metformin is a potent growth inhibitor (Ma et al., 2011), 
as it was indicated that 10 mM of metformin have 
resulted in 80% reduction in HCT-116 colorectal cancer 
cells (du Potet et al., 2009). Our results showed that 
the reduction in the cell viability was dose-dependent 
up to a final concentration of 20 mM. The same profile 
was reported by Kim et al., (2018), who indicated that 

Figure 2. Colon Cancer Cell (CaCo-2) Counts after being Treated with Elevated Doses of Metformin

Figure 3. Colon Cancer Cell (CaCo-2) Counts after being Treated with Elevated Doses of Metformin

Figure 4. The Overall Cell Viability of Breast Cancer Cells (MCF-7) after being Treated with Elevated Doses of 
Metformin as Assessed by MTT Assay
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Figure 5. The Overall Cell Viability of Colon Cancer Cells (CaCo-2) after being Treated with Elevated Doses of 
Metformin as Assessed by MTT Assay

Figure 7. Methylation Detection of RASSF1A and RB via MSP. A, Colon cancer cells (CaCo-2) treated with elevated 
doses of MET and subjected to MSP to detect RB prompter methylation; B, Colon cancer cells (CaCo-2) treated with 
elevated doses of MET and subjected to MSP to detect RASSF1A prompter methylation; C, Breast cancer cells (MCF-7) 
treated with elevated doses of MET and subjected to MSP to detect RB prompter methylation; D, Breast cancer cells 
(MCF-7) treated with elevated doses of MET and subjected to MSP to detect RASSF1A prompter methylation. 

Figure 6. The Percentages of Dead and Viable Colon and Breast Cells after being Treated with Elevated Doses of 
Metformin
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5 mM, 10 mM, and 20 mM of metformin have resulted 
in 78.3%, 63.5%, and 41.9% reduction in colon cancer 
cell viability, respectively. For that, metformin could be 
a useful adjuvant agent, with the greatest benefits seen in 
colorectal cancer (Coyle et al., 2016).

Discussion

Meanwhile, different concentrations of metformin 
had different effects on the viability of both colon and 
breast cancer cells. Figure (3) represents the effect of the 
elevated concentrations of metformin on colon and breast 
cells in vitro. 

For the metformin concentrations 5 and 10 mM, the 
highest mortality was reported in colon cancer cells, while 
in 20, 50, and 100 mM, the highest mortality was reported 
in breast cancer cells. This might indicate that colon cancer 
cells were more sensitive to the lower concentrations of 
metformin compared to breast cancer cells. Metformin 
benefits are a controversial issue, as some researches 
indicated that there are no sufficient data available to 
conduct analyses on the impact of metformin dose and 
duration (Coyle et al., 2016), while others reported its 
potential effect on breast cancer in vitro (Hadad et al., 
2011; Niraula et al., 2012) and in vivo (Soffer et al., 2014) 
and in colorectal cancer (Hosono et al., 2010).

Cell viability assay 
The viability of both colon and breast cancer cells 

were assessed using MTT assay as a sensitive and accurate 
way to assess cell viability in vitro (Hundie et al., 2016). 

For breast cancer cells (Figure 4), the elevated doses 
of metformin have resulted in a significant (P>0.005) 
reduction in the cell viability. The most effective dose of 
metformin was 100 mM as it yielded an 85.1% reduction in 
the cell viability compared to control (calculated as 100% 
viability). Several studies indicated the effectiveness 
of metformin in reducing the overall cell survival 
by increasing reactive oxygen species, which induce 
DNA damage and apoptosis (Marinello et al., 2016), 
or by inducing apoptosis in a concentration- and time- 
dependent manner via decreasing the ATP production 
(Gao et al., 2016).

For colon cancer cells, results indicated that 5 mM 
of metformin resulted in the highest cell mortality 
(96.91%) followed by the concentration 100 mM (96.24%) 
(Figure 5). This might indicate that colon cancer cells 
were sensitive even to lower doses of metformin. It was 
indicated elsewhere (Safari et al., 2015; Mogavero et al., 
2017) that lower concentrations of metformin i.e., 5 and 10 
mM were capable to inhibit the cell growth of colorectal 
cancer cells in vitro. 

However, colon and breast cells were responding 
differently to the elevated concentrations of metformin. 
For the concentration 5 mM, colon cancers cells were 
severely affected with a rate of reduction of cell viability 
reached 96.915, while breast cancer cells exhibited a 
61.53% reduction of the viability of cells for the same 
concentration. The concentrations 10, 20, 50, and 100 mM 
yielded 91.72, 92.55, 86.46, and 96.24%, respectively for 
colon cells, while breast cells gave 66.84, 78.57, 79.67, 

and 85.16% for 10, 20, 50, and 100 mM, respectively 
(Figure 6).

Methylation detection via MSP
Promoter methylation is an important regulator 

of gene transcription, and its role in carcinogenesis 
has been a topic of considerable interest in the last 
few years (Ohtani-Fujita et al., 1997; Wajed et al., 
2001; Das and Singal, 2004; Mamrut et al., 2013). In 
the present investigation, bisulfite-treated DNA was 
subjected to methylation-specific PCR to amplify two 
tumor-suppressor genes; RASSF1A and RB. Results 
indicated that the methylation patterns of both cancer 
cells under investigation (MCF- and CaCo-2) exposed to 
metformin were reshaped (Figure 7).

Metformin had no effect on the methylation status 
of RB promotor region in colon cancer cells (Figure 
7A), since the loss or inactivation of the RB gene is 
infrequent in colorectal carcinomas, and the reduced RB 
expression in these cells is probably due to a cellular 
regulatory mechanism (Ali et al., 1993). It seems that 
the function of RB gene in colorectal carcinoma is often 
preserved (Collard et al., 2012), and this might explain 
the insensitivity of RB to metformin as an anti-cancer 
agent. RB methylated primers generated no bands in the 
colon control cells, and this might indicate that this gene 
is normally unmethylated in this type of cancer. 

The methylation of RASSF1A promoter is frequent 
in colorectal cancer, although it appears significantly 
more frequently methylated in metastasis than in the 
organ itself (Schirosi et al., 2016), and in cancer tissues 
than in benign, adjacent, and normal tissues (Wang et al., 
2014). It seems that the methylation pattern was more 
editable after treating colon cancer cells with metformin 
as indicated in the present study and in other studies 
(Fernandes et al., 2013). However, some studies on CRCs 
found no RASSF1A promoter methylation (van Engeland 
et al., 2002).

Breast cancer cells have different methylation profiles 
in RB and RASSF1A genes after been treated with 
metformin (Figure 7B). Aberrant methylation is a common 
feature across many types of cancers, and these hallmarks 
are shared by almost all solid tumors, but some epigenetic 
marks most often found in distinct types of tumors, e.g., 
RB in retinoblastoma (Sakai et al., 1991). RB promoter 
region appeared to be partially unmethylated in the control 
cells, while the methylated primers were able to generate a 
defined band (Figure 7C) although with variable molecular 
sizes. It is believed that RB promoter methylation is 
crucial, and seems to facilitate, via multiple mechanisms, 
the tumorigenesis process (Ertel et al., 2010; Witkiewicz 
and Knudsen, 2014). However, the unmethylated primers 
were also able to generate a less intense band, and this 
might indicate that the promoter region of this gene was 
partially methylated. 

The same profile was obtained in the case of RASSF1A 
(Figure 7D). Meanwhile, several studies have indicated 
the correlation between RASSF1A hypermethylation and 
breast tumorigenesis (Dammann et al., 2001; Jezkova et 
al., 2017) and tumor progression (Geng and Wu, 2016). 
Others indicated that RASSF1A could serve as a potential 
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prognostic biomarker (Kioulafa et al., 2009; Xu et al., 
2012).

In conclusion the role of metformin (MET) as 
an anticancer agent was evaluated. Breast cancer 
cells (MCF-7) and colon cancer cells (CaCo-2) was 
challenged with different doses of MET i.e., 5, 10, 20, 
50, and 100 mM. Trypan blue assay revealed a significant 
decrease in the cell count of both colon and breast 
cancer cells. The same was indicated by the cytotoxicity 
assay (MTT), as it revealed a decrease the cell viability 
after treating the cell lines with elevated doses of 
MET. Promoter hypermethylation was assessed in both 
RASSF1A and RB as two tumor-related genes. RASSF1A 
was shown to be involved in the apoptosis process, 
as a level of hypermethylation was detected in colon 
cancer cells. RB was found to be less responding to the 
treatment, although the colon cancer cell count decreased 
upon treatment, but this might be attributed to another 
mechanism of cell death apart from RB-mediated one. In 
breast cancer cells, both RB and RASSF1A were proved to 
be involved in inducing cell death via hypermethylation 
of these genes, which might be correlated with apoptosis.
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