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Abstract

Background: Magnetic resonance imaging (MRI) noninvasively quantifies disc struc-

ture but requires segmentation that is both time intensive and susceptible to human

error. Recent advances in neural networks can improve on manual segmentation. The

aim of this study was to establish a method for automatic slice-wise segmentation of

3D disc volumes from subjects with a wide range of age and degrees of disc degener-

ation. A U-Net convolutional neural network was trained to segment 3D

T1-weighted spine MRI.

Methods: Lumbar spine MRIs were acquired from 43 subjects (23–83 years old) and

manually segmented. A U-Net architecture was trained using the TensorFlow frame-

work. Two rounds of model tuning were performed. The performance of the model

was measured using a validation set that did not cross over from the training set. The

model version with the best Dice similarity coefficient (DSC) was selected in each

tuning round. After model development was complete and a final U-Net model was

selected, performance of this model was compared between disc levels and degener-

ation grades.

Results: Performance of the final model was equivalent to manual segmentation, with

a mean DSC = 0.935 ± 0.014 for degeneration grades I–IV. Neither the manual seg-

mentation nor the U-Net model performed as well for grade V disc segmentation.

Compared with the baseline model at the beginning of round 1, the best model had

fewer filters/parameters (75%), was trained using only slices with at least one disc-

labeled pixel, applied contrast stretching to its input images, and used a greater

dropout rate.

Conclusion: This study successfully trained a U-Net model for automatic slice-wise

segmentation of 3D disc volumes from populations with a wide range of ages and

disc degeneration. The final trained model is available to support scientific use.
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1 | INTRODUCTION

Disc degeneration, structural abnormalities, and pathology are impli-

cated in low back pain (LBP) and noninvasive measurements of these

often require segmenting the disc regions from spine magnetic reso-

nance images (MRI). Trained human readers can produce disc segmen-

tations, but this process is time intensive and interpretation of

ambiguous disc borders are susceptible to human error and bias.1,2

Furthermore, the time it takes to segment the MRI causes a gap

between MRI acquisition and MRI evaluation for obtaining useful out-

puts. Although numerous auto- or semi-automatic segmentation

approaches have been developed over the past decade, recent

advances in neural networks (deep learning) may improve segmenta-

tion by reducing processing time and increasing segmentation

consistency.1,3–8

Convolutional neural networks (CNNs) are a powerful and conve-

nient method for automatic segmentation, provided a pre-labeled

dataset exists to train the CNN model. Because the derivative of a

CNN can be computed efficiently, the model parameters can be auto-

matically optimized (trained) by gradient descent to classify each pixel

in the image as disc or not disc according to a set of pre-labeled data,

the training set.9,10 During training, the model learns to extract and

use image features automatically. The features used for segmentation

are thus not chosen by a human-driven design process and are not

necessarily even human-perceptible. The U-Net architecture is a

widely used encoder–decoder CNN for medical image segmentation

and has remarkable performance across various imaging modalities,

including challenging low-contrast images and small image datasets.11

Therefore, the U-Net architecture may be ideal for disc segmentation

of spine MRI and was evaluated in this study.

CNNs, such as U-Net or others, have been applied to the problem

of disc segmentation, with typical accuracy, as measured using the

Dice similarity coefficient (DSC), of 0.89–0.94 for segmentations of

2D (mid-sagittal) and 3D MRI.1,3–8,12,13 Studies with 181–4075 sub-

jects had mean DSC ≥0.93,3,4,8,12 reflecting the utility of a large train-

ing set. Although large datasets are readily achieved for qualitative

assessments of spine clinical phenotypes (e.g., degenerative grade,

herniation, Modic changes) in a single mid-sagittal slice,9,14–16 large

training sets of volume segmentations from 3D MRI are not readily

available. Fortunately, good model performance can also be obtained

with moderately sized training sets, with a DSC of 0.96 on a single 2D

mid-sagittal MRI slice reported by a 50-subject study using a U-Net

model.5 However, one of the reasons to segment the disc is to study

disc degeneration, and disc degeneration causes shape and boundary

irregularities that may adversely impact segmentation accuracy. Simi-

larly, shape differences with spinal level, particularly L5-S1, which is

highly variable among the population, may affect model performance.

Unfortunately, with the exception of the 2D Huang et al.5 study, prior

studies have not reported the degree of disc degeneration in their

training set. Thus, the accuracy of 3D volume segmentation when the

training set includes degenerated discs remains unknown, limiting our

ability to accurately use automatic segmentation models on discs of

higher degeneration grades, which are more likely to be clinically

relevant.

The aim of this study was to establish a method for automatic 3D

slice-wise segmentation of disc volumes from populations with a wide

range of age and degrees of disc degeneration. A U-Net CNN was

trained to segment 3D T1w spine MRI and its performance was tuned

by comparing several versions of the training process and model

structure. The performance of the final U-Net model was assessed by

disc level and degeneration grade.

2 | METHODS

2.1 | Subjects and magnetic resonance image
acquisition

Lumbar spine MRIs were acquired from 43 subjects across a large age

range (23–83 years old, 24 female/19 male) under an approved IRB

protocol. T1-weighted (T1w) FLASH (Fast Low Angle Shot) images

(Repetition Time [TR] = 9.6 ms, Echo time [TE] = 3.7 ms,

resolution = 0.52 � 0.52 � 3.00 mm, sagittal slices, run time 11 min)

were acquired on a 3T Siemens scanner.17 The T1w FLASH sequence

provided sufficient contrast between the disc and surrounding struc-

tures. Each subject was imaged four times, in different postures and

times of day.17 T2-weighted TSE (turbo spin echo) was also acquired

to grade disc degeneration with the Pfirrmann scale, where low grade

(I) is healthy and high grade (V) is considered degenerated.18 Disc

grading was performed by 3 trained graders who reached

consensus.17

2.2 | Manual segmentation and human
performance assessment

Each FLASH MRI was manually segmented for all slices and lumbar

levels, L1–L2 to L5–S1, by trained readers using the open-source ITK-

SNAP software.19 These segmentations were considered ground truth

for U-Net model training and validation. To set a target for the

expected performance of CNN segmentation, inter-reader segmenta-

tion accuracy was measured for six readers across 9 subjects (7 young:

age < 60 y, 2 older: age ≥ 60 y) with grade I–IV discs. Segmentation of

grade V discs was avoided because they are often collapsed and par-

tially ossified. The hypothesis that inter-reader DSC differed across

discs (N = 45) by grade and level was tested using a one-factor
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Kruskal–Wallis test with post-hoc Wilcoxon signed rank tests with

Holm correction for multiple comparisons. In this study, all statistical

analyses were performed in R version 4.3.0.20

2.3 | Image split

To train and evaluate the U-Net architecture, MR images and the

masks from 35 subjects were divided into a training set and a validation

set (Table 1). Because degenerated discs have reduced MR contrast

and variable disc boundaries, the 35 subjects were split semi-randomly

to achieve a balanced distribution of degeneration grades (Table 1).

The subjects with grade V discs were assigned exclusively to the train-

ing set due to their scarcity. After the model training was completed,

an expanded validation set was used to test for the effect of degenera-

tion and spinal level. To do so, 8 additional subjects (containing at least

one grade V disc) were added to the original validation set (Table 1).

For each subject, MRIs of all four postures/times were used for

training, with the repetition serving as data augmentation, but only

the first image acquired was used for validation so that each example

would be independent. There was no crossover of subjects between

the training and validation sets.

2.4 | U-Net model

Based on its proven architecture and highly competitive performance in

various applications, including spine MRI, this study used U-Net

architecture,11 set up to operate on sagittal slices from each spine image

recruited as TIFF stacks. The U-Net accepts square images as input, so

the 352 � 512 pixel sagittal MRI slices in the current study were

resized to 512 � 512 pixels prior to processing by the U-Net (Figure 1).

The model was trained using the TensorFlow framework (version

2.8.2)21,22 on a personal computer with an NVIDIA GeForce RTX

3080 using the training set and ground truth labels described above.

The optimization algorithm was Adaptive Moment Estimation (Adam)

and the loss function was the sum of cross-entropy and Dice loss.

Dropout was applied at the U-Net bottleneck and parameters were

randomly initialized (Figure 1). The U-Net model produces 388 � 388

pixel segmentations, so these were resized to match the input

352 � 512 pixel sagittal image slices. Lastly, the original MRI header

information, including image origin, voxel spacing, and image orienta-

tion, was added to the resized output segmentation using the

Convert3d.

2.5 | U-net model tuning

2.5.1 | Overview

Two rounds of model tuning were performed to choose specific

hyperparameters and modifications to the model's convolutional fil-

ters. Initial hyperparameter values were found by a grid search in a

pilot study, which is common practice, and were learning

rate = 0.001, first moment decay rate (β1) = 0.95, second moment

decay rate (β2) = 0.999, dropout rate = 0.2, weight decay = 0.05,

batch size = 6, and number of epochs = 2000. This was the starting

point for round 1 tuning.

In each round of tuning, all candidate model versions under evalu-

ation were trained 8 times (e.g., 8 runs per version) to account for ran-

domness in model training. The predictive performance of the model

resulting from each run was measured using the validation set, where

DSC was calculated using Convert3D19 (see Appendix A). The model

version with the best average performance (DSC) across runs was

selected for subsequent use.

2.5.2 | Round 1 tuning

The objective of the first round of tuning was to (a) choose the num-

ber of convolutional filters (i.e., parameters) in the model, and

(b) choose the image preprocessing method. The starting point was

TABLE 1 Split of images into training and validation datasets.

Number (percent) of discs for each degeneration grade

Age group Number of subjects Number of discs I II III IV V

Training set

Young 17 85 23 (27) 45 (53) 7 (8) 10 (12) 0 (0)

Older 10 50 0 (0) 3 (6) 18 (36) 24 (48) 5 (10)

All 27 135 23 (17) 48 (36) 25 (19) 34 (25) 5 (4)

Validation set

Young 4 20 8 (40) 7 (35) 2 (10) 3 (15) 0 (0)

Older 4 20 0 (0) 2 (10) 8 (40) 10 (50) 0 (0)

All 8 40 8 (20) 9 (22) 10 (25) 13 (33) 0 (0)

Expanded validation set

Added 8 40 1 (2) 3 (8) 8 (20) 11 (28) 17 (42)

Full set 16 80 9 (11) 12 (15) 18 (22) 24 (30) 17 (21)
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“model 1” in Table 2. Nine additional model versions were evaluated

with 100%, 75%, or 50% of the original number of parameters and

three different image preprocessing methods (Table 2, models 2–10).

Since reducing the number of parameters also reduced the memory

required for training, the batch size was increased to 8 with 75%

parameters and 14 with 50% parameters. Adjusting the number of

trainable parameters was intended to detect overfit or underfit of the

training data.

Four image inputs were evaluated: raw data and three candidate

image preprocessing steps. These preprocessing methods were

applied to images prior to using them as input to the U-Net model.

Input 1, “Raw Input,” had no modification to the images (Figure 2A,C).

Input 2, “Deleted Blanks,” removed MRI slices that had zero disc-

labeled pixels from the training set, reducing the number of training

slices from 2434 to 1918. No slices were removed from the validation

set, as it is meant to estimate model performance on unlabeled

images. Input 3, “Deleted Blanks + Stretched Contrast,” modified

input 2 by scaling the intensity such the 2.5th percentile (“input mini-

mum”) became 0 and the 97.5th percentile (“input maximum”)
became 255 (Figure 2B,D). Input 4, “Deleted Blanks

+ Augmentation,” modified input 3 by adding a second copy of each

slice scaled using an input minimum randomly selected from 0% to

10% with input maximum = 100% � input minimum. This contrast

stretching was intended as training data augmentation set to make

the model more robust to intensity variation.

The hypothesis that varying the number of model parameters and

the input image preprocessing method affected model performance

was tested using a linear mixed model with the number of parameters

and the preprocessing method as fixed parameters, and subject as a

random intercept. This accounted for correlation of each subject's

results across the 8 runs of each model.

2.5.3 | Round 2 tuning

The objective of the second round of tuning was (a) to optimize the

regularization-related parts of the training process, and (b) to test a

TABLE 2 Model versions used in round 1 tuning.

Round 1
model version

Number of U-net
parameters Pre-processed input image

Model 1 100% of Original Input 1: Raw Input

Model 2 100% of Original Input 2: Deleted Blanks

Model 3 100% of Original Input 3: Deleted Blanks

+ Stretched Contrast

Model 4 100% of Original Input 4: Deleted Blanks

+ Augmentation

Model 5 75% of Original Input 2: Deleted Blanks

Model 6 75% of Original Input 3: Deleted Blanks

+ Stretched Contrast

Model 7 75% of Original Input 4: Deleted Blanks

+ Augmentation

Model 8 50% of Original Input 2: Deleted Blanks

Model 9 50% of Original Input 3: Deleted Blanks +

Stretched Contrast

Model 10 50% of Original Input 4: Deleted Blanks

+ Augmentation

F IGURE 1 U-Net model architecture used in this study,11 showing processing of one MRI slice. Several model versions with different
convolution operations were created and compared during model tuning.
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structural modification of the U-Net architecture, in which the filter

convolutions were replaced by dilated convolutions (Figure 1, “Model

Versions”). Three model versions, based on round 1 model 6 (see

results), were compared in round 2 (Table 3). In the first version, batch

normalization was added to the hidden layer activations, which often

stabilizes and speeds convergence. In the second, the dropout rate

was increased from 0.2 to 0.8. A higher dropout rate can force the

network to learn more robust features, which is especially helpful

when the training set is relatively small. In the third, dilated convolu-

tion, with corresponding padding of the layer's input to maintain the

size of its output, was used in place of the original hidden layer filter

convolutions to increase the receptive field of the convolutions.

Dilated convolution has been shown to improve performance.23 Simi-

lar to round 1, segmentation accuracy was compared between the

candidate models using a linear mixed model with the model version

as a fixed parameter and subject as a random intercept to account for

potential correlation of each subject's results across model runs.

2.6 | Orphan removal

Small groups of voxels that are incorrectly labeled as disc and are sep-

arated from the main part of the segmentation, or “orphans,” can

often be removed by postprocessing. Here, orphans were identified

within each slice as any separate labeled area that either (1) had size

<10 pixels, (2) did not intersect any disc-labeled pixels in the central

slice when superimposed, or (3) did not intersect any disc-labeled pixel

in a neighboring slice when superimposed. This was done using a

Matlab script. To focus on comparison of the intrinsic performance of

the various U-Net model versions, orphan removal was applied only

as an extra evaluation step after the second round of model tuning.

2.7 | Spine level-based and degenerative grade-
based analysis

After model development (i.e., training) was complete and a final

U-Net model was selected, performance of this “best” model, includ-

ing orphan removal, was compared between disc levels and degenera-

tion grades. This comparison used data from the 8 subjects that

comprised the validation set used in model development as well as

8 additional subjects with grade V discs, with the resulting 16-subject

set subsequently referred to as the “expanded validation set”
(Table 1). For this final assessment, two similarity metrics, DSC and

volume ratio (Appendix A) were used to compare between disc levels

and degeneration grades using a one-factor Kruskal-Wallis test with

post-hoc Wilcoxon signed rank tests with Holm correction for multi-

ple comparisons (N = 80 discs).

F IGURE 2 Representative preprocessed input images with (A) original contrast, referred to as “Raw Input,” and (B) stretched contrast with
the 95th percentile intensity treated as the maximum, referred to as “Stretched Contrast.” The images have additional brightening for clearer
visualization in print. (C) Histogram of the original intensity values in the raw input image. (D) Histogram of modified intensity values in the
stretched contrast image. (Note that images in A and B have already been resized for input to the U-Net as described in section 2.4).

TABLE 3 Model versions used in round 2 tuning.

Round 2 model version Learning rate Decay rate β1 Dropout at bottleneck Weight decay Batch normalization Dilation rate

Baseline (Round 1, Model 6) 1e-03 0.95 0.2 0.05 N 1

Batch Normalization 1e-03 0.95 0.2 0.05 Y 1

Increased Dropout Rate 5e-04 0.90 0.8 0.05 N 1

Dilated Convolution 1e-03 0.95 0.2 0.05 N 2

MARKHALI ET AL. 5 of 12



F IGURE 3 (A) Inter-reader
segmentation Dice similarity
coefficient (DSC) for 9 subjects.
(B) Inter-reader DSC by grade,
with a significant overall effect of
grade (p = 0.006). (C) Inter-
reader DSC by disc level. In B
and C, groups that do not share a
letter on the top margin have

significantly different mean DSC
(p < 0.05 by pairwise Wilcoxon
rank sum test with Holm
correction).

F IGURE 4 Validation performance from round 1 model tuning. (A) Dice similarity coefficient (DSC) (median, quartiles, and range, with outlier
points classified using Tukey's definition) including data points for each of the 8 training runs in each model version. Letters A, B, C on the top
margin of (A) show significant differences, where models that do not share a letter have significantly different mean DSC (p < 0.05, pairwise t-test
with Holm correction). (B) The leaderboard of top 20 model runs (of 80 total), ranked from highest mean DSC, shows which model versions occur

in the best 20 runs.
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3 | RESULTS

3.1 | Human performance assessment

Inter-reader segmentation similarity metrics for 9 subjects are shown

in Figure 3. The inter-reader DSC was 0.927 ± 0.024, with a range

from 0.876 to 0.955 for full spines (Figure 3A). Inter-reader DSC was

lower for more degenerated discs (Figure 3B), meaning those segmen-

tations were less reliable. There was no significant effect of disc level

on inter-reader DSC (Figure 3C).

3.2 | Round 1 tuning

Runs of the baseline model (Model 1, Table 2), with no image prepro-

cessing, had poor performance, with a mean DSC ≈ 0.5 on the valida-

tion set (Figure 4A). The linear mixed model indicated that the image

preprocessing method had a significant effect on model performance

(p < 0.001) but that the number of model parameters had negligible

effect (p = 0.6). Post-hoc pairwise model comparisons indicated that

all models for which blank MRI slices were removed from the training

data set (“Deleted Blanks”) had significantly greater DSC on the vali-

dation set than the baseline model (Figure 4A). Either form of contrast

adjustment (“Stretched Contrast” or “Augmentation”) further

improved validation DSC (Figure 4A). The leaderboard shows model

versions of DSC of the best 20 runs and consisted solely of models

with contrast adjustment (Figure 4B). Model 6 (DSC = 0.918

± 0.020), with 75% parameters and contrast stretching, was chosen to

carry forward to round 2 tuning on the basis that (a) addition of syn-

thetic training images through augmentation increased training time

with no benefit and (b) use of an intermediate number of parameters

minimizes risk of under and over-fitting.

3.3 | Round 2 tuning

Round 2 used model 6 from round 1 (Table 2; Figure 4) as a starting

point for further adjustments targeted at regularization-related

hyperparameters used during training and increasing the receptive

field of the model's filters through use of dilated convolution

(Table 3). Without postprocessing, all round 2 model versions,

including the baseline, had median DSC above 0.90 (Figure 5A). The

linear mixed model indicated that model version had a significant

effect (p = 0.007), but no post-hoc pairwise comparison was signifi-

cant. The increased dropout rate model had the best individual run

and contributed 5 of the top 10 runs (Figure 5C), even though it

had a lower mean validation DSC (0.916 ± 0.025) than the baseline

model (0.918 ± 0.020) (Figure 5A).

Applying orphan removal as a postprocessing step slightly

improved performance, with the increased dropout model's DSC

increasing the most (0.011 ± 0.005 across runs) and the batch normal-

ization model's DSC increasing the least (0.003 ± 0.003 across runs).

The increased dropout rate model consequently had significantly

greater mean validation DSC across runs, 0.920 ± 0.018, than the

other models (p < 0.001) (Figure 5B). It also had the best individual

run performance (Figure 5D), with a mean DSC = 0.935 ± 0.014

F IGURE 5 Validation Dice similarity coefficient (DSC) from round 2 model tuning. (A) DSC from each model version without postprocessing
including data points for each of the 8 training runs in each model version. (B) DSC for each model version with orphan removal. The box plots in
A & B show median, quartiles, and range, with outlier points classified using Tukey's definition. Letters on the top margin of A & B show pairwise
significant differences, where models that do not share a letter have significantly different mean DSC (p < 0.05, pairwise t-test with Holm
correction). The leaderboard of top 10 model runs (of 36 total), ranked from highest mean DSC, shows which model versions occur in the best
10 runs for (C) without postprocessing, and (D) with orphan removal.

MARKHALI ET AL. 7 of 12



across subjects. The increased dropout rate model was therefore

selected as the final model, and its best run (best specific set of

trained parameter values) was subsequently examined for perfor-

mance variation with respect to disc level and degeneration grade.

Segmentations from this run are shown in Figure 6.

3.4 | U-net performance by disc level and
degeneration grade

To test the hypotheses that the U-Net model was sensitive to disc

level and degeneration grade, the final model's best run was evaluated

F IGURE 6 Validation set segmentations from the best run of the increased dropout rate model version, with orphan removal postprocessing.
Yellow = correct label, green = false negative, red = false positive.

F IGURE 7 Performance
(mean and standard deviation) of
the final U-Net model on the
expanded 16-subject validation
set including grade V discs by
(A) disc level and
(B) degeneration grade.
Degeneration grade had
significant overall effects on both
dice similarity coefficient (DSC)
and volume ratio. Letters A, B on
the top margin of (B) show
significant differences, where
models that do not share a letter
have significantly different mean
DSC or volume ratio (p < 0.05).
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using an expanded validation set with eight additional subjects that

contained at least one grade V disc. Disc level had no statistically sig-

nificant effect on DSC or volume ratio (0.05 < p < 0.1; Figure 7A). L5–

S1 discs had noticeably greater variance, as expected given they are

the most variably sized and shaped lumbar disc. Disc degeneration

had a significant overall effect on both DSC (p < 1 � 10�8) and vol-

ume ratio (p < 1 � 10�6) (Figure 7B), with grade V discs having smal-

ler DSC and volume ratio. Therefore, the U-Net model has similar

performance for grades I–IV, but a major performance loss in the form

of under-segmentation for grade V discs.

4 | DISCUSSION

4.1 | Summary

Automatic segmentation of disc volumes from T1-weighted FLASH

MRIs was achieved in this study with a U-Net CNN trained on a

small-to-medium size dataset. The model was developed in two

rounds of tuning by comparison between multiple candidate models.

Performance of the final model, with a mean validation DSC = 0.935

for degeneration grades I–IV, was similar to that of human readers,

mean DSC = 0.927. Compared with the baseline model at the begin-

ning of round 1, the best model had fewer filters/parameters (75%),

was trained using only slices with at least one disc-labeled pixel,

applied contrast stretching to its input images, and used a greater

dropout rate. Postprocessing of the output segmentations by removal

groups of voxels disconnected from the largest connected component

(orphan removal) was also beneficial. The U-Net CNN did not general-

ize well to grade V discs, with highly variable segmentation quality,

reflecting the challenge of developing automatic procedures that are

robust to the collapsed and irregular disc shape that characterizes

severe disc degeneration.

4.2 | Training dataset and comparison to
prior work

The size and quality of the training set influence the accuracy of a

CNN model. The dataset used in this study for model development

consisted of 43 subjects split into a 27-subject training set and an

8-subject validation set, with an additional 8 subjects added to the

validation set for evaluation of the final model. This is larger than

the 27- and 12-subject datasets used in prior CNN-based 3D segmen-

tation of discs from T1w MRI.1,7 Importantly, in the present work we

quantified the accuracy of the manual segmentations used in our

training set, with mean inter-reader DSC = 0.927 ± 0.024 (Figure 3A),

a typical level of quality for a “ground truth.”24–27 Across all candidate
models, performance saturated at DSC ≈ 0.93, equivalent to the

intrinsic accuracy of the training set. Models with good performance

in prior work also have DSCs clustered in the range 0.92–0.94.3,4,12,28

It is likely that the accuracy of manual segmentation, and thus valida-

tion set accuracy, limits the field's ability to detect any improvements

in model performance beyond this level. The one study with a greater

reported DSC (0.96) invested more resources in manual segmentation

than is typical, using a detailed formal segmentation procedure and

requiring consensus between two orthopedic residents and a spine

surgeon.5 This intensive cross-checking was presumably feasible

because those segmentations were not fully 3D, with only three MRI

slices labeled per subject. Measurement of CNN model performance

beyond the DSC = 0.92–0.94 level may require significantly greater

investment in preparation of validation data (e.g., multiple segmenters)

or use of different evaluation methods (e.g., paired high and low con-

trast/resolution MRIs).

4.3 | Segmentation quality and degeneration grade

The present study examined how CNN segmentation accuracy chan-

ged with disc degeneration, which has not been previously reported.

Greater disc degeneration was associated with decreases in both man-

ual and automatic segmentation accuracy. The decrease in DSC was

slight (�0.05) for grade IV but severe for grade V (Figures 3 and 7).

The inability of the CNN to accurately segment grade V discs is not

particularly surprising. These discs are often collapsed, fragmented, cal-

cified, or have other abnormalities that introduce ambiguity regarding

what should be considered disc, bone, or non-disc soft tissue. They are

also relatively rare, limiting the number of training examples. This issue

extends to application areas that would use automatic 3D segmenta-

tion such as finite element modeling, in which it is typical to exclude

abnormal disc shapes associated with severe degeneration.29–32

4.4 | Interpretation of performance differences
between models

The main improvements in U-Net model performance compared with

baseline were due to (1) deleting slices with blank segmentations from

the training set, (2) stretching image contrast, and (3) increasing drop-

out in combination with orphan removal in postprocessing. Each MRI

had 3–6 slices to the left or right of the spine, which are “blank” in

the sense that they contain no disc voxels. Deleting these blank slices

may have helped by reducing the potential class imbalance in each

batch (the tested batch sizes were between 6 and 14, and an MRI

may have up to 5 slices on its left and right with no discs visible). Class

imbalance tends to distort the cost function gradient. The form of

contrast stretching used here is sometimes called winsorization, and is

sometimes used in image registration to suppress intensity

outliers33–36; here, it may serve to normalize image intensity. Increas-

ing dropout is interesting because it was slightly detrimental when

used alone, and only beneficial in combination with orphan removal.

Dropout may have forced the CNN to learn more robust features as

intended, but also decreased its ability to encode large-scale features

that indicate where the disc can be located.

Other changes to the model had no significant effect. Decreas-

ing the number of parameters very slightly improved performance,

but not to a statistically significant degree. This suggests the CNN

is close to optimal complexity. The use of batch normalization did
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not have a significant effect, which has been reported previously for

U-Net models.37,38 Use of dilated convolution was intended to

expand the image area accessed by each convolution operation,

which was previously reported to be beneficial.23,39 Here, it had no

detectable benefit, possibly because the disc is a relatively simple

structure and, at MRI resolution, two successive 3 � 3 convolutions

(each 1.5 � 1.5 mm) are sufficient to capture all informative local

features.

4.5 | Model availability for scientific use

The final trained model is available in the supplemental information of

this article to support scientific use. It should be noted that this model

may not necessarily generalize, in that images with different proper-

ties than the training set used in this study may not be accurately

assessed by the model. For example, this study used T1-weighted

MRI to achieve contrast between the disc and the vertebral body,

whereas many studies use T2-weighted MRI. To use this model, it

may be necessary to fine-tune it, using the existing weights of the cur-

rent model as a starting point for continued training on new data.

Often, a model can be fine-tuned to a specific application with little

additional training data.40–42

4.6 | Conclusion

The study successfully trained a U-Net model for automatic slice-wise

segmentation of 3D disc volumes in a population with a wide range of

age and disc degeneration and measured a small decrease in segmen-

tation accuracy at grade IV and a large decrease in accuracy at grade

V for both manual segmentation and the U-Net. This trained model is

publicly available for use in routine disc segmentation. This decrease

in accuracy with advanced degeneration is an important finding for

applications of the U-Net model.
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APPENDIX A: Similarity Metrics

In this study, the similarity between two segmentation masks was

described by two volumetric similarity metrics: Dice Similarity Coeffi-

cient (DSC) and Volume Ratio. These metrics are calculated from the

true positive (TP), false positive (FP), and false negative (FN) rates and

related to the commonly-used Precision and Recall metrics as follows:
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DSC¼ 2TP
2TPþFPþFN

¼2�Pre�Rec
PreþRec

Precision¼ TP
TPþFP

,

Recall¼ TP
TPþFN

,

Volume ratio¼ TPþFP
TPþFN

¼Rec
Pre

:

8>>>>>>>>>><
>>>>>>>>>>:

Multiple metrics are useful because DSC is symmetric with

respect to the two input images, and does not detect a systemic ten-

dency for over- or under-segmentation with respect to a ground truth

image. Figure A1 illustrates how other similarity metrics provide addi-

tional information in such cases.

F IGURE A1 A schematic example illustrates situations where different predictions can yield the same DSC (blue is the example ground truth
and yellow is the example prediction). It is useful to report at least one metric in addition to DSC to detect bias towards over- or under-
segmentation.
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