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Simple Summary: Cancer is a disease with high mortality and recurrence rates. To understand cancer
biology, it is important to accurately determine the proportion of tumor and non-tumor cells in tumor
tissues. In this study, the proportion of tumor cells in tumor tissues was predicted using miRNA
expression data that had not been sufficiently studied before. Using a random forest regression
model, the tumor purity was predicted accurately, and subsequent investigations into the association
between the informative microRNAs and tumor purity could be conducted.

Abstract: Tumor purity refers to the proportion of tumor cells in tumor tissue samples. This value
plays an important role in understanding the mechanisms of the tumor microenvironment. Although
various attempts have been made to predict tumor purity, attempts to predict tumor purity using
miRNAs are still lacking. We predicted tumor purity using miRNA expression data for 16 TCGA
tumor types using random forest regression. In addition, we identified miRNAs with high feature-
importance scores and examined the extent of the change in predictive performance using informative
miRNAs. The predictive performance obtained using only 10 miRNAs with high feature importance
was close to the result obtained using all miRNAs. Furthermore, we also found genes targeted
by miRNAs and confirmed that these genes were mainly related to immune and cancer pathways.
Therefore, we found that the miRNA expression data could predict tumor purity well, and the
results suggested the possibility that 10 miRNAs with high feature importance could be used as
potential markers to predict tumor purity and to help improve our understanding of the tumor
microenvironment.

Keywords: tumor purity; tumor microenvironment; microRNA; machine learning; random
forest regression

1. Introduction

MicroRNAs (miRNAs) are ~22-nt RNAs that regulate gene expression at the post-
transcriptional level [1] and are closely related to a variety of complex diseases [2]. Under-
standing the roles of miRNAs in complex diseases can help us to understand the molecular
mechanisms of the diseases and to detect biomarkers for diseases and their treatment
responses. However, traditional wet-lab experiments to determine the relationships be-
tween miRNAs and complex diseases are costly and time-consuming. Thus, in recent years,
many computational prediction models have been developed based on high-throughput
datasets [3].

MiRNAs are also involved in modifying multiple aspects of tumor development [4].
For example, hepatocellular carcinoma can be developed by the disruption of a feedback
loop between miR-122 and c-Myc [5]. Moreover, the role of miR-17-92 clusters is well
documented in several tumors [6,7]. In addition, miRNAs participate in remodeling the
components of tumor microenvironments [8,9]. For instance, cancer-associated fibroblasts
(CAFs) commonly found in tumor microenvironments are major components that support
tumor development, and the conversion of normal fibroblasts to CAFs can be related to
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an alteration in miRNA expression [10]. In addition, miR-31 regulates the overexpression
of the SATB2 gene in CAFs, which increases tumor cell migration and invasion [11]. In
addition, the downregulation of miR-101, targeting CXCL12, which plays an important role
in CAF, can inhibit proliferation and metastasis in lung cancer [12].

Generally, tumor cells coexist with non-cancerous cells such as immune cells, fibrob-
lasts, and blood vessels in the tumor microenvironment [13]. Recently, it has been shown
that both cancerous and non-cancerous cells play important roles in cancer biology [14].
Thus, with the increasing importance of the tumor microenvironment, it has become im-
portant to determine the ratio of cancerous to non-cancerous cells and the tumor purity in
tumor samples.

Tumor purity has previously been determined by pathologists, but with the develop-
ment of high-throughput technologies and the production of large numbers of datasets,
tumor purity has come to be estimated by computational methods. The most represen-
tative methods are ABSOLUTE [15] and ESTIMATE [16]. ABSOLUTE aims to extract the
absolute copy number of cancer cells from admixed populations of cells and estimates
tumor purity and ploidy with precomputed statistical models for recurrently observed
genomes in cancer cells. On the other hand, ESTIMATE utilizes gene expression data. This
method defines stromal-related and immune-related signature genes and infers the tumor
purity by combining the stromal and immune scores. Moreover, some recent studies have
determined tumor purity using machine learning methods. Using gene-expression data,
Koo and Rhee showed that the tumor purity could be predicted well by various machine
learning-based regression models [17], and Li et al. developed a tumor purity prediction
model based on XGBoost, a supervised machine learning method [18]. RF_purity uses
DNA methylation data based on random forest regression.

However, a tumor purity prediction method using miRNAs has not yet been de-
veloped. Because miRNAs can affect the tumor microenvironment by regulating gene
expression [9], it may be possible to estimate tumor purity using miRNA expression.
Here, we built a tumor purity prediction model based on a supervised machine learning
method using The Cancer Genome Atlas (TCGA) datasets for 17 tumor types with more
than 300 samples per type. This study aimed to measure the predictive performance of
miRNA expression and to verify the miRNAs associated with tumor purity using feature-
importance scores. Moreover, by investigating the biological roles of genes related to these
miRNAs, we investigated the potential roles of these miRNAs in the tumor and tumor
microenvironment.

2. Materials and Methods
2.1. Dataset Description for Model Construction

MicroRNA expression quantification (stem loop) was downloaded from the TCGA
Genomic Data Commons (GDC) repository UCSC Xena (https://xenabrowser.net/) [19].
From the database, tumor types with more than 300 samples per tumor type were selected,
and a total of 9062 samples across 17 human tumor types were used for the experiments
(Table 1). These datasets were represented as 1881 miRNA expression values (log2(RPM+1))
per sample.

https://xenabrowser.net/
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Table 1. Abbreviation for tumor type and the number of genomic data commons (GDC) from The
Cancer Genome Atlas (TCGA) microRNA (miRNA) expression datasets.

Tumor Type Abbreviation Number of Samples

Breast invasive carcinoma BRCA 1202
Kidney renal clear cell carcinoma KIRC 592

Uterine corpus endometrial carcinoma UCEC 575
Thyroid carcinoma THCA 573

Head and neck squamous cell carcinoma HNSC 569
Lung adenocarcinoma LUAD 564

Prostate adenocarcinoma PRAD 551
Brain lower-grade glioma LGG 530

Lung squamous cell carcinoma LUSC 523
Ovarian serous cystadenocarcinoma OV 498

Stomach adenocarcinoma * STAD 477
Colon adenocarcinoma COAD 461

Skin cutaneous melanoma SKCM 452
Bladder urothelial carcinoma BLCA 432

Liver hepatocellular carcinoma LIHC 425
Kidney renal papillary cell carcinoma KIRP 326
Cervical squamous cell carcinoma and

Endocervical adenocarcinoma CESC 312

* STAD was not used in these experiments because tumor purity information is not available for this tumor type.

Tumor purity values for the samples were obtained from the consensus measurement
of purity estimation (CPE) scores calculated by Aran et al. [20]. However, the stomach
adenocarcinoma (STAD) tumor type was excluded because there were no CPE values in
the data reported by Aran et al. Finally, after excluding samples with missing information,
16 tumor types with 7250 samples were used in our experiments.

2.2. Random Forest Regression and Optimizing Parameters

The random forest regression (RFR) algorithm was used to predict tumor purity from
the miRNA expression values. Random forest is an ensemble method of learning multiple
decision trees, a combination of tree predictors where each tree independently relies on
the values of sampled random vectors and has the same distribution for all trees in the
forest [21]. Random forest has the advantages of significantly higher accuracy, fast learning
and testing algorithms, and good generalization performance through randomization.

To learn and evaluate the models, the 7250-sample dataset was split into a training
dataset (70%) and a test dataset (30%). The parameters of the model were tuned by a
grid search with 10-fold cross-validation (GridSearchCV) using the training dataset. The
parameter values with the best performance were selected by varying the parameter values.
The final maximum depth of the trees was 20, and the number of trees was 500. The
prediction performance was evaluated using the mean square error (MSE) of the target
values (CPE), as follows:

MSE =
1
N

N

∑
i=1

( fi − yi)
2 (1)

where N is the number of samples, fi is the predicted tumor purity for sample i, and yi is
the target value for sample i. All the machine learning experiments were implemented
using the Python scikit-learn library [22].

2.3. Feature Importance of miRNAs with Random Forest Regression

The feature importance as a node-impurity reduction weighted by the probability that
each node reaches the node representing the miRNA can be calculated using the random
forest regression model. The node probability was obtained by dividing the number of
samples that reached the node by the total number of samples. To verify the relationship
between tumor purity and miRNA with high feature importance, the Pearson correlation
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coefficient (PCC) between the tumor purity and expression levels of the miRNAs with high
feature-importance scores was measured.

Eight regression models, including support vector regression (SVR), K neighbors
regression (KNR), multilayer perceptron (MLP), elastic net regression (ElasticNet), linear
regression (linear), least absolute shrinkage and selection operator (Lasso), and ridge
regression (Ridge), were used to determine whether the predicted performance with few
miRNAs was similar to those obtained using all miRNAs and to determine the extent of
changes in the model performance as the number of miRNAs with high feature importance
increased. For these models, excluding random forest regression, the optimal parameters
were obtained using a grid search with 10-fold cross-validation (GridSearchCV) and applied
to the models. The parameters selected for these models are listed in Table S1.

2.4. Target Gene Prediction for miRNA with High Feature Importance

For the target prediction of the miRNAs with high feature-importance scores, Tar-
getScan [23] and miRDB [24] were used. For miRDB, the target prediction score was 50 to
100 for all predictors, but only genes with a prediction score of 80 or higher were selected as
the real target according to the authors’ guidelines. The selected target genes were obtained
by the intersection of the prediction results of the tools TargetScan and miRDB.

2.5. Enrichment Analysis of Target Genes

Enrichr (https://maayanlab.cloud/Enrichr/) (accessed on 3 November 2021) [25] was
used to assess which Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways [26]
and biological processes of gene ontology (GO) were enriched by the target genes. The
enrichment terms with a low-adjusted p-value < 0.01 were selected as indicators using the
Benjamini–Hochberg method for correction for multiple hypothesis testing.

2.6. Validation with Independent Datasets

TCGA tumor types, which were not used for model development (the number of
samples was lower than 300), were used for the validation experiments (Table 2). The
datasets were also downloaded from the TCGA Genomic Data Commons (GDC) repository
UCSC Xena [19]. The number of samples was 1958 across 16 human tumor types. The data
were preprocessed using the same process described in Section 2.1 and fed into the random
forest model trained using the top 10 miRNAs chosen by the feature-importance scores as
a test set.

Table 2. Abbreviation for tumor type and the number of genomic data commons (GDC) in The Cancer
Genome Atlas (TCGA) microRNA (miRNA) expression datasets used in the validation experiment.

Tumor Type Abbreviation Number of Samples

Sarcoma SARC 263
Esophageal carcinoma ESCA 198

Acute myeloid leukemia LAML 188
Pheochromocytoma and Paraganglioma PCPG 187

Pancreatic adenocarcinoma PAAD 183
Rectum adenocarcinoma READ 165

Testicular germ cell tumors TGCT 156
Thymoma THYM 126

Kidney chromophobe KICH 91
Mesothelioma MESO 87

Adrenocortical carcinoma ACC 80
Uveal melanoma UVM 80

Uterine carcinosarcoma UCS 57
Lymphoid neoplasm diffuse large

B-cell lymphoma DLBC 47

Cholangiocarcinoma CHOL 45
Glioblastoma multiforme GBM 5

https://maayanlab.cloud/Enrichr/
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Moreover, to further validate our results, the miRNA expression and purity data
in Pan-Cancer Analysis of Whole Genomes (PCAWG) (specimen centric) were obtained
from UCSC Xena [19]. The PCAWG miRNA expression (UQ normalized) consisted of
1524 samples and 1864 miRNA expression values. By integrating the miRNA expression
data and the purity data based on the samples, a total of 771 samples were used in the
validation experiment.

PCAWG miRNA data were composed of mature miRNA expression, whereas the
TCGA miRNA expression involved precursor forms. Thus, the RFR model was re-trained
using the PCAWG mature miRNA expression data with the top 10 miRNAs using the
feature-importance scores by splitting them into a training set (70%) and a test set (30%);
we then evaluated the prediction performance.

3. Results
3.1. Predictive Performance of Random Forest Regression Model

Prior to predicting the tumor purity by random forest regression, a grid search with
10-fold cross-validation was performed to determine the optimal parameters. As the result
of the grid search with 10-fold cross-validation, a maximum depth of 20 trees and a number
of 500 trees were finally selected. We trained the random forest regressor using the selected
parameters and predicted the test performance using the remaining test sets. Figure 1a
presents the experimental results of the test data for the 16 tumor types, which shows that
there is a high positive correlation between the observed tumor purity values (CPE) and
the values predicted by random forest regression (PCC = 0.8626). The MSE of the random
forest regression for the test data was 0.0067. When comparing the prediction results
for each tumor type, brain lower-grade glioma (LGG) showed the best results at 0.0024,
and prostate adenocarcinoma (PRAD) was the worst at 0.0114 (Figure 1b). The random
forest regressor showed good prediction results regardless of the tumor type, although the
predictive performances were slightly different for each tumor type.
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Figure 1. Prediction results of the tumor purity using miRNA expression. (a) Scatterplots of tumor
purity values across the 16 tumor types of the test samples. The red line is the regression line. (b) Bar
plots of the test mean square error (MSE) value for each tumor type.

3.2. Identification of the Informative miRNAs with Feature Importance

Feature-importance scores were acquired from random forest regression. We exam-
ined the feature-importance scores to identify miRNAs that are important in tumor purity
estimation. Table 3 shows the top 10 miRNAs ranked by their feature-importance scores.
The miRNA with the highest feature-importance score was hsa-mir-155, which is required
for CD8(+) T-cell responses to cancer [27]. Similarly, it has been shown that hsa-mir-155
overexpression enhances the anti-tumor response [27]. The second most abundant miRNA,
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hsa-mir-4772, has been reported as a prognostic biomarker for tumor recurrence in patients
with stage II and stage III colon cancer [28]. Third, hsa-mir-142 was downregulated in hepa-
tocellular carcinoma (HCC), and its expression level decreased as the disease worsened [29].
The overexpression of hsa-mir-142 significantly suppresses HCC cell migration and in-
vasion [29]. Moreover, hsa-mir-150 also acts as a biomarker for hepatitis B virus-related
HCC [30]. The serum hsa-mir-150 expression is considerably reduced in HCC patients
compared to healthy controls [30]. In addition, hsa-miR-150 is noticeably downregulated in
advanced cutaneous T-cell lymphoma, and the downregulation of hsa-miR-150 is related to
tumor invasion and metastasis [31]. hsa-miR-223 inhibits the expression of various genes
involved in inflammation and modulates tumor malignancy [32,33]. The expression of
hsa-miR-200c and hsa-miR-200a modulates the epithelial-to-mesenchymal transition (EMT)
of various tumor types [34–36]. In particular, hsa-miR-200c has recently been shown to play
a role in interactions between tumor cells and macrophages [37]. Moreover, a recent study
showed that has-miR-200a activates the expression of PD-L1 and dysregulates anti-tumor
immunity [38]. has-miR-141 is a member of the miR-200 family, and this miRNA is located
next to hsa-miR-200c on chromosome 12. Thus, the hsa-miR-141 also has a similar role
to other miRNAs within the miR-200 family. The abnormal expression of miR-92a family
members is found in various malignant tumors such as oral squamous cell carcinoma and
acute myeloid leukemia [39,40]. miR-22 also plays a biological role in tumor angiogenesis,
EMT, proliferation, migration, invasion, etc. [41].

Table 3. Top 10 miRNAs by feature importance and Pearson correlation coefficient (PCC).

Top miRNA Feature-Importance
Score PCC

1 hsa-mir-155 0.2309 −0.6037
2 hsa-mir-4772 0.0899 −0.5834
3 hsa-mir-142 0.0575 −0.5111
4 hsa-mir-150 0.0330 −0.5744
5 hsa-mir-223 0.0225 −0.5003
6 hsa-mir-200c 0.0211 0.0398
7 hsa-mir-141 0.0159 −0.0197
8 hsa-mir-200b 0.0153 0.0048
9 hsa-mir-92a-1 0.0134 0.1800
10 hsa-mir-22 0.0120 −0.3558

Furthermore, we calculated the PCC between miRNA expression and tumor purity
(CPE). It was noted that the PCCs for the top five miRNAs were negative.

3.3. Prediction Results of Models Based on miRNA Feature Importance

To assess the significance of miRNAs with high feature-importance scores, we con-
structed eight machine learning models to predict the tumor purity using only miRNAs.
The prediction performance of the eight models was estimated by increasing the miRNA
features one by one according to the feature-importance ranking (Figure 2).

The test MSEs using only hsa-mir-155, which is the top miRNA in terms of features,
were 0.0143 (SVR) to 0.0183 (RFR) across the 16 tumor types. Although the overall per-
formance was not good in the very simple model, it improved as the number of highly
ranked miRNA features increased. Using the top 10 miRNA features, the test MSEs ranged
from 0.0070 (RFR) to 0.0099 (ElasticNet). Although the performance of RFR models using
all miRNAs (0.0067) was better than that of the models using a small number of highly
ranked miRNAs, the results showed that a small number of highly ranked miRNAs could
significantly predict the tumor purity.



Biology 2022, 11, 787 7 of 14Biology 2022, 11, x  8 of 15 
 

 

 239 

 240 
Figure 2. Bar plot test of the MSE by increasing miRNA features from the top one to the tenth using 241 
eight regression models. These are (a) random forest regression (RFR), (b) support-vector regression 242 

Figure 2. Bar plot test of the MSE by increasing miRNA features from the top one to the tenth using
eight regression models. These are (a) random forest regression (RFR), (b) support-vector regression
(SVR), (c) K neighbors regression (KNR), (d) multilayer perceptron (MLP), € linear regression (Linear),
(f) least absolute shrinkage and selection operator (Lasso), (g) elastic net regression (ElasticNet), and
(h) ridge regression (Ridge).

In addition, for each tumor type, the test MSEs using only the 10 informative miRNAs
were very similar to the prediction results obtained using all 1881 miRNAs (Figure 3). The
tumor type that showed the best performance was the same as that obtained for all miRNAs,
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and the MSE was the same at 0.0024. The worst MSE was also observed in PRAD—the
same tumor type as the result of all miRNAs. The MSE value was 0.0122. In addition, the
other tumor types showed very similar MSE values, with differences ranging from 0.0000
to 0.0017. This indicates that miRNAs with high feature-importance scores had a great
impact on tumor purity prediction, even with a small number of miRNAs.
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3.4. Enrichment Analysis of Target Genes Predicted by Top Ranked miRNAs

For the further functional validation of the miRNAs ranked by feature importance, we
obtained the target genes of miRNA predicted by miRDB version 6.0 and TargetScan version
8.0, and the target genes predicted by the two tools were intersected. A list of target genes is
presented in Tables S2 and S3. We investigated which KEGG pathways and GO terms were
enriched in the target genes. Table 4 shows the enrichment analysis using the target genes
by miRNA (has-miR-155) based on the KEGG pathways with an adjusted p-value < 0.01;
Table S4 represents the whole list of KEGG pathways with statistical significance (adjusted
p-value < 0.05). The first ranked term was the interleukin (IL)-17 signaling pathway, which
activates the mitogen-activated protein kinase (MAPK), CCAAT-enhancer-binding protein
β (C/EBPβ), and nuclear factor κB (NF-κB) pathways. This activates the transcription
of downstream target genes, including proinflammatory cytokines and chemokines [42].
Additionally, this IL-17 can act on tissue stem cells and promote the formation, growth,
and metastasis of tumors [43]. Hepatitis B with the same p-value as the IL-17 signaling
pathway was also confirmed in a previous study [44] to be closely related to hsa-mir-
155, which could be demonstrated once again through the KEGG pathway. Additionally,
the tumor necrosis factor (TNF) signaling pathway plays an important role in regulating
immune responses and inducing inflammation [45]. Other immune-related pathways were
identified, including the T-cell and B-cell receptor signaling pathways. Moreover, several
obvious cancer pathways such as pathways in cancer, colorectal cancer, and pancreatic
cancer were also highly ranked. The results suggest that has-mir-155, which ranked first
in the feature-importance scores, is apparently associated with immunity and tumors, as
we expected.
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Table 4. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched by the target genes of
miRNA top-ranked by the random forest regression’s feature-importance score (adjusted p-value < 0.01).

KEGG Pathways Adjusted p-Value

Interleukin (IL)-17 signaling pathway 0.0014
Pathways in cancer 0.0014

Hepatitis B 0.0014
T-cell receptor signaling pathway 0.0015

Tumor necrosis factor (TNF) signaling pathway 0.0021
Osteoclast differentiation 0.0043

Mitogen-activated protein kinase (MAPK) signaling pathway 0.0052
Toll-like receptor signaling pathway 0.0052

Lipid and atherosclerosis 0.0052
Pancreatic cancer 0.0053

Signaling pathways regulating pluripotency of stem cells 0.0053
B-cell receptor signaling pathway 0.0064

Colorectal cancer 0.0082

Likewise, we performed an enrichment analysis using the genes targeted by the top-
three miRNAs (hsa-mir-155, hsa-mir-4772, and hsa-mir-142) (Table S5). Similarly, the target
genes were mainly associated with immunity and cancer-related pathways, including path-
ways related to the extracellular matrix, such as the cytoskeleton and adherens junctions.
This could be because miRNAs play an important role in cell–cell interactions in tumor
microenvironments [46]. These results indicate that miRNAs can not only predict tumor
purity but also have close relationships with tumor microenvironments.

We also conducted GO analyses of the target genes. Tables S6 and S7 show the
enrichment results for the target genes of the top one and three miRNAs, respectively.
As shown in Table S6, the two top-ranked terms were the regulation of transcription,
DNA-templated (GO:0006355), and the regulation of transcription by RNA polymerase II
(GO:0006357), which are all related to the regulation of transcription. In addition, some
immune-related GO terms were verified, such as the cellular response to interleukin-6
(GO:0071354), which is a process that causes changes in the state or activity of the cell
due to IL-6 stimulation, and the IL-6-mediated signaling pathway (GO:0070102), which
is a series of molecular signals, starting with IL-6 binding to receptors on the cell surface.
Interleukin-6 supports the specific differentiation of naïve CD4+ T cells [47] and causes the
differentiation of CD8+ T cells into cytotoxic T cells [48]. Thus, IL-6 plays an important role
in connecting innate and acquired immune responses [47]. Similarly, when examining genes
targeted by the top three miRNAs, the regulation of transcription, the GO terms closely
related to the nature of cancer in which cell growth and differentiation are abnormally
regulated were found to have the lowest adjusted p-values. Moreover, several GO terms
related to the extracellular matrix, including cytoskeleton and cell migration, were also
detected (Table S7). The GO analysis again confirmed that the target genes were related to
tumors, especially the tumor microenvironment.

3.5. Validation Using Other TCGA Tumor Types and PCAWG Data

To verify the established RFR model and the significance of the top 10 miRNAs for
tumor purity prediction, we employed the miRNA expression data of the other 16 tumor
types (Table 2) not used for the model construction as a test set. Figure 4a shows the tumor
purity prediction results. The PCC between the observed tumor purity value and the
predicted value was 0.6982 (p-value = 1.60 × 10−54), and the test MSE was 0.0054. These
were similar to the previous PCC and test MSE results on 16 tumor types, whose range of
PCC in 16 tumor types was from 0.2876 to 0.8910 (median = 0.6937), while the MSE ranged
from 0.0024 to 0.0122 (Figure 3). Thus, our RFR model could also predict the tumor purity
accurately in the other 16 tumor types.
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For the further validation of the relevance of the top 10 miRNAs, we utilized the
miRNA expression data of PCAWG (Figure 4b). The RFR model was re-constructed with
the training data from PCAWG, since they were the expression levels of the mature miR-
NAs in contrast to the TCGA data, which represented miRNA stem loops. Although
the test MSE was 0.0164, a little higher than the results of the TCGA data, the PCC be-
tween the observed tumor purity value and the predicted tumor purity value was 0.7421
(p-value = 7.65 × 10−42), higher than the TCGA validation data.

4. Discussion

In this study, we constructed a random forest regression model, which is a supervised
machine learning algorithm based on regression, to predict tumor purity. We trained
it using miRNA expression profiles and confirmed that the model was trained well to
search for a low MSE value, indicating the difference between the observed and predicted
tumor purity values. The experimental results showed a positive correlation between the
predicted and observed tumor purity values, indicating the high reliability of the predicted
tumor purity value.

One of the advantages of random-forest-based models is that they provide feature-
importance scores, reflecting the importance of each feature (miRNA) in predicting tumor
purity as well as providing high predictive performance. Generally, many supervised
machine learning algorithms are regarded as black-box models, meaning that they can
perform well; however, it is difficult to explain why the results are produced. Our model
identified the top-ranked miRNAs according to the feature-importance score, and we
found that these were related to immune and cancer-related responses [27–31]. Thus, it
was validated that miRNAs selected by the feature-importance scores actually had roles
in tumor and tumor microenvironments, and, consequently, their expression could be
associated with tumor purity.

In addition, we explored whether miRNAs with high feature-importance scores could
predict tumor purity well. Our results validated that a small number of miRNAs can be
used to make accurate tumor purity predictions, and the predictive performances did not
show any apparent changes between the results for all miRNAs and the top 10 miRNAs.
Moreover, we verified the target genes of the top-ranked miRNAs, which are also strongly
associated with tumors and tumor microenvironments. Our results make the informative
miRNAs worthy of further research as biomarker candidates.
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Furthermore, through additional validation experiments, we not only showed that
our model predicts tumor purity values well, even when using independent data, but also
that the top-10 miRNAs were relevant for the tumor purity prediction. In particular, the
PCAWA represents mature miRNA expression, not stem loops. Additionally, the target
values (tumor purity) were estimated by copy-number alteration and SNVs, in contrast
to the CPE values used in our RFR model training. Despite the incompatible aspects,
the machine learning model accurately predicted the tumor purity using the miRNA
expression levels.

One limitation of this study is that not all values of the parameters for the machine
learning algorithms were tested to find the optimal parameters. In fact, testing all the
possible cases of the continuous values would be too time-consuming; thus, we tried to find
the rigorous parameter values by a grid search with cross-validation based on pre-selected
hyperparameter values, but there exists the possibility for better parameters among the
untested options.

In recent years, many computational models for miRNA–disease association predic-
tion have been developed [49–51]. For example, a computational prediction model for
miRNA–disease association, IMCMDA (Inductive Matrix Completion for MiRNA–Disease
Association prediction), identified miRNAs related to colon tumors, kidney tumors, and
lymphoma [49]. Another model based on the matrix completion, NCMCMDA (Neighbor-
hood Constraint Matrix Completion for MiRNA–Disease Association prediction), could
also uncover missing miRNA–disease associations [52]. Moreover, some studies predicted
the potential associations between miRNAs and diseases using a deep belief network [53]
and stacked autoencoder [54]. Although our model focused on the prediction of tumor
purity and the identification of important miRNAs for tumor purity prediction, in future
work, it will be necessary to develop a method of finding the direct relationships between
the miRNAs and tumor development, progression, prognosis, etc. Furthermore, with the
development of recent computational studies, the importance of non-coding RNAs (ncR-
NAs) has been uncovered. The ncRNAs interact with other molecules and make complex
biological networks, consequently affecting biological functions. The integrative analysis
with various non-coding RNAs can provide further insights into the potential roles of the
non-coding RNAs in tumors. Moreover, further studies on building biological networks,
including mRNA–miRNA–lncRNA interactions [55–60], and identifying the association
between disease and the dysregulation of these networks will help us to identify potential
biomarkers and improve our understanding of cancer biology.

5. Conclusions

In summary, we predicted tumor purity from miRNA expression data using random
forest regression and identified informative miRNAs for the tumor purity prediction. Fur-
thermore, we showed that the microRNAs had an influence on the tumor microenvironment
and could be acted as biomarkers for predicting the tumor purity. To our knowledge, no
study has predicted tumor purity using miRNA expression in the past. This study suggests
the possibility that miRNAs act as important factors in the tumor microenvironment and
could be a basis for research on the regulation of miRNAs in tumor microenvironments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology11050787/s1, Table S1: Optimal parameters using a grid
search with 10-fold cross validation (GridSearchCV); Table S2: Target genes of hsa-miR-155; Table
S3: Target genes of top three miRNAs (hsa-mir-155, hsa-mir-4772, hsa-mir-142); Table S4: KEGG
pathways enriched by the target genes of miRNA top-ranked by the random forest regression’s
feature-importance score (adjusted p-value < 0.05); Table S5: KEGG pathways enriched by the target
genes of the top three miRNAs (adjusted p-value < 0.05); Table S6: GO Biological Process enriched by
the target genes of miRNA top-ranked by the random forest regression’s feature-importance score
(adjusted p-value < 0.05); Table S7: GO Biological Process enriched by the target genes of the top three
miRNAs (adjusted p-value < 0.05).
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