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Abstract
Cell-to-cell communication is fundamental for embryo development and
subsequent tissue homeostasis. This communication is often mediated by a
small number of signaling pathways in which a secreted ligand binds to the
surface of a target cell, thereby activating signal transduction. In vertebrate
neural development, these signaling mechanisms are repeatedly used to obtain
different and context-dependent outcomes. Part of the versatility of these
communication mechanisms depends on their finely tuned regulation that
controls timing, spatial localization, and duration of the signaling. The existence
of secreted antagonists, which prevent ligand–receptor interaction, is an
efficient mechanism to regulate some of these pathways. The Hedgehog family
of signaling proteins, however, activates a pathway that is controlled largely by
the positive or negative activity of membrane-bound proteins such as Cdon,
Boc, Gas1, or Megalin/LRP2. In this review, we will use the development of the
vertebrate retina, from its early specification to neurogenesis, to discuss
whether there is an advantage to the use of such regulators, pointing to
unresolved or controversial issues.
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Introduction
The highest functions of the nervous system are based on  
communication among the huge variety of cells that compose 
the vertebrate brain. Communication among cells is also funda-
mental for correct development of the nervous system. Although 
there are several ways in which neural cells (and cells in general)  
exchange information, communication mediated by families of 
signaling molecules such as Wnt, bone morphogenetic protein  
(BMP), fibroblast growth factor (FGF), and Hedgehog (Hh) 
is one of the most common. These molecules activate specific  
signaling pathways that share grossly similar designs, although 
individual molecular components are specific to each one of the 
pathways. Ligands are secreted from restricted cellular sources 
and bind to receptor complexes on the receiving cells. Ligand– 
receptor binding activates a signaling cascade that ultimately 
leads to transcriptional regulation of target genes or, less often, to  
alternative non-transcriptional pathways when more immediate 
responses are needed. These signaling pathways are used 
over and over in development to regulate events as diverse as  
cell specification, proliferation, migration, and differentiation. 
It follows that their activity needs to be exquisitely controlled,  
ensuring that information among cells is activated where  
required and switched off at, or prolonged for, the appropriate 
time in order to obtain the required context-dependent output. 
There are different levels of regulation for these signaling  
molecules. Perhaps the most direct is the existence of classes 
of secreted proteins that interact with the ligand in the extra-
cellular space, thereby preventing binding to their receptor. 
This occurs, for example, in the case of BMPs or Wnts, for 
both of which a large number of secreted antagonists exist1,2.  
Signaling enhancement also depends on secreted proteins that 
in some cases promote ligand diffusion as described for Wnt 
proteins3–6. In contrast, the currently known ligand-binding  
modulators of the Hh pathway are membrane-bound proteins, 
prompting the question of whether there is an advantage to such 
an organization.

Sonic hedgehog (Shh) is the most prominent member of the Hh 
family in vertebrates and one of the best examples of a classic  
morphogen7,8, as it induces the acquisition of specific identities 
in the receiving cells according to the levels and the duration of 
its signaling9. Shh activates signaling with a mechanism that 
has been recently defined as “double-negative”10. Indeed, in the  
absence of the ligand, its 12-pass transmembrane receptor Patched 
(Ptch) inhibits the seven-pass transmembrane GPCR (G-protein- 
coupled receptor)-like signal transducer Smoothened (Smo). 
In the absence of this inhibition, Smo would constitutively  
maintain the pathway active with the consequent transcription 
of Shh target genes, mediated by the family of Gli transcription 
factors. Shh binding to Ptch releases this inhibition and allows 
the expression of Gli-targeted genes. Gli targets include Ptch  
itself, thereby establishing a negative feedback loop, important 
also for limiting ligand dispersion9. Thus, Ptch represses Shh  
pathway activation by controlling both ligand dispersion and 
the activity of the signal transducer. In vitro and in silico models  
have demonstrated that this organization confers robustness  
to the signaling gradient10 and thus to Shh activity as a mor-
phogen and likely to the additional functions that Shh exerts. 

So, in principle, there is an advantage to such an organization  
(see 11 for further discussion). However, activation of Shh sig-
naling is modulated by other surface molecules that either  
contribute to Shh release from the producing cells, such as Disp 
(Dispatched)12, or, on the receiving cells, interact with Ptch or 
Shh or both. The latter include Cdon (cell adhesion molecule-
related, downregulated by oncogenes), Boc (Brother of Cdon), 
Gas1 (growth arrest protein 1)13,14, and Megalin/LRP2 (Megalin/ 
low-density lipoprotein receptor-related protein 2)15. The regu-
lation of the membrane availability of Smo by the tetraspanin 
Atthog/Mosmo (modulator of Smo) is a recently described  
additional mechanism of Shh regulation16. Is the presence of these 
membrane modulators also an advantage?

So far, no studies have formally addressed this question. Nev-
ertheless, in this review, we will use the progressive formation  
of the vertebrate retina to discuss Shh functions in which some 
of these regulators have been implicated, pointing to potential  
advantages and unresolved or controversial issues.

Cdon, Boc, Gas1, and LRP2 enhance Shh signaling 
during optic vesicles’ bilateralization
Shh is expressed along the entire axial mesoderm – anterior  
prechordal plate and posterior notochord – and the ventral  
midline of the vertebrate neural tube. This distribution prompted 
the use of the spinal cord as a primary model to understand  
the mechanism of Shh action17. However, the progressive forma-
tion of the vertebrate retina offers an experimental paradigm 
with which to study how Shh is repurposed to shape multiple  
developmental aspects of the same structure, from early specifica-
tion to connectivity.

The eyes are bilateral structures. Their neural component, the  
retina, originates from a group of cells, known as the retinal field, 
in the anterior neural plate. As the neural plate folds, cells of the  
retinal field become displaced laterally, forming two balloon-
shaped optic vesicles at the side of the forming neural tube.  
Shh expression at the prechordal plate is critical for this initial 
morphogenesis: in the absence of Shh, optic vesicle bilateralism 
is lost and embryos form, in the most severe case, a single  
cyclopic eye or, in the milder cases, smaller eyes that are closer 
together. This phenotype, observed from humans to zebrafish18, 
is part of a developmental anomaly known as holoprosenceph-
aly (HPE), in which the ventral forebrain is not specified and  
the dorsal forebrain hemisphere tends to fuse together19,20. In  
amniotes, there are two concomitant events that contribute to 
optic vesicle lateralization. The first one is the Shh-dependent  
specification of the neural plate overlying the prechordal plate 
into the hypothalamic primordium, which therefore intervenes the 
two vesicles19. The second is the patterning of the optic vesicles  
along their proximal–distal axis, which involves the Shh-mediated  
specification of the proximal/optic stalk domain (reviewed  
in 17). In teleost fishes, the Shh-mediated posterior-to-anterior 
migration of medial cells that intercalate into the retinal field 
is an additional factor21. Genetic inactivation of basic compo-
nents of the Shh pathway in mouse or zebrafish and mutational  
screening in patients with HPE confirmed the importance of Shh 
signaling in ventral central nervous system (CNS) patterning and 
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thus in the proper positioning and growth of the optic vesicles18,22. 
Similar studies have also shown that Cdon, Boc, Gas1, and LRP2 
participate in these developmental events18,23–26.

Cdon and Boc are closely related cell adhesion molecules that 
can form homophilic and heterophilic complexes and interact 
with both Shh and Ptch (reviewed in 27). Cdon/Boc interac-
tion with Ptch increases high-affinity ligand binding, indicating 
their function as Ptch co-receptors and thus as positive signaling  

regulators14,23,28–30. The two genes are expressed with largely  
overlapping patterns that include the entire dorsal neural tube 
and the developing eye and ear and the olfactory system31,32. This 
distribution often coincides with that of Gas133, encoding a GPI  
(glycosylphosphatidylinositol)-linked protein that also inter-
acts with Shh and Ptch34,35 (Figure 1A). Mouse embryos lacking  
Cdon, Boc, and Gas1 show a phenotype that mimics Shh loss 
of function19, which leads to the absence of the entire ventral  
neural tube resulting in severe HPE and early embryonic 

Figure 1. Cdon, Boc, and Gas1 act as positive regulators of Shh signaling during optic vesicle formation. The diagrams represent the 
interaction of Cdon, Boc, and Gas1 with Ptch and Shh during Shh-mediated patterning of the ventral neural tube in wild-type embryos (A) or 
in embryos with genetic inactivation of either Cdon or Gas1 function (B) or lacking Cdon, Boc, and Gas1 (C). The three co-receptors interact 
with Ptch and the complex binds Shh with high affinity. In the presence of Shh, Smo is de-repressed (red crosses) and activates a signal 
transduction cascade that culminates with Gli-mediated transcription of Shh target genes. The Cdon/Ptch and Boc/Ptch interactions are 
mediated by the FnIIIa and FnIIIb domains (green) of Cdon and Boc, respectively. Binding of Shh to Cdon or Boc is mediated by the FnIIIc 
domain (pink). (B) In the absence of either Cdon or Gas1, Shh is less activated (dotted red crosses), resulting in mild craniofacial defects.  
(C) Loss of all three co-receptors prevents pathway activation, resulting in severe HPE, a phenotype that mimics Shh loss of function. Boc, 
Brother of Cdon; Cdon, cell adhesion molecule-related, downregulated by oncogenes; Gas1, growth arrest protein 1; HPE, holoprosencephaly; 
Ptch, patched; Shh, sonic hedgehog; Smo, smoothened.
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lethality (Figure 1C). This indicates that the three co-receptors 
play positive and overlapping roles in regulating Shh pathway  
activation13,14. Furthermore, Shh signaling represses Cdon, Boc, 
and Gas1 expression30,36. This suggests that these co-receptors  
may serve as buffers to prevent possible defects due to abnor-
mally low Shh signaling because, if Shh activity decreases, their  
upregulation could boost signaling again. However, genetic 
inactivation of the individual co-receptor genes reveals non- 
equivalent roles. Gas1 null mouse embryos present ventral  
neural tube defects, mild HPE, and mis-specification of the  
ventral retinal pigmented epithelium into a neural retina-
like tissue33,36. Cdon null embryos display a similar mild HPE  
(Figure 1B) with small eyes and coloboma (opened optic  
fissure)23,37. Boc null mice instead have none of these defects 
but, when crossed with either Cdon or Gas1 mutants, enhance 
their respective HPE phenotype24,25. Whether Boc also modifies 
their respective specific eye phenotype remains to be studied.  
Somewhat in line with these differences, systematic genomic 
sequencing analysis of patients with HPE has identified causa-
tive mutations in the CDON gene23,38 but only sequence variations 
suggestive of a modifier role for BOC and perhaps for GAS138. 
Given that these co-receptors have all been shown to foster Shh  
signaling, it is not obvious why their loss of function causes  
these phenotypic differences, especially in the case of the  
closely related Cdon and Boc. One possibility is that Shh 
signaling exerts a differential negative regulation on their  
expression. Alternatively (or additionally), Cdon and Boc may 
employ distinct mechanisms to enhance Shh signaling, as  
recently suggested29. For example, the ectodomain of Boc, but 
not that of Cdon, can be proteolyzed29. If this proteolysis occurs 
in vivo, which is still a matter of speculation, Boc ectodomain 
could enhance Shh diffusion and at the same time terminate  
high-affinity binding of Shh to Ptch. The two effects may  
compensate one another, explaining the lack of HPE phenotype in 
Boc mutants. Variations in Cdon, Boc, and Gas1 distribution may 
also underlie the observed differences in the mutants’ phenotype. 
This differential expression may also offer an alternative expla-
nation for how Cdon and Boc influence Shh signaling. Indeed, 
whereas the ventral neural tube and optic vesicle expression of 
Gas133 makes it easy to understand its Ptch co-receptor function, 
the predominant dorsal expression of Cdon and Boc31,32 makes 
the same function less immediately understood. Boc and Cdon  
could be transiently expressed in the ventral neural tube right 
when needed for early patterning, as reported for the zebrafish Boc  
orthologue39. However, the expression of Cdon, but not Boc, in 
the axial midline of both mouse and zebrafish30,40 suggests that  
Cdon could have the additional role of favoring Shh release 
from the producing cells. The Drosophila homologue of 
Cdon, interference Hh (ihog), has been reported to have such 
an activity41, although motif differences between Shh and its  
Drosophila homologue Hh call for caution in applying directly 
to vertebrates what has been learned in the fly42. Nevertheless, 
the HPE phenotype of Cdon null embryos could easily be  
explained by an attenuated Shh release from the midline, a function 
in which Boc may not be implicated.

At the moment, this is only a hypothesis but it may be worth  
testing. It is equally unexplored whether LRP2 can functionally 
interact with Boc, Cdon, or Gas1 or with their possible  

different heterodimeric or trimeric complexes. LRP2 facilitates 
Shh/Ptch binding and promotes the internalization of the complex, 
which is required to relieve Smo inhibition. Thus, in the absence 
of LRP2, Shh signaling is impaired, leading to embryos with  
an HPE phenotype43. It remains an open question whether LRP2 
promotes Cdon, Boc, and Gas1 internalization when bound to Ptch 
or instead competes with them for Ptch and Shh binding.

Cdon, Boc, and LRP2 can counteract Shh signaling 
during retinal development
The work we have discussed so far, independently of the still- 
puzzling aspects, supports a positive role of Cdon, Boc, Gas1, 
and LRP2 in Shh signaling and thus in the specification of the  
ventral CNS and eye separation. However, Cdon, Boc, and  
LRP2 have been shown to act as negative regulators of Shh  
signaling as retinal development progresses, although each one  
of them does so in different contexts (Figure 2).

As mentioned before, the formation of two bilateral optic vesi-
cles implies the compartmentalization of its neuroepithelium 
in different domains along the different axes. One of the first  
subdivisions occurs along the proximo–distal axis of the vesicle 
and originates the prospective optic stalk proximally and the 
prospective retina distally (Figure 2A). The establishment of 
the optic stalk and retinal domains is defined by the specific and  
respective expression of two paired- and homeobox-containing 
transcription factors: paired box protein Pax-2 (Pax2) and Pax6 
(reviewed in 44). The two factors cross-repress each other 
and thus define a sharp border between the two territories45  
(Figure 2A). Shh signaling promotes Pax2 expression, thereby 
imposing optic stalk identity. When Shh is reduced or absent, 
the optic stalk domain is smaller or absent and the two retinal  
domains tend to fuse together. Shh overexpression has the 
opposite effect with an excess of Pax2-positive optic stalk that  
overtakes the retinal domain by repressing Pax617,44. This means 
that the right amount of Shh signaling is critical to form a pre-
cise boundary between the optic stalk and the retina. Recent 
studies have shown that, at least in zebrafish and chick embryos, 
Cdon participates in the establishment of this boundary40. In both  
species, ptch is expressed in the pax2-positive optic stalk,  
whereas cdon, but not boc, is strongly expressed in the pre-
sumptive neural retina overlapping with pax6 distribution  
(Figure 2A)40. The complementarity between ptch and cdon  
expression advocates against a synergistic role. Indeed,  
morpholino-mediated knockdown of cdon allows for the expansion  
of the optic stalk, decreases eye size, and prevents optic fissure  
closure, indicating that Cdon counteracts Shh effect40. This  
phenotype depends on the ability of Cdon to bind Shh but not  
Ptch. Furthermore, it is a direct consequence of Cdon activity in 
the retina because targeted cdon overexpression in the zebrafish 
retina is sufficient to rescue the phenotype of cdon knockdown 
and spatiotemporal restricted interference with Cdon retinal  
expression in chick embryos mimics the zebrafish phenotype40. 
The precise mechanism by which this happens is still unrefined;  
however, when mis-expressed close to the optic recess midline 
(a Shh source), Cdon binds Shh with great efficacy and serves  
as a sink to limit ligand availability to the nearby cells40. This  
indicates that Cdon acts as a decoy receptor to protect the neural 
retina from Hh activity (Figure 2A).
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Figure 2. Cdon, Boc, and Lrp2 antagonize Shh activity during retina development. (A) Schematic dorsal view of the optic vesicle (left) 
and enlarged view of the optic stalk/neural retina border (right). The expression domains of Pax2 (blue) and Pax6 (brown) are indicated in the 
scheme. At the border of these two domains, Cdon binds Shh, serving as a decoy receptor to protect the neural retina from midline-derived 
Shh activity. Note that the Ptch receptor localizes only in the Pax6-positive neural retina domain. (B) Schematic frontal view of mature retina 
(left) and enlarged view of the retinal periphery (right). Contralateral RGCs produce and secrete Shh. Ipsilateral projecting RGCs express 
the co-receptor Boc that prevents Shh diffusion and thus signal activation. Low Shh signal allows for the specification of ipsilateral program 
specification in RGCs of the VTC. Lrp2/Megalin instead limits Shh proliferative activity by endocytic clearance of Shh at the CMZ. Boc, Brother 
of Cdon; Cdon, cell adhesion molecule-related, downregulated by oncogenes; CMZ, ciliary marginal zone; Hyp, hypothalamus; Lrp2, low-
density lipoprotein receptor-related protein 2; NR, neural retina; OS, optic stalk; Pax2, paired box protein Pax-2; Pax6, paired box protein 
Pax-6; Ptch, patched; RGC, retinal ganglion cell; Shh, sonic hedgehog; VTC, ventrotemporal crescent.
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A similar function has been postulated for Boc during mouse  
retinogenesis46. Retinal ganglion cells (RGCs) are the first  
neurons to be born in the retina of all vertebrates. Newly gen-
erated RGCs express Shh, and this expression promotes the  
propagation of RGC specification and differentiation, the pro-
liferation of retinal precursors, and their differentiation toward  
other neuronal cell types (reviewed in 47,48). In the mouse, a 
small proportion of RGCs located in the ventrotemporal crescent 
of the retina do not express Shh49 (Figure 2B). These neurons are  
special because, in contrast to all the Shh-positive RGCs, they 
project to the ipsilateral side of the brain, enabling the semi-
binocular vision typical of rodents. These ipsilateral RGCs  
express Boc49,50. In these neurons, Boc is necessary to keep Shh 
signaling low, thereby enabling the expression of the transcrip-
tion factor Zic246, a determinant of the ipsilateral program51. Thus,  
in Boc null mice, part of ipsilateral RGCs are mis-specified,  
acquiring a contralateral projecting phenotype with a conse-
quent alteration of the retinal projections46. In an additional and 
not necessarily contrasting view, Boc, present on the membrane  
of ipsilateral RGC growth cones, mediates guidance information 
provided by Shh at the optic chiasm midline, forcing the axons 
to enter the ipsilateral optic tract50. Notably, Shh, transported 
along the axons of the contralaterally projecting RGCs49,52, seems 
to be released at high concentrations and with a still-unknown  
mechanism (see 53 for discussion), right at the chiasm providing 
Boc-mediated repulsive information to ipsilateral axons52. Thus, in 
this case, Boc would act as a positive mediator of Shh. Whether 
the same molecule can have a double function in the same cell  
remains to be established, but, in a speculative view, Boc inter-
actions at the perikaryon could be different from those existing  
at the growth cone.

Independently of this still-unanswered question, both Cdon 
and Boc can function as negative regulators of Shh activity,  
limiting ligand dispersion, a function that has been observed in  
Drosophila wing disc and ovary development41,54,55. Inciden-
tally, both Cdon and Boc, when ectopically expressed close to a  
Shh source, localize predominantly at the basal side of the  
neuroepithelial cells, where they accumulate most of the bound  
Shh protein40. A recent study revisiting the function of Hhip (Hh-
interacting protein)—initially defined as a membrane-bound 
negative regulator of HH signaling56—showed that Hhip is  
secreted and localizes to the neuroepithelial basal membrane57. 
The basal localization of both Cdon and Hhip is interesting  
because it may serve to clear the ligand from the apical surface 
of the neuroepithelial cells, where the primary cilium localizes.  
This organelle is fundamental for Shh signal transduction, as 
it hosts the main components of the transduction machinery of  
this pathway58.

A negative regulation of Shh signaling, based on a differ-
ent mechanism of ligand clearance, has also been proposed for 
LRP2. Though initially expressed in the whole optic cup, LRP2  
expression becomes restricted to the peripheral margin as ret-
ina differentiation proceeds. This region, called the ciliary 
marginal zone (CMZ), is a source of progenitor cells in fish 
and amphibians59 and likely also in the mammalian embryonic  
retina60,61. The CMZ is normally devoid of Shh activity. Deficiency 

of Lrp2 in mice or zebrafish causes enlarged and exophthal-
mic eyes62–65, a pathological condition known as buphthalmos 
and observed in patients carrying LRP2 mutations66. Search-
ing for an explanation for this phenotype, Christ et al.65 found  
elevated transcript levels for GLI family zinc finger 1 (Gli1) and 
Ptch1 genes, two Shh targets, suggesting that LRP2 protects the 
CMZ from the influence of RGC-derived Shh. In the absence 
of LRP2, Shh induces CMZ progenitor hyperproliferation, 
expanding the overall eye size. Mechanistically, LRP2 mediates  
lysosomal clearance of Shh alone, thereby maintaining the CMZ 
quiescent65 (Figure 2B).

Although their local function has not been explored in detail,  
Cdon, Boc, and Gas1 are also strongly expressed in the  
CMZ36,40,49, making this structure an attractive model to study 
possible interaction among all these Shh-binding proteins. In a  
speculative view, they could all concur to make the CMZ a Shh- 
free zone given that Gas1 has also been initially proposed to  
work as a Shh sink34.

In conclusion, going back to the original discussion point,  
“economy” could be the main advantage of controlling potent 
signaling molecules with membrane-bound proteins. Cdon,  
Boc, and Lrp2—in the specific case of Shh—seem to act as 
both positive and negative regulators of the signaling pathway  
depending on their additional interaction with other membrane-
bound proteins (Ptch). In a speculative view, an economical way 
of changing the role for these regulators from a positive to a  
negative one might be their shuttling from the apical to the basal 
membrane. The destiny of Shh bound to Boc or Cdon when these 
proteins act as negative regulators is a matter of speculation.  
However, in the same economical view, unwanted Shh could 
be recycled back to the tissue where it is needed, such as from 
the neural retina to the optic stalk. The observed redundancy  
of regulatory molecules may not fall into the view of economy, 
although redundancy might be the best way of ensuring the  
needed levels of Shh during development and homeostasis.
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