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Abstract

Turtle body size is associated with demographic and other traits like mating success, repro-

ductive output, maturity, and survival. As such, growth analyses are valuable for testing life

history theory, demographic modeling, and conservation planning. Two important but unset-

tled research areas relate to growth after maturity and growth rate variation. If individuals

exhibit indeterminate growth after maturity, older adults may have an advantage in fecun-

dity, survival, or both over younger/smaller adults. Similarly, depending on how growth var-

ies, a portion of the population may mature earlier, grow larger, or both. We used 23-years

of capture-mark-recapture data to study growth and maturity in the Spotted Turtle (Clemmys

guttata), a species suffering severe population declines and for which demographic data are

needed for development of effective conservation and management strategies. There was

strong support for models incorporating sex as a factor, with the interval growth model repar-

ametrized for capture-mark-recapture data producing later mean maturation estimates than

the age-based growth model. We found most individuals (94%) continued growing after

maturity, but the instantaneous relative annual plastral growth rate was low. We recommend

future studies examine the possible contribution of such slow, continued adult growth to

fecundity and survival. Even seemingly negligible amounts of annual adult growth can have

demographic consequences affecting the population vital rates for long-lived species.

Introduction

Studies of life-history traits are increasingly recognized for their importance regarding species

conservation, especially for turtles and tortoises [1,2]. Body size is positively correlated with

sexual maturity, reproductive output, and survival [3], so growth patterns play a key role in

determining population demography. For instance, slow growing individuals will have lower

lifetime reproductive output if they mature later than fast growers yet have the same lifespan,
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reducing their contribution to population growth. Similarly, slow growers stay smaller for lon-

ger as juveniles and/or may mature at smaller sizes, potentially increasing mortality risk from

predation. Freshwater turtles are model organisms for studying growth as they can be individ-

ually identified with near-permanent markings, plastral scute growth rings allow for age esti-

mation, and their hard shell is easily measured and does not typically fluctuate in size [4,5].

Yet, due to their long lifespan and delayed maturity, it often takes decades of fieldwork to

examine growth patterns; thus, turtle growth remains an area of research with many unan-

swered questions [6].

An unsettled research area relates to indeterminate growth, which has often been assumed

to be the norm for ectothermic vertebrates [7,8]. However, recent studies have shown the situ-

ation is more complicated, with snakes, lizards, and crocodilians exhibiting determinate

growth patterns [9,10]. The case for turtles is less clear. Congdon et al. [11] found an average

of 19% of individuals across nine freshwater turtle species that stopped growing after maturity,

with populations consisting of a range between determinate and indeterminate growers.

When individuals continue growing as adults, survival and fecundity are expected to increase

because of their link to body size [12]. Even seemingly negligible growth after maturity [4] can

significantly change vital rates in turtle populations [13]. Consequently, determining what pro-

portion of turtles in a population exhibit indeterminate growth can expand our understanding

of variation in life-history patterns and improve demographic models.

Individual growth models have been widely used for freshwater turtles [e.g., 14–17] but

often without consideration for which model best reflects the growth trajectory present in

data. The commonly used von Bertalanffy equation shows a steady exponential decline in

growth rate towards asymptotic size, whereas others like the Gompertz and logistic equations

produce sigmoidal growth curves [18]. The various growth models can be compared in an

information-theoretic framework to identify which is most parsimonious [19], though such

methods have only recently been used [e.g., 20,21]. Also, considering sexual variation in

growth is a common feature of many species [7,22–24], sex must also be incorporated into

models, otherwise important demographic implications are easily overlooked.

The Spotted Turtle (Clemmys guttata) is a small freshwater turtle assessed as Endangered

by the IUCN [25]. It is distributed across wetlands in the Great Lakes region and along the

Atlantic coast of North America. Over the past several decades, the species has experienced

severe population declines [26–28], and demographic models are increasingly being used to

assess Spotted Turtle population status and inform conservation [29–32]. Such models require

estimates of demographic parameters such as age of maturity. Additionally, reproductive out-

put increases with body size [33]; thus, growth analyses can help identify patterns of fecundity

and recruitment. Though several growth studies have focused on Spotted Turtles [5,34,35],

questions remain about age of maturity, growth rate variation, and whether determinate or

indeterminate growth patterns are typical for the species.

We used a historical dataset from a 23-year capture-mark-recapture study (see [36]) on a

Spotted Turtle population in southeast Pennsylvania to examine growth and maturity. Specifi-

cally, we sought to identify the population’s overall growth pattern, determine if and how sex

affected trajectories, and assess generated growth curves’ estimated ages of sexual maturity

given a known minimum size of maturity. If growth varies by sex, size of sexual maturity will

be reached at different ages for males and females. We also compared interval and age-specific

growth models to determine if they provide comparable results, and in effect, validate or inval-

idate age estimation from plastral scute growth rings, which can be unreliable due to observer

error and turtles developing more than one ring per year [37]. Lastly, we investigated whether

growth among the adult portion of the population showed an indeterminate, determinate, or

mixed pattern because if turtles continue growing as adults, there could be a fecundity or
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survival advantage for the oldest individuals when such demographic traits are linked to body

size.

Materials and methods

Study site and data collection

Data were collected annually from 1965 to 1988 as part of a long-term study in Lancaster

County, Pennsylvania [33]. The site consists of 25 acres of privately-owned woodland and

marsh surrounding an impoundment of a tributary to the Susquehanna River (see [36] for

additional details). Turtles were captured by hand and with dipnets and individually marked

following Cagle [38], whereby rectangular notches are cut into marginal scutes and numbered

anteriorly to posteriorly. Most fieldwork was conducted March–June (903 of 1,004 total cap-

tures) when Spotted Turtles are active and before the wetlands dried during mid-summer.

Over 23 years, there were 1,004 captures of 425 individuals, with 178 individuals recaptured at

least once. Of the 178 recaptured individuals, 161 had at least 30 days between captures and

were used for interval growth models. Upon capture, date, time, sex, age, and morphometrics

were recorded. Sex was determined based on the characteristics described in Ernst and Lovich

[39], including plastron concavity, chin and eye coloration, tail thickness, and tail length.

Straight-line plastron length (PL) was measured to the nearest 0.1 mm with dial calipers. We

counted the number of discernible pectoral scute annuli following Sexton [40] to estimate age

for age-specific growth modeling. After collecting data, turtles were released at the site of cap-

ture. Data collection took place before requiring Institutional Animal Care and Use Commit-

tee protocols for field studies. Permits were provided to CHE by the Pennsylvania Fish and

Boat Commission.

Growth model selection

We used an information-theoretic approach to select among the von Bertalanffy, Gompertz,

and logistic growth equations reparametrized as interval models [41] with the days between

capture occasions (Table 1). Ordinary least squares nonlinear regression analyses were con-

ducted in R version 3.6.2 [42]. We used only the first and last capture of each turtle and

removed all capture intervals <30 days, resulting in a dataset of 161 individuals (96 females

and 65 males; S1 Table). To determine the best model for the pooled dataset, we followed

Dodd and Dreslik [43] by evaluating models with AICC [44]. The effect of sex was assessed by

coding with binary variables. For sex variable 1 (Sm), we gave males a "1" and females a "0,"

whereas for sex variable 2 (Sf), we gave males a "0" and females a "1". We then replaced each

Table 1. Equations for age-specific and interval models of individual growth used in the study. Parameters are t–age (in years or days), PLt−size at age t, k–characteris-

tic growth rate coefficient, A1−asymptotic size, b–proportion of growth remaining toward A1 at t0, e is the base of the natural logarithms, PLC is the size at t1, PLR is the

size at t2, and Δt is the time interval (t2 –t1).

Model von Bertalanffy [41,45] Logistic [46,47] Gompertz [43,48]

Age-Specific PLt ¼ A1ð1 � be� ktÞ PLt ¼
A1

ð1þbe� kt Þ PLt ¼ A1e� be� kt

Interval PLR ¼ A1 � ðA1 � PLCÞe� kDt PLR ¼
A1PLC

ðPLCþðA1� PLC Þe� kDt Þ PLR ¼ A1
PLC
A1

� �e� kDt

Age Estimate

t ¼ �
ln A1� PLt

A1b

� �
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ln
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� �

b

0

@

1

A

k t ¼ �

ln �

ln PLt=A1

� �

b

0

@

1

A

k

Velocity A1be� ktk A1be� kt k
ð1þbe� kt Þ2

� A1b� bk� e� bk t

https://doi.org/10.1371/journal.pone.0259978.t001
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parameter with its sex-specific component, for example, replacing asymptotic size A1 with

(SmAm + SfAf). Thus, when considering only males, the component SfAf reduces to zero, as

does SmAm when considering only females. We then plotted the most parsimonious model(s)

for comparisons of growth up to age 40 and the mean hatchling PL for the population (25.6

mm, serror = 0.063, n = 79).

Predicted ages of sexual maturity

We inferred the ages of sexual maturity from growth models using a minimum size at maturity

of 80 mm PL, previously determined from field observations and gametogenic data for the

population [33,34,49]. Solving models for age at PL = 80 mm, we calculated the range of ages

at maturity predicted by the growth function using the estimated parameters for the best-fit

model and their respective 95% confidence intervals. We then assessed how long it took turtles

to reach this minimum size threshold. Finally, we compared estimates from the growth models

of age at maturity to others reported in the literature for the population at our study site

[33,49,50].

Interval versus age-specific models

We used a Kolmogorov-Smirnov Cumulative Probability Test [51] to determine if the propor-

tional growth toward A1 differed between interval and age-specific growth models. We also

repeated all the above analyses and estimations using the age-specific models for comparison

with interval models. We used the age at initial capture of an individual for the age-specific

models because using all captures introduces pseudoreplication. The age-specific dataset con-

sisted of 79 males and 132 females. Before running age-specific models, we calibrated the ages

of turtles to an estimated date of nest emergence. With growth ring counts, age estimates are

assumed to comprise a whole year, meaning a turtle with nine rings would be nine years old

but, in fact, could be 8.5–9.5 years old, thus adding variation. We used 1 September as our esti-

mated emergence date. We chose the date because the majority (estimated up to 79%) of Spot-

ted Turtles at the study site emerged from nests between August and October. Using this

assumption, a turtle aged at one and captured on 1 October is estimated to be 1.08 ((365+30)/

365) years old, and a turtle captured on 1 August is 0.92 ((365–31)/365) years old. We then

parameterized the age-specific growth model for sex the same as the best-fit interval model

and compared results.

Indeterminate or determinate growth

To determine if turtles showed indeterminate or determinate growth, we focused on a subset

of adults (n = 100). First, we parsed the data, retaining only turtles with a PL at first capture

>80 mm and a time between captures >365 days. Negative growth assumed to be measure-

ment error was set to zero, leaving a final dataset of 40 males and 60 females. We then calcu-

lated the relative annual instantaneous growth rates using a modification of Brody’s formula

[52]:

DGR ¼
lnPLR � lnPLC

ðt2 � t1Þ=365

where ln is the natural logarithm, PLC is size at first capture, PLR is size at last capture, and (t2–

t1) is time between first and last capture in days. ΔGR is the instantaneous relative rate of

annual plastral growth. Finally, we created a histogram of the ΔGR and calculated the percent

of individuals showing growth (indeterminate) and no growth (determinate).
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Results

Model selection

We found clear support for growth models incorporating sex as a factor, with the sex-based

von Bertalanffy best fitting the data (Table 2; Fig 1). The asymptotic size (A1) estimate of plas-

tron length for males was 95.3 mm (95% C.I. 92.5–99.7 mm) and for females 96.5 mm (95% C.

I. 95.3–97.8 mm). The characteristic growth rate (k) of males was 0.082 yr-1 (95% C.I. 0.048–

0.123) and for females 0.155 yr-1 (95% C.I. 0.128–0.189). The greater estimate of k for females

was reflected in a faster growth velocity (Fig 2).

Ages of sexual maturity

Using the rearrangement of the growth models (Table 1) and the parameter estimated from

the best fit model, we produced the range of ages when individuals could reach 80 mm PL

(Table 3; Fig 1). On average, the interval model showed males maturing in 18.58 years and

females in 9.37 years, and the age-based model showed males maturing in 7.36 years and

females in 7.71 years (Table 3). The uncertainty in male growth trajectories from the interval

model translated into a broader range of ages of sexual maturity compared to females

(Table 3). Of note, the upper confidence interval for males from the interval model (33.87

years) may not be biologically realistic (Table 3; Fig 1).

Interval versus age-specific growth curves

Interval and age-specific growth models depicted the same cumulative probability structure of

growth toward their respective A1 for females (Dmax = 0.286, Dcrit = 0.294, p = 0.365), but not

for males (Dmax = 0.667, Dcrit = 0.294, p< 0.001). For both sexes, estimates of A1 were lower

and estimates of k were greater for the age-specific model compared to the interval model

(Table 3; Fig 1). Additionally, the age-specific model did not capture the largest turtles in the

population because we used only the individual’s first age estimated, not subsequent recap-

tures. Consequently, the confidence intervals for the estimates of A1 in the age-specific curve

do not bound the upper limits of observed values; four males grew larger than 92.55 mm PL

and two females grew larger than 96.01 mm PL. Lastly, there was greater certainty in age esti-

mates from the age-specific model when compared to the interval model (Fig 1; Table 3).

Indeterminate or determinate growth

Nearly all (94 of 100) individuals showed some level of plastral growth after attaining maturity.

However, most (58 of 100) had an instantaneous annual relative growth rate< 0.005, meaning

the plastron length of over half of individuals increased by < 0.5% of their plastron length

Table 2. Adjusted Akaike Information Criterion (AICc) results of nonlinear regression fitting for Spotted Turtle

(Clemmys guttata) growth equations and their sex-specific counterparts. The candidate models are sorted by

ΔAICc where K = number of parameters and wi = Akaike weight.

Model K AICc ΔAICc wi

von Bertalanffy-Sex 5 799.10 0.00 0.97

Gompertz-Sex 5 806.08 6.98 0.03

Logistic-Sex 5 813.39 14.29 0.00

von Bertalanffy 3 830.16 31.07 0.00

Gompertz 3 839.19 40.09 0.00

Logistic 3 848.34 49.24 0.00

https://doi.org/10.1371/journal.pone.0259978.t002
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annually. Only 15 individuals increased by > 1% of their plastron length annually.

Instantaneous relative growth rates were zero for only 6 individuals (3 males and 3 females)

(Fig 3).

Fig 1. Growth curves for male and female Spotted Turtles (Clemmys guttata) from interval and age-based von Bertalanffy growth models. The horizontal

lines represent the size of sexual maturity for the population previously determined from field observations and gametogenic data, and the vertical drop lines

represent where the specific growth trajectory and its 95% confidence intervals intersect the age of sexual maturity.

https://doi.org/10.1371/journal.pone.0259978.g001
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Discussion

The most parsimonious model of growth included the effect of sex, showing males and females

differ in mean growth trajectories. Litzgus and Brooks [5] studied an Ontario Spotted Turtle

population and did not find a difference in growth between sexes. Such results hint at the

Fig 2. Velocity of Spotted Turtle (Clemmys guttata) growth. The figure was generated using the interval von Bertalanffy

growth model parameterized to include the effect of sex. Males are the dotted line and females are the solid line.

https://doi.org/10.1371/journal.pone.0259978.g002

Table 3. Parameter estimates, 95% confidence intervals (C.I.), and age estimates of sexual maturity for the Spotted Turtle (Clemmys gutatta) from interval and age-

based von Bertalanffy growth models. Parameters are A1 = asymptotic size in mm, k = characteristic growth rate coefficient, Age = age at maturity in years.

Model A1 95% C.I. k 95% C.I. Age 95% C.I.

Interval Male 95.34 92.51 100.27 0.082 0.050 0.128 18.58 10.90 33.87

Interval Female 96.45 95.27 97.85 0.156 0.130 0.188 9.37 7.37 11.82

Age Male 89.92 87.46 92.55 0.254 0.218 0.297 7.36 5.64 9.70

Age Female 93.63 91.33 96.01 0.209 0.189 0.228 7.71 6.49 9.31

https://doi.org/10.1371/journal.pone.0259978.t003
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potential advantages of accounting for sex in a single model, thus identifying subtle but impor-

tant patterns and defining potential clinal or geographic variation. At the same time, we were

unable to account for additional factors influencing turtle growth (e.g., seasonality, environ-

mental conditions, etc.), so our model may overestimate the effect of sex. Considering environ-

mental factors such as temperature, length of growing season, and food availability all affect

turtle growth [53–55], the dissimilar growth patterns reported between the Ontario and Penn-

sylvania populations are likely a result of unknown clinal, seasonal, or environmental variation

which should be the focus of future research.

Using growth curves from the interval model, we predicted females reach the minimum

size of sexual maturity in ~ 7–12 yrs, which is in line with prior behavioral observations of

reproduction in Spotted Turtles at the study site [33,34,49]. Interestingly, the interval model

showed males maturing in ~ 11–34 yrs, the upper bounds of which may be unrealistic. One

explanation is if males with the slowest growth suffer mortality before attaining maturity and

drop out of the population, their slowed growth will result in a prediction of age at maturity

which is never biologically realized. Additional data on the slowest growing males would be

needed to refine estimates. At the same time, interval and age-specific growth curves provided

statistically identical mean estimates of growth for females but not for males. Thus, the interval

Fig 3. Histogram of Spotted Turtle (Clemmys guttata) instantaneous relative plastral growth rates (ΔGR). ΔGR was calculated from individuals with a

plastron length> 80 mm and a capture interval greater than one year.

https://doi.org/10.1371/journal.pone.0259978.g003
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model simply may not have sufficient male data despite 23 yrs of capture-mark-recapture field-

work. Considering estimating age from growth ring counts can be unreliable unless the num-

ber of growth rings are first calibrated to known-age individuals [56,57], and older turtles’

plastrons often become smooth and without visible rings due to wear [58], it is also possible

the age-based model for males differs from the interval model due to annuli count error.

When sufficient data is available, using a mixed-effects approach to better account for individ-

ual variation in growth models [e.g., 13,59] could lead to improved predictions.

After maturing, most Spotted Turtles continued growing slowly. Congdon et al. [11]

assessed 13 populations of nine freshwater turtle species and found 19% of individuals on aver-

age ceased growing after maturity. In our study, only 6% of adult Spotted Turtles exhibited

determinate growth in the strictest sense, although the growth rate was extremely low for most

others (more than half of individuals increased < 0.5% of their plastron length annually).

However, both our study and [11] may be biased towards indeterminate growth because small

decreases in body size were set to zero [59].

Slow adult growth may be considered a type of determinate growth when small increases in

size after maturity are established by environmental or genetic factors early on [60,61].

Extreme longevity in some turtle species coupled with seemingly trivial annual increases in

growth can impact demography and fitness through an incremental attainment of larger size.

The magnitude of the effects depends on the strength of the fecundity and survival advantage

offered from increased body size [62], and the total increase in size achievable. In Common

Snapping Turtles (Chelydra serpentina), slight growth following maturity resulted in increased

survival and reproductive output [13]. Spotted Turtles at our study site have a weak but posi-

tive body-size clutch-size relationship [33], so there could be a slight fecundity advantage for

the females that continue growing as adults. Also, older females continuing to grow as adults

may have an advantage in egg size because larger female Spotted Turtles produce wider eggs

[62].

For future turtle growth analyses, we recommend a two-step approach. First, the shape of

the growth curve should be determined by comparing candidate models in an AIC framework

[43,63,64]. Second, the most parsimonious model should be parameterized to account for sex

or other factors potentially influencing growth patterns. In the present study, we incorporated

sex, but depending on the research objectives, other factors could include population location,

fall versus spring nest emergence, or year-cohort to account for annual environmental varia-

tion. The method would also be useful for modeling turtle growth in situations using head-

starting, where there may be different growth patterns between captive-raised and wild turtles

[65,66]. Integrated approaches to modeling growth incorporating skeletochronology and

mixed effects to better account for individual variation are also well-suited [e.g., 20,59]. Future

research on Spotted Turtles should examine how or if slow growth after maturity impacts pop-

ulation vital rates, thereby affecting demography through a fecundity or survival advantage

offered to larger/older animals. It is also important to identify the environmental and genetic

factors contributing to growth rate variation unaccounted for by sex.

Supporting information

S1 Table. Capture-mark-recapture data. Abbreviations are: Sex–F = Female, M = Male,

Stage–A = Adult, J = Juvenile, DOCap = Date of Capture, DORec = Date of Recapture, PL1

and PL2 = Plastral Length in mm at DOCap and DORec, Age1 and Age2 = Estimated age at

DOCap and DORec, INT = interval between captures in days, ΔPL = change in plastral length,

ΔAge = change in age, ΔGR = instantaneous growth rate.
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23. Bulté G, Blouin-Demers G. Does sexual bimaturation affect the cost of growth and the operational sex

ratio in an extremely size-dimorphic reptile. Ecoscience. 2009; 16(2):175–82.

24. Lovich JE, Gibbons J. W, Agha M. Does the timing of attainment of maturity influence sexual size dimor-

phism and adult sex ration in turtles? Biol J Linn Soc. 2014; 112:142–9.

25. The IUCN Red List of Threatened Species. Version 2020–3. 2020. Available from: http://www.

iucnredlist.org.

26. Johnson KA. The decline of the Spotted Turtle, Clemmys guttata, in northeastern Illinois. Bull Chicago

Herpetol Soc. 1983; 18:37–41.

27. Lovich JE. The Spotted Turtles of Cedar Bog, Ohio: Historical analysis of a declining population. In:

Glotzhober RC, Kochman A, Schultz WT, editors. Proceedings of Cedar Bog Symposium II. Ohio His-

torical Society; 1989: 23–28.

28. Howell HJ, Legere RH, Holland DS, Seigel RA. Long-term turtle declines: protected is a verb, not an out-

come. Copeia. 2019; 107(3):493.

29. Litzgus JD, Mousseau TA. Demography of a southern population of the Spotted Turtle (Clemmys gut-

tata). Southeast Nat. 2004; 3(3):391–400.

30. Enneson JJ, Litzgus JD. Using long-term data and a stage-classified matrix to assess conservation

strategies for an endangered turtle (Clemmys guttata). Biol Conserv. 2008; 141(6):1560–8.

31. Feng CY, Mauger D, Ross JP, Dreslik MJ. Size and structure of two populations of Spotted Turtle

(Clemmys guttata) at its western range limit. Herpetol Conserv Biol. 2019; 14(3):648–58.

32. Feng CY, Ross JP, Mauger D, Dreslik MJ. A long-term demographic analysis of spotted turtles (Clem-

mys guttata) in Illinois using matrix models. Diversity. 2019; 11(12):1–23.

33. Ernst CH, Zug GR. Observations on the reproductive biology of the Spotted Turtle, Clemmys guttata, in

Southeastern Pennsylvania. J Herpetol. 1994; 28(1):99–102.

34. Ernst CH. Growth of the Spotted Turtle, Clemmys guttata. J Herpetol. 1975; 9(3):313–8.

35. Seburn DC. Population structure, growth, and age estimation of spotted turtles, Clemmys guttata, near

their northern limit: An 18-year follow-up. Can Field-Naturalist. 2003; 117(3):436–9.

36. Lovich JE, Ernst CH, Ernst EM, Riley JL. A 21-year study of seasonal and interspecific variation of

hatchling emergence in a nearctic freshwater turtle community: To overwinter or not to overwinter? Her-

petol Monogr. 2014; 28(1):93–109.

37. Howell HJ, Seigel. An examination of the accuracy of using plastral scute rings to age Spotted Turtles

(Clemmys guttata). Chelonian Conserv Biol. 2018; 17(1):104–108.

38. Cagle FR. A system of marking turtles for future identification. Copeia. 1939; 1939(9):170–3.

39. Ernst CH, Lovich JE. Turtles of the United States and Canada. 2nd ed. Baltimore, Maryland: The

Johns Hopkins University Press; 2009.

40. Sexton OJ. A method of estimating the age of Painted Turtles for use in demographic studies. Ecology.

1959; 40(4):716–8.

41. Fabens AJ. Properties and fitting of Von Bertalanffy growth curve. Growth. 1965; 29:265–89. PMID:

5865688

PLOS ONE Spotted turtle growth and maturity

PLOS ONE | https://doi.org/10.1371/journal.pone.0259978 November 18, 2021 11 / 12

https://doi.org/10.1670/12-166
http://www.ncbi.nlm.nih.gov/pubmed/32944008
http://www.iucnredlist.org
http://www.iucnredlist.org
http://www.ncbi.nlm.nih.gov/pubmed/5865688
https://doi.org/10.1371/journal.pone.0259978


42. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation

for Statistical Computing; 2019.

43. Dodd CK, Dreslik MJ. Habitat disturbances differentially affect individual growth rates in a long-lived tur-

tle. J Zool. 2008; 275(1):18–25.

44. Burnham KP, Anderson DR. Practical use of the information-theoretic approach. In: Model Selection

and Inference. New York, NY: Springer; 1998.

45. von Bertalanffy L. Quantitative laws in metabolism and growth. Q Rev Biol. 1957; 32(3):217–31. https://

doi.org/10.1086/401873 PMID: 13485376

46. Verhulst PF. Notice sur la loi que la population suit dans son accroissement. Corresp mathématique

Phys. 1838; 10:113–21.

47. Schoener TW, Schoener A. Estimating and interpreting body-size growth in some Anolis lizards.

Copeia. 1978; 1978(3):390–405.

48. Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new mode

of determining the value of life contingencies. Philos Trans R Soc London. 1825; 115:513–83.

49. Ernst CH. Reproduction in Clemmys guttata. Herpetologica. 1970; 26(2):228–32.

50. Ernst CH. Ecology of the Spotted Turtle, Clemmys guttata (Reptilia, Testudines, Testudinidae), in

Southeastern Pennsylvania. J Herpetol. 1976; 10(1):25–33.

51. Zar JH. Kolmogorov–Smirnov goodness of fit for discrete data. In: Biostatistical Analysis. Upper Saddle

River, NJ: Prentice Hall; 1996.

52. Brody S. Bioenergetics and Growth. Baltimore: Reinhold Publishing Corporation and Waverly Press;

1945. https://doi.org/10.1001/archpedi.1945.02020210049008 PMID: 21004406

53. Brown GP, Bishop CA, Brooks RJ. Growth rate, reproductive output, and temperature selection of

Snapping Turtles in habitats of different productivities. J Herpetol. 1994; 28(4):405–10.

54. Lindeman P V. Contributions toward improvement of model fit in nonlinear regression modelling of turtle

growth. Herpetologica. 1997; 53(2):179–91.

55. Rowe JW. Growth rate, body size, sexual dimorphism and morphometric variation in four populations of

Painted Turtles (Chrysemys picta bellii) from Nebraska. Am Midl Nat. 1997; 138(1):174–88.

56. Germano DJ, Bury RB. Age determination in turtles: evidence of annual deposition of scute rings. Che-

lonian Conserv Biol. 1998; 3(1):123–32.

57. Wilson DS, Tracy CR, Tracy CR. Estimating age of turtles from growth rings: a critical evaluation of the

technique. Herpetologica. 2003; 59(2):178–94.

58. Litzgus JD, Brooks RJ. Testing the validity of counts of plastral scute rings in Spotted Turtles, Clemmys

guttata. Copeia. 1998; 1998(1):222–5.

59. Omeyer LCM, Fuller WJ, Godley BJ, Snape RTE, Broderick AC. Determinate or indeterminate growth?

Revisiting the growth strategy of sea turtles. Mar Ecol Prog Ser. 2018; 596:199–211.

60. Sebens KP. The ecology of indeterminate growth in animals. Annu Rev Ecol Syst. 1987; 18:371–407.

61. Hoekstra LA, Schwartz TS, Sparkman AM, Miller DAW, Bronikowski AM. The untapped potential of rep-

tile biodiversity for understanding how and why animals age. Funct Ecol. 2020; 34(1):38–54. https://doi.

org/10.1111/1365-2435.13450 PMID: 32921868

62. Rasmussen ML, Litzgus JD. Patterns of maternal investment in Spotted Turtles (Clemmys guttata):

Implications of trade-offs, scales of analyses, and incubation substrates. Ecoscience. 2010; 17(1):47–

58.

63. Bernstein NP, Todd RG, Baloch MY, Mccollum SA, Skorczewski T, Mickael KA, et al. Morphometric

models of growth in Ornate Box Turtles (Terrapene ornata ornata) as related to growth rings. Chelonian

Conserv Biol. 2018; 17(2):197–205.

64. Edmonds D, Kuhns AR, Dreslik MJ. Eastern Box Turtle (Terrapene carolina carolina) growth and the

impacts of invasive vegetation removal. Herpetol Conserv Biol. 2020; 15(3):588–96.

65. Carstairs S, Paterson JE, Jager KL, Gasbarrini D, Mui AB, Davy CM. Population reinforcement acceler-

ates subadult recruitment rates in an endangered freshwater turtle. Anim Conserv. 2019; 22(6):589–99.

66. Tetzlaff SJ, Sperry JH, DeGregorio BA. Tradeoffs with growth and behavior for captive box turtles head-

started with environmental enrichment. Diversity. 2019; 11(3):1–12.

PLOS ONE Spotted turtle growth and maturity

PLOS ONE | https://doi.org/10.1371/journal.pone.0259978 November 18, 2021 12 / 12

https://doi.org/10.1086/401873
https://doi.org/10.1086/401873
http://www.ncbi.nlm.nih.gov/pubmed/13485376
https://doi.org/10.1001/archpedi.1945.02020210049008
http://www.ncbi.nlm.nih.gov/pubmed/21004406
https://doi.org/10.1111/1365-2435.13450
https://doi.org/10.1111/1365-2435.13450
http://www.ncbi.nlm.nih.gov/pubmed/32921868
https://doi.org/10.1371/journal.pone.0259978

