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Objective: Diabetic nephropathy (DN) represents the principal cause of end-stage renal diseases worldwide, lacking effective 
therapies. Fatty acid (FA) serves as the primary energy source in the kidney and its dysregulation is frequently observed in DN. 
Nevertheless, the roles of FA metabolism in the occurrence and progression of DN have not been fully elucidated.
Methods: Three DN datasets (GSE96804/GSE30528/GSE104948) were obtained and combined. Differentially expressed FA 
metabolism-related genes were identified and subjected to DN classification using “ConsensusClusterPlus”. DN subtypes-associated 
modules were discovered by “WGCNA”, and module genes underwent functional enrichment analysis. The immune landscapes and 
potential drugs were analyzed using “CIBERSORT” and “CMAP”, respectively. Candidate diagnostic biomarkers of DN were 
screened using machine learning algorithms. A prediction model was constructed, and the performance was assessed using receiver 
operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). The online tool “Nephroseq v5” was 
conducted to reveal the clinical significance of the candidate diagnostic biomarkers in patients with DN. A DN mouse model was 
established to verify the biomarkers’ expression.
Results: According to 39 dysregulated FA metabolism-related genes, DN samples were divided into two molecular subtypes. Patients 
in Cluster B exhibited worse outcomes with a different immune landscape compared with those in Cluster A. Ten potential small- 
molecular drugs were predicted to treat DN in Cluster B. The diagnostic model based on PRKAR2B/ANXA1 was created with ideal 
predictive values in early and advanced stages of DN. The correlation analysis revealed significant association between PRKAR2B/ 
ANXA1 and clinical characteristics. The DN mouse model validated the expression patterns of PRKAR2B/ANXA1.
Conclusion: Our study provides new insights into the role of FA metabolism in the classification, immunological pathogenesis, early 
diagnosis, and precise therapy of DN.
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Introduction
With the increasing prevalence of diabetes mellitus, diabetic nephropathy (DN) represents the most common complica-
tion of diabetes.1,2 It is becoming the leading cause of end-stage renal disease worldwide, bringing a substantial 
economic burden to the public.3–5 Excessive mesangial matrix production, renal hypertrophy, and fibrosis are the typical 
pathological changes in DN.6–8 The pathogenesis of DN is complicated. Various risk factors, eg, deposition of advanced 
glycation end products (AGEs), boosting of the renin-angiotensin-aldosterone system (RAAS), and oxidative stress, are 
reported to exert critical effects on the initiation and evolution of DN.9–12 Yet, the underlying mechanisms of DN remain 
largely unrevealed. Over the past few decades, only a few medications, including RAS inhibitors, Finerenone, sodium- 
glucose co-transporter-2 (SGLT-2) inhibitors, and glucagon-like peptide 1 (GLP-1) agonists, have been available for 
reducing the incidence of DN in populations with diabetes by controlling the glucose level or arterial pressure.4,13,14 

Nonetheless, the therapeutic drug strategy directly targeting DN is still limited. In addition, due to the heterogeneity and 
complicated mechanisms of diabetes-related injuries in the kidney, the existing diagnosis and therapy of DN remain 
controversial,15,16 which are more complicated than other types of kidney diseases.17 Therefore, further exploring the 
pathogenesis is of great significance, and identifying novel biomarkers for early diagnosis, preferable classification, and 
precise treatment of DN is urgently needed.

It is well acknowledged that the kidney is an active metabolic organ and requires vast energy to maintain the 
homeostasis of the microenvironment.18–20 A growing number of studies have considered fatty acid (FA) as the primary 
energy source to support kidney functional needs.18 Dysfunction of FA metabolism could be observed in the experi-
mental DN mouse models, as indicated by excessive deposition of lipid and decreased expression of carnitine palmitoyl 
transferase 1A (CPT1A), which is a rate-limiting enzyme in the FA metabolism of the kidney.21,22 Recent studies have 
highlighted that impaired FA metabolism may play an essential role in the pathogenic procedures of multiple kidney 
injuries.18,23 Overexpression of renal CPT1A markedly ameliorates kidney injuries and fibrosis in experimental animal 
models by modulating the oxidative process of FA metabolism.24 Consistently, inhibition of FA oxidation significantly 
restores the damaged barrier function of renal vessels in DN mice.25 Moreover, fatty acid-binding protein 4 (FABP4), an 
important fatty acid transporter protein, is involved in apoptosis of mesangial cells in DN via regulating endoplasmic 
reticulum (ER) stress.26 Furthermore, previous studies have also shown that abnormal metabolism of multiple nutrients, 
including impaired FA metabolism, can alter the immune microenvironment via different pathways during the patholo-
gical processes.27 Both innate and adaptive immune responses have been recently found to participate in the pathogenesis 
of DN.28 However, the regulatory role of FA metabolism and its association with immune responses in DN have not been 
fully elucidated, and it remains undetermined whether some factors associated with FA metabolism could become 
promising biomarkers for DN diagnosis or classification.

In the present study, we further clarified the role of FA metabolism-related genes in DN by integrating multiply 
bioinformatics analysis. Patients with DN were firstly classified into two groups via clustering analysis. We then 
investigated the differences in functional enrichment and immune landscape as well as clinical outcomes between 
these clusters and also discovered candidate drugs for precise medication. Importantly, novel biomarkers (PRKAR2B 
and ANXA1) were identified and a diagnostic model for predicting DN risk was further established based on the 
dysregulated FA metabolism-related genes by two machine learning algorithms. Our study will provide new insights into 
the role of FA metabolism in the pathogenesis and the classification of DN, and the early diagnostic biomarkers and 
precise therapy for DN.

Methods
Data Processing
Microarray datasets of glomerulus tissues from patients with DN and control groups, including GSE96804, GSE30528, 
and GSE104948, were taken from the Gene Expression Omnibus (GEO) repository. The integrated DN dataset, which 
contained 57 DN and 54 control samples, was generated after the batch effect correction of these three datasets using the 
combat function of the “SVA” package29 in R software.
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Access of Fatty Acid Metabolism-Related Genes
Fatty acid (FA) metabolism-related genes were downloaded from the fatty acid metabolism process (ontology gene sets) 
in the Molecular Signatures Database (MsigDB) (https://www.gsea-msigdb.org/gsea/msigdb).

Identification of differentially expressed fatty acid metabolism-related genes
The “Limma” package30 in R software was applied to the identification of all differentially expressed genes (DEGs) (DN 
vs Control) with the cut-off values of adjusted p-value <= 0.05 and |log2 Fold Change (FC)| ≥ 0.585. Venn plot was then 
used to define differentially expressed FA metabolism-related genes by intersection of FA metabolism-related genes 
downloaded from the database and all DEGs in DN.

Molecular Typing of Fatty Acid Metabolism-Related Genes
The “ConsensusClusterPlus” package31 in R software was used for clustering analysis to identify potential subtypes of 
the DN on the basis of differentially expressed FA metabolism-related genes. The optimal k-value was selected using the 
consensus matrix (CM) and the maximum cumulative distribution function (CDF) index. The DEGs between the two 
molecular subclusters were screened out by “Limma” package with the threshold of adjusted p-value <= 0.05, |log2 FC| ≥ 
0.585.

Weighted Gene Co-Expression Network Analysis (WGCNA) and critical module 
genes determination
The “WGCNA” package32 in R software was carried out to determine key modules associated with different molecular 
subtypes of the DN samples. After obtaining the optimal soft threshold power, constructing a scale-free co-expression 
gene network, and calculating the correlation coefficient between modules and subtypes, the module-trait relationships 
were then built. Modules with highly positive correlations with different molecular subtypes were selected for further 
analysis.

Functional Enrichment Analysis
The roles of genes in different molecular subtypes were revealed by annotation of Gene Ontology (GO) and analysis of 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and p-value < 0.05 was regarded as significant.

Immune Landscape Analysis
The “CIBERSORT” package33 in R software was employed to evaluate the abundances of the infiltrated immune cells 
from the DN dataset. The Wilcoxon test was used to determine the differences in the number of 22 types of immune cells 
between controls and DN samples, together with different molecular subtypes, respectively. The correlation among 22 
types of immune cells, and the relationship between differentially expressed FA metabolism-related genes, and the 
infiltrated immune cells, were calculated using Spearman’s rank correlation coefficient. Adjusted p-value < 0.05 was 
determined to be significant.

Potential Small-Molecular Drugs Prediction
Connectivity map (CMAP)34 (https://clue.io) serves as a repository for gene expression data on the alteration of gene 
expression signatures following treatment of various small-molecular compounds, providing information for predicting 
potentially therapeutic drugs. Up-regulated key genes in Cluster B, based on the molecular subtyping of FA metabolism- 
related genes, were imported into the CMAP database to predict the potential small-molecular drugs for future 
therapeutic application. The top 10 drugs with the highest negative enrichment scores were chosen as potential 
pharmacological agents.
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Screening of Diagnostic Biomarkers and Establishment of DN Risk Prediction 
Nomogram
To screen the candidate diagnostic biomarkers, the Least Absolute Shrinkage and Selection Operator (LASSO) together 
with Support Vector Machine-Recursive Feature Elimination (SVM-RFE) algorithms were performed by the “glmnet”35 

and “e1071”36 packages in R software, respectively. The genes included in both algorithms were defined as potential 
diagnostic biomarkers for further construction of DN risk prediction model using the “rms” package37 in R software.

Evaluation for Diagnostic Efficacy of the Prediction Model
The calibration curves, decision curve analysis (DCA), and the receiver operating characteristic (ROC) curves were 
applied to evaluate the performance of the nomogram in diagnosing patients with DN. Moreover, the ROC curve was 
also conducted to assess the efficacy of the nomogram to predict the risk of an early DN stage.

Correlation Analysis of Clinical Features
The “Nephroseq v5” tool (https://nephroseq.org/) was utilized to evaluate the correlation between the expression of the 
candidate diagnostic biomarkers and clinical characteristics in patients with DN.

Establishment of an Experimental Animal Model
Six-week-old of male C57BL/6J mice were obtained from GemPharmatech Co. Ltd, China. After adaptive feeding for 
a week, mice were randomly divided into two groups and given access to a normal chow diet (NCD, 10 kcal% fat) or 
high-fat diet (HFD, 60 kcal% fat), respectively. After four weeks of NCD or HFD, the HFD mice were induced by 
streptozotocin (STZ; Sigma-Aldrich, USA) via intraperitoneal (i.p.) injection in a dose of 40 mg/kg body weight for 
seven consecutive days, whereas NCD mice were received the same volume of vehicle buffer through i.p. injection. After 
two weeks of the injection, the blood samples were obtained from the tail vein of mice and the random blood glucose 
levels were detected by an ACCU-CHEK® Performa glucometer (Roche, Manheim, Germany).38 The blood glucose 
levels more than 16.7 mmol/L were regarded as the successful establishment of an experimental diabetic animal model 
and the corresponding mice were finally used in this study. Mice were sacrificed after 11 weeks of NCD or HFD, and the 
serum and urine samples as well as kidney tissues were harvested to perform further experimental analysis. Animal 
experimental protocols gained approval from the Institutional Research Ethics Committee at the Sun Yat-sen University 
(SYSU-IACUC-2022-001575). They were carried out following the relevant guidelines and the Guide for the Care and 
Use of Laboratory Animals (NIH publications Nos. 80–23, revised 1996).

Renal Function and Histology
Serum creatinine (SCr) and urinary creatinine (UCr) were measured by using the Creatinine Assay kit (Nanjing 
Jiancheng Bioengineering Institute, Nanjing, China). Blood urea nitrogen (BUN) was detected by the Urea Nitrogen 
Content Assay Kit (Solarbio, Beijing, China). Urine albumin protein levels were determined using the Albumin assay kit 
(Nanjing Jiancheng Bioengineering Institute). Paraffin-embedded kidney tissues were sectioned (4 μm) and subjected to 
Periodic Acid-Schiff stain (PAS) and Masson’s trichrome staining. The areas of glomerular and mesangial matrix were 
quantified using ImageJ software version 1.53e (National Institutes of Health, Bethesda, USA), respectively, and the 
mesangial matrix index was obtained as the ratio of the mesangial matrix area to the glomerular area. The areas of 
collagen deposition were calculated using ImageJ software based on 10 randomly chosen high-power fields per kidney 
section.

Protein Extraction and Western Blotting (WB)
The kidney tissues were lysed in RIPA buffer (Beyotime, Shanghai, China) containing protease and phosphatase 
inhibitors. The proteins in the lysates were resolved via sodium dodecyl sulfate- polyacrylamide gel electrophoresis 
(SDS-PAGE), and transferred onto the polyvinylidene difluoride (PVDF) membranes.39 The membranes were then 
blocked by 5% skim milk at room temperature (RT) for an hour, followed by incubation of anti-PRKAR2B (28351- 
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1-AP; Proteintech, Wuhan, China; diluted 1:500), anti-ANXA1 (21990-1-AP; Proteintech; diluted 1:5000) or anti- 
GAPDH (60004-1-Ig; Proteintech; diluted 1:20000) antibodies at 4°C for 16 hours. On the second day, the membranes 
were incubated with the horseradish peroxidase (HRP)-conjugated secondary antibody (SA00001-1, SA00001-2; 
Proteintech; diluted 1:10000) at RT for an hour. Protein levels were assessed by WB Chemiluminescence Detection. 
GAPDH was used as the endogenous reference and the grey values of protein bands were quantified by ImageJ software.

Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)
RNA extraction was carried out by the Trizol reagent (ThermoFisher Scientific, Darmstadt, Germany) according to 
previous study,40 and reverse transcription was conducted with the QuantiTect Reverse Transcription Kit (Ruizhen Bio, 
Guangzhou, China). RT-qPCR was performed via the SYBR Green PCR kit (Ruizhen Bio). The 2−ΔΔCt approach was 
adopted to calculate the relative mRNA expression of PRKAR2B and ANXA1. Primers for β-actin, PRKAR2B and 
ANXA1 were as shown as followings, mouse PRKAR2B-F: 5’-CCAGTAAGGGTGTCAACTTCG-3’, mouse 
PRKAR2B-R: 5’-GGACTCTGCATCGTCTTCCTC-3’; mouse ANXA1-F: 5’-AAGCAGGCCCGTTTTCTTGAA-3’; 
mouse ANXA1-R: 5’-GCAACATCCGAGGATACATTGA-3’; mouse β-actin-F: 5’-GGCTGTATTCCCCTCCATCG 
-3’, mouse β-actin-R: 5’-CCAGTTGGTAACAATGCCATGT-3’.

Statistical Analysis
Data processing and analysis were conducted in R software (version 4.2.1). GraphPad Prism version 9.0.2 was performed 
for statistical analysis in RT-qPCR analysis, and an unpaired t-test was performed to calculate the differences between the 
two groups. Results were shown as mean ± standard deviation (SD), and p-value < 0.05 was regarded as significance.

Results
Differential Expression Analysis of FA Metabolism-Related Genes in Patients with 
Diabetic Nephropathy
The flow diagram of this present research process is performed in Figure 1. In this study, three microarray datasets were 
obtained from the GEO repository and integrated after eliminating the batch effects, finally consisting of 57 DN and 54 
control glomerular samples (Additional file: Figure S1A and B). With the threshold of adjusted p-value < 0.05 and |log2 
FC| > = 0.585, 610 differentially expressed genes (DEGs), including 219 up-regulated and 391 down-regulated genes, 
were identified and presented in the volcano plot (Additional file: Figure S1C) and the expression of partial DEGs was 
shown in the heatmap (Additional file: Figure S1D). Among them, a total of 39 FA metabolism-related genes (8 up- 
regulated and 31 down-regulated genes) were found to be dysregulated in patients with DN by overlapping genes in FA 
metabolic process with DN-associated DEGs (Additional file: Figure S1E and F).

Identification of Molecular Subtypes Based on FA Metabolism-Related Genes
Based on the 39 dysregulated FA metabolism-related genes, patients with DN were divided into two subtypes (Cluster A, n = 31 
and Cluster B, n = 26) using the “Consensus Cluster Plus” package, as k = 2 was found to be comparatively stable in classification 
(Additional file: Figure S2A–C). WGCNA was employed to identify the key gene modules in Cluster A and Cluster B with the 
soft-threshold power of β = 7 (R2 = 0.929, Additional file: Figure S2D). In all, ten gene modules were obtained, and the cluster 
dendrogram of the modules was then created (Additional file: Figure S2E and F). Furthermore, the correlation coefficient of 
molecular subtypes with gene modules was calculated, and yellow together with green modules had high positive association 
with Cluster A, whereas the turquoise together with magenta modules exhibited high positive relative to Cluster B (Additional 
file: Figure S2G). Thus, these four modules were chosen as the key modules for further analysis. By functional enrichment 
analysis of the biological process (BP), the genes included in Cluster A-associated modules were mainly correlated to “cell 
cycle”, “response to endoplasmic reticulum stress” and “integrin-mediated signaling pathway” (Additional file: Figure S3A). For 
Cluster B-associated modules, the included genes were mainly enriched in “inflammatory response”, “immune response” and 
“innate immune response” (Additional file: Figure S3B). KEGG analysis revealed that the Cluster A-associated modules were 
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principally related to “protein processing in endoplasmic reticulum”, while in the Cluster B-associated modules “cytokine- 
cytokine receptor interaction” was the major enriched pathway (Additional file: Figure S3C and D).

Determination of the Differences in Functional Enrichment and Immunological 
Characteristics Between the Clusters Based on FA Metabolism-Related Genes
In order to further explore the differences in the biologically relevant function between the molecular clusters based 
on FA metabolism-related genes, 545 DEGs were screened out according to the criteria of adjusted p-value < 0.05 
and |log2 FC| > = 0.585. Volcano plot and heatmap were presented to show the significant difference in gene 
expression patterns between the two subtypes (Figure 2A and B). Subsequently, functional enrichment analysis was 
employed to clearly understand the role of DEGs between these two FA metabolism-related groupings. Gene 
Ontology (GO) term analysis showed that the DEGs were functionally annotated. Of note, the DEGs were mainly 

Figure 1 The research flow chart of this study.
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Figure 2 Functional enrichment analysis and immune cell infiltration analysis between these two subtypes. (A) The volcano plot of the DEGs between these two subtypes. 
(B) The heatmap of the DEGs between these two subtypes. (C) GO analysis of the DEGs upon the biological process. (D) The differential expression of FN1, COL1A1, 
ACTA2, CCL18, CCL2 and TNFRSF12A between these two subtypes. (E) The stacked histogram for the immune cell abundances between Cluster A and Cluster B of DN 
patients. (F) The violin diagram exhibiting the differences of immune cells between Cluster A and Cluster B. Red asterisks showing the increased number of immune cells 
infiltration in Cluster B, whereas blue asterisks indicating the reduction in Cluster B. *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; ****p-value < 0.0001. 
Abbreviation: ns, not significant.

Journal of Inflammation Research 2024:17                                                                                          https://doi.org/10.2147/JIR.S440374                                                                                                                                                                                                                       

DovePress                                                                                                                         
699

Dovepress                                                                                                                                                              Zhu et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


enriched in “inflammatory response”, “immune response” and “extracellular matrix organization” upon biological 
process analysis (Figure 2C). Interestingly, the expression levels of pro-fibrotic genes (FN1, COL1A1, and ACTA2) 
were significantly higher in Cluster B than those in Cluster A. Meanwhile, compared to Cluster B, pro-inflammatory 
genes, such as CCL18, CCL2, and TNFRSF12A, showed markedly lower expression levels in Cluster A, suggesting 
the distinct status of the patients with DN (Figure 2D).

Given that DEGs were closely associated with inflammatory and immune processes, the CIBERSORT algorithm was 
performed to clarify the characteristics of immune cell infiltration according to gene expression in immune cells between 
these two groupings. The proportions for 22 types of immune cells in each sample are presented in Figure 2E. Notably, 
five subpopulations of immune cells exhibited significant differences between cluster A and cluster B (Figure 2F). 
Samples in Cluster A had higher proportions of “Dendritic cells resting”, “Plasma cells”, and “T cells regulatory (Tregs)” 
than those in Cluster B. However, the lower abundances of “Macrophages M2” and “T cells gamma delta” were observed 
in Cluster A compared to Cluster B (Figure 2F).

Relationship Between the Differentially Expressed FA Metabolism-Related Genes and 
Immune Cell Infiltration
The immune landscape in kidney samples of patients with DN was dramatically changed (Figure 3A). The correlation 
analysis for 22 types of immune cells in DN samples showed that the proportion of “T cells CD8” was significantly 
negatively correlated to that of “T cells CD4 memory resting” (r = −0.73), and the abundance of “Mast cells activated” 
was negatively associated with that of “Mast cells resting” (r = −0.86) (Figure 3B). We further explored the relationship 
between the expression of differentially expressed FA metabolism-related genes and the abundance of immune cells 
(Figure 3C). Interestingly, the results indicated that “T cells gamma delta” was positively associated with PLA2G4A, 
SOX9, CD36, and C3, whereas “Macrophages M2” was positively correlated to APOC1 but negatively correlated to 
PTGDS (Figure 3D and E). In addition, infiltrated “Neutrophils” was closely positively related to HPGD in kidney 
samples of patients with DN (Figure 3F).

Prediction of Candidate Small Molecular Drugs for Treating FA Metabolism-Based DN 
Subtypes with Poor Outcomes
Molecular subtyping can be carried out not only to reveal the distinct characteristic of DN but also to facilitate precise 
therapeutic strategies. As indicated by higher expression of pro-fibrotic and pro-inflammatory factors (Figure 2D), 
patients in Cluster B exhibited worse outcomes than those in Cluster A. Thus, based on the original therapeutic strategy, 
supplemented novel drugs for patients in Cluster B were urged to be discovered. First, Up-regulated genes in Cluster 
B (DN-Cluster B vs Control) were identified according to the cut-off value of adjusted p-value < 0.05 and log2 FC > = 1 
(Figure 4A–B). Of note, the overlapped genes between up-regulated genes and genes included in the key module of 
Cluster B (Additional file: Figure S2G) were imported to the connectivity map (CMAP) database to predict potential 
small-molecule drugs for further treatment (Figure 4C). By using QUERY CMAP, the top 10 small-molecule drugs, 
which exhibited the highest negative scores, were identified and considered to be candidate pharmacological therapies for 
FA metabolism-based Cluster B of patients with DN (Figure 4D). The targeted signaling pathways and chemical 
structures of these drugs are detailly shown in Figure 4E.

Establishment of a Prediction Model Based on FA Metabolism-Related Genes via 
Machine Learning Algorithms
To screen out the potential diagnostic biomarkers to distinguish patients with DN, the LASSO regression algorithm was 
employed to reveal 11 potential diagnostic biomarkers out of 39 differentially expressed FA metabolism-related genes 
(Figure 5A and B). Moreover, using the SVM-RFE algorithm, 7 FA metabolism-related genes were determined as candidate 
biomarkers (Figure 5C). After intersecting the potential biomarkers extracted from LASSO and SVM-RFE algorithms, only 
two genes (PRKAR2B and ANXA1) were overlapped via a Venn diagram and were regarded as optimum diagnostic 
biomarkers (Figure 5D). For better performance in DN prediction, a prediction model was established and visualized as 
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Figure 3 The correlation of differentially expressed FA metabolism-related genes with the immune landscape in DN patients. (A) The violin diagram showing the immune 
cell differences between individuals with or without DN. Red asterisks exhibiting a high proportion of immune cell accumulation in DN, whereas blue asterisks displaying 
a decrease in DN. (B) The heatmap indicating the correlation among recruited immune cells in DN. (C) The correlation map for the differentially expressed FA metabolism- 
related genes and recruited immune cells in DN. (D) The association between the expression of PLA2G4A, SOX9, CD36, and C3 with the proportion of T cells gamma 
delta in DN. (E) The relation between the expression of APOC1 and PTGDS with the proportion of Macrophages M2 in DN. (F) The correlation between the expression of 
HPGD with the proportion of Neutrophils in DN. *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; ****p-value < 0.0001. 
Abbreviation: ns, not significant.
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Figure 4 Prediction of the potential small-molecular drugs for treating FA metabolism-based subtypes of DN by CMAP analysis. (A) The volcano plot of the DEGs between 
control individuals and DN-Cluster B patients. (B) The heatmap of the DEGs between control individuals and DN-Cluster B patients. (C) The Venn diagram identifying 66 
key up-regulated genes in DN-Cluster B patients for CMAP analysis. (D) The heatmap showing the top 10 drugs with the highest negative scores in 9 cell lines with CMAP 
analysis. (E) The chemical structures and detailed description of these top 10 drugs.
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a nomogram based on PRKAR2B and ANXA1 expression by carrying out logistics regression analysis (Figure 5E). Thus, by 
using the established nomogram, we could convert the renal expression of PRKAR2B and ANXA1 into points, respectively, 
and the total points were obtained by adding of these two points, corresponding to the risk of DN.

Figure 5 Identification of candidate diagnostic biomarkers and construction of a prediction model based on differentially expressed FA metabolism-related genes by machine 
learning algorithms. (A and B) LASSO algorithm for identifying potential biomarkers for DN diagnosis. The number of genes (N = 11) was selected as the most suitable 
parameter for DN prediction. (C) SVM-REF algorithm for screening candidate biomarkers for DN diagnosis. The number of genes (N = 7) was chosen as the optimal 
argument for DN diagnosis. (D) The Venn diagram showing two overlapped reliable diagnostic biomarkers between LASSO and SVM-REF methods. (E) The prediction 
model was constructed based on the two diagnostic biomarkers.
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Predictive Ability and Performance of the Constructed Nomogram Based on FA 
Metabolism-Related Genes
The area under the curve (AUC) values of PRKAR2B, ANXA1, and nomogram were 0.95, 0.80, and 0.97, respectively 
(Figure 6A–C). Moreover, the DN risk prediction nomogram displayed ideal consistency between predictions and actual 
observations in the DN cohort (Figure 6D). Additionally, the decision curve analysis (DCA) for the nomogram suggested 
that clinical decision-making based on the nomogram might be beneficial for the prediction of the risk of patients with 
DN (Figure 6E). Furthermore, the receiver operating characteristic (ROC) curve revealed that the nomogram based on FA 
metabolism-related genes exhibited a relatively good predictive value of patients with early stages of DN (Figure 6F), 
implying that the prediction model could also be extensively applied to diagnose the occurrence of early DN.

The Relevance Between FA Metabolism-Related Genes and Clinical Characteristics of 
DN
To further elaborate the clinical significance of FA metabolism-related genes in DN, we performed the correlation 
analysis between the renal expression of PRKAR2B and ANXA1 with clinicopathological features, including serum 
creatinine (SCr) together with glomerular filtration rate (GFR) using Nephroseq v5 online tool. The results showed that 
the renal PRKAR2B expression was negatively correlated with the SCr level (Figure 7A) and positively associated with 
GFR in patients with DN (Figure 7B), suggesting that PRKAR2B may exert renoprotective effects in patients with DN. 
In addition, high renal ANXA1 expression was associated with the increased SCr level and decreased GFR of DN 
patients (Figure 7C and D), which revealed that renal ANXA1 might be involved in the progression of DN.

Figure 6 Verification of the predictive ability and performance of the constructed prediction model for DN risk. (A–C) The ROC curve evaluating the diagnostic efficacy of 
PRKAR2B (A) and ANXA1 (B) and the constructed prediction model (C) in the risk of DN prediction. (D) The calibration curve of the prediction model for diagnosing DN 
patients. (E) The DCA for the prediction model. (F) The ROC curve showing the diagnostic performance of the prediction model in the external dataset with the early 
stage of DN.
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Validation of Data in the Animal Model of DN
The renal expression levels of PRKAR2B and ANXA1 were obtained from the integrated DN microarray datasets, and 
the results showed that PRKAR2B was significantly decreased, while ANXA1 was increased in patients with DN 
(Figure 8A). To confirm the results of bioinformatics analysis, we firstly established an experimental STZ/High-fat diet 
(HFD)-induced diabetic mouse model of DN (Figure 8B). We found that multiple renal functional indicators, including 
blood glucose, serum creatinine (SCr), blood urea nitrogen (BUN), and urine albumin as well as urine albumin/creatinine 
(UACR), were significantly elevated, and urine creatinine (UCr) was markedly decreased in the diabetic mice, compared 
to the control mice (Figure 8C). Moreover, PAS staining showed mesangial matrix expansion and increased mesangial 
matrix index, and Masson’s trichrome staining displayed excessive collagen deposition in both glomeruli and renal 
interstitium in diabetic mice, indicating successful establishment of the DN animal model (Figure 8D-E). Next, we 
assessed the mRNA and protein levels of PRKAR2B and ANXA1 in the DN and control mice. Consistent with the 
bioinformatics results of DN datasets, the DN animal model displayed similar renal expression patterns of PRKAR2B 
and ANXA1, in which the mRNA and protein levels of PRKAR2B were significantly decreased, whereas those of 
ANXA1 were increased in the kidney tissues of the DN mice compared to the control mice (Figures 8F, 9A and B).

Discussion
With the development of the second-generation sequencing technology and the standardized establishment of public 
databases, more and more DN-related transcriptome information has been found and clarified, providing scientific 
guidance for early diagnosis of diabetes mellitus progression to DN and the exploration of DN pathogenesis. Recent 
evidence implies that FA metabolism-related genes may participate in the pathogenetic process of DN, but the underlying 
mechanism of FA metabolism-mediated DN progression has not been fully explained in the existing studies. In this study, 
we performed an in-depth study on the role of FA metabolism-related genes in DN by integrated bioinformatics analysis 
and machine learning. A total of 39 differentially expressed FA metabolism-related genes were identified based on 
analysis of the combined dataset from 54 DN and 57 control kidney samples. Importantly, patients with DN were 
classified into two subclusters according to the FA metabolism signature. Enrichment analysis of the DEGs and 
abundance analysis of immune cells between the two subtypes revealed that the significant differences were the immune 
responses and ECM deposition. Moreover, we also discovered potential drugs for the precise treatment of FA metabolism 

Figure 7 Correlation between renal expression of FA metabolism-related genes and clinical characteristics in DN patients. (A and B) The correlation between renal 
PRKAR2B expression and the SCr level (A) or GFR (B) in DN. (C and D) The association of renal ANXA1 expression with the SCr level (C) or GFR (D) in DN.
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signature-classified DN subtypes. Furthermore, the FA metabolism-related diagnostic nomogram model was established 
and evaluated comprehensively, unveiling that this model effectively distinguished patients with DN, regardless of the 
early or advanced stages of DN. These findings may provide a comprehensive overview of FA metabolism in diabetes- 
induced kidney injuries and may be beneficial to uncover the underlying mechanisms and precise medication of DN.

Impairment of lipid metabolism, especially FA metabolism, may be involved in kidney diseases (eg, acute/chronic 
kidney diseases and glomerulonephritis), which has started to attract public attention.41–44 Inhibiting the oxidative 
process of FA improves kidney function in DN mice,25 suggesting that dysregulation of FA metabolism may also 
contribute to the onset and progression of DN. However, the regulatory role of FA metabolism in DN remains obscure. 
Here, two subtypes of DN were identified based on differentially expressed FA metabolism-related genes. The enrich-
ment analysis based on the DEGs between these two groups suggests that the underlying mechanism of FA metabolism in 

Figure 8 Validation of data in the experimental DN animal model. (A) The expression levels of PRKAR2B and ANXA1 in the integrated DN microarray datasets. (B) The 
flow diagram for establishing an experimental animal model. (C) The blood glucose, serum creatinine, blood urea nitrogen, urine creatinine, and urinary albumin were 
measured, and the urinary albumin/creatinine (UACR) was calculated. (D) The PAS and Masson’s trichrome staining of the control and DN kidney samples. Bar scale, 50 μm. 
(E) The quantification of mesangial matrix index and fibrotic area between the control and DN kidney samples. (F) RT-qPCR detected the mRNA levels of PRKAR2B and 
ANXA1 in the kidney tissues of mice with STZ/HFD-induced DN and in those of the control mice. Data are shown as mean ± SD from groups of six mice. **p-value < 0.01; 
***p-value < 0.001; ****p-value < 0.0001.
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DN may be closely associated with “inflammatory/responses” and “extracellular matrix organization”. Increasing studies 
have demonstrated that the recruitment of multiple types of immune cells in the kidney can be observed in different 
experimental DN animal models45,46 and clinical biopsy samples at all stages of DN.47 Both the innate immune system 
(eg, macrophages and dendritic cells)48 and the adaptive immune system (eg, T cells and B cells) may participate in the 
progression of DN.49 In this study, we noticed that the alteration of the immune landscape was also closely correlated to 
FA metabolism-related genes-based groupings, as indicated by infiltrated immune cell analysis in the present study. 
A total of five types of immune cells, including “Dendritic cells resting”, “Plasma cells”, “Treg”, “Macrophages M2”, 
and “T cells gamma delta”, were differentially recruited in two distinct DN subgroups. Furthermore, the expression of FA 
metabolism-related genes was associated with the abundance of “Macrophages M2”, “T cells gamma delta”, and 
“Neutrophils”, demonstrating that FA metabolism was involved in the regulation of immune cell accumulation in 
patients with DN.

The concept of precise medication has facilitated the classification of patients. Different subtypes may display 
different pathogenic mechanisms and clinical outcomes. It has been widely accepted that activation of ECM organization 
leads to the accelerated accumulation of ECM and the progression of renal fibrosis in DN, indicating poor outcomes of 
kidney function.50 This study found the increased expression of pro-fibrotic factors (eg, FN1, COL1A1, and ACTA2) in 
patients within Cluster B compared to Cluster A. Given the poor clinical outcomes of patients in Cluster B, potential 
complementary drugs on the basis of typical therapeutic methods for precise treatment need to be explored. During the 
last few decades, small-molecular drugs targeting a series of diseases have achieved great success.51,52 Several merits, 
including high tissue penetration, a tunable half-life, and oral bioavailability, have made small-molecular drugs more 
effective in conducting precise medication. Using CMAP analysis, several small-molecule drugs for the precise 
medication of patients in Cluster B were screened based on key genes included in both subsets (up-regulated genes 
and crucial module genes of Cluster B), whereas further trials are needed for assessing the therapeutic effects of those 
drugs in ameliorating kidney function of DN patients in Cluster B.

So far, challenges still exist in the diagnosis of DN due to the limited ideal clinical indicators and the heterogeneity of 
lesions in the kidney.53 Thus, potential biomarkers which exhibit high specificity and sensitivity are still urgently 
identified. Recently, FA metabolism-related genes have been suggested to be helpful for the risk prediction of various 
cancers.54–56 However, the diagnostic performance of FA metabolism-related genes for DN has yet to be explored. In this 
study, machine learning methods, including LASSO and SVM-REF, were used to explore the candidate FA metabolism- 
related biomarkers to effectively distinguish DN patients. PRKAR2B and ANXA1 with optimal predictive efficacy were 
eventually identified. The most noteworthy finding in this study was that a more comprehensive prediction model based 
on these two biomarkers was established to improve the diagnostic efficacy of DN. Furthermore, an external dataset also 
validated that the diagnostic model was efficient in predicting the risk of patients with DN of early stages, suggesting the 
FA metabolism-related prediction model constructed in our study is beneficial for diagnosing patients with DN of 

Figure 9 Detection of the protein levels of PRKAR2B and ANXA1 in the experimental DN animal model. (A) The protein levels of PRKAR2B and ANXA1 in the kidney 
tissues of mice with STZ/HFD-induced DN and in those of the control mice. (B) Quantitative grey values of protein expression are shown. Data are shown as mean ± SD 
from groups of six mice. ****p-value < 0.0001.
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different stages. Additionally, significant clinical correlations were found between these two biomarkers and renal 
function such as SCr level and GFR. Thus, both renal PRKAR2B and ANXA1 have the potential to be biomarkers 
for predicting the severity of DN.

In summary, our results brought a comprehensive overview of FA metabolism in patients with DN. We 
demonstrated the potential association between FA metabolism signature and infiltrating immune cells as well as 
extracellular matrix organization, explored precise medication targeting distinct DN clusters based on FA metabo-
lism-related genes, and identified PRKAR2B/ANXA1 as the candidate biomarkers for patients with DN by LASSO 
and SVM-REF algorithms. Furthermore, a prediction model combining PRKAR2B and ANXA1 was constructed to 
diagnose DN of early and advanced stages with high accuracy. Therefore, these findings may elucidate the role of 
FA metabolism in diabetic kidney injury, providing evidence for better management and therapy of patients 
with DN.

Data Sharing Statement
We downloaded and analyzed the public datasets (GSE96804, GSE30528, GSE104948, and GSE111154) from the GEO 
data repository.

Author Contributions
All authors made a significant contribution to the work reported, whether that is in the conception, study design, 
execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically 
reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article 
has been submitted; and agree to be accountable for all aspects of the work.

Funding
This study was supported by grants from Guangdong Basic and Applied Basic Research Foundation (2020A1515111077) 
and China Postdoctoral Science Foundation Funded Project (2021M693672).

Disclosure
There were no competing interests.

References
1. Demir Y, Ceylan H, Türkeş C, Beydemir Ş. Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway 

enzymes. J Biomol Struct Dyn. 2022;40(22):12008–12021. doi:10.1080/07391102.2021.1967195
2. Sever B, Altıntop MD, Demir Y, et al. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new 

thiazole-based compounds. Bioorg Chem. 2020;102:104110. doi:10.1016/j.bioorg.2020.104110
3. Bellary S, Kyrou I, Brown JE, Bailey CJ. Type 2 diabetes mellitus in older adults: clinical considerations and management. Nat Rev Endocrinol. 

2021;17(9):534–548. doi:10.1038/s41574-021-00512-2
4. Hu Q, Chen Y, Deng X, et al. Diabetic nephropathy: focusing on pathological signals, clinical treatment, and dietary regulation. Biomed 

Pharmacother. 2023;159:114252. doi:10.1016/j.biopha.2023.114252
5. Sharma D, Bhattacharya P, Kalia K, Tiwari V. Diabetic nephropathy: new insights into established therapeutic paradigms and novel molecular 

targets. Diabetes Res Clin Pract. 2017;128:91–108. doi:10.1016/j.diabres.2017.04.010
6. Kato M, Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol. 2019;15(6):327–345. 

doi:10.1038/s41581-019-0135-6
7. Sever B, Altıntop MD, Demir Y, et al. Identification of a new class of potent aldose reductase inhibitors: design, microwave-assisted synthesis, 

in vitro and in silico evaluation of 2-pyrazolines. Chem Biol Interact. 2021;345:109576. doi:10.1016/j.cbi.2021.109576
8. Sever B, Altıntop MD, Demir Y, et al. An extensive research on aldose reductase inhibitory effects of new 4H-1, 2, 4-triazole derivatives. J Mol 

Struct. 2021;1224:129446. doi:10.1016/j.molstruc.2020.129446
9. Warren AM, Knudsen ST, Cooper ME. Diabetic nephropathy: an insight into molecular mechanisms and emerging therapies. Expert Opinion 

Therap Targets. 2019;23(7):579–591. doi:10.1080/14728222.2019.1624721
10. Liu L, Bai F, Song H, et al. Upregulation of TIPE1 in tubular epithelial cell aggravates diabetic nephropathy by disrupting PHB2 mediated 

mitophagy. Redox Biol. 2022;50:102260. doi:10.1016/j.redox.2022.102260
11. Türkeş C, Arslan M, Demir Y, et al. N-substituted phthalazine sulfonamide derivatives as non-classical aldose reductase inhibitors. J Mol Recog. 

2022;35(12):e2991. doi:10.1002/jmr.2991
12. Akdağ M, Özçelik AB, Demir Y, Beydemir Ş. Design, synthesis, and aldose reductase inhibitory effect of some novel carboxylic acid derivatives 

bearing 2-substituted-6-aryloxo-pyridazinone moiety. J Mol Struct. 2022;1258:132675. doi:10.1016/j.molstruc.2022.132675

https://doi.org/10.2147/JIR.S440374                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2024:17 708

Zhu et al                                                                                                                                                              Dovepress

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1080/07391102.2021.1967195
https://doi.org/10.1016/j.bioorg.2020.104110
https://doi.org/10.1038/s41574-021-00512-2
https://doi.org/10.1016/j.biopha.2023.114252
https://doi.org/10.1016/j.diabres.2017.04.010
https://doi.org/10.1038/s41581-019-0135-6
https://doi.org/10.1016/j.cbi.2021.109576
https://doi.org/10.1016/j.molstruc.2020.129446
https://doi.org/10.1080/14728222.2019.1624721
https://doi.org/10.1016/j.redox.2022.102260
https://doi.org/10.1002/jmr.2991
https://doi.org/10.1016/j.molstruc.2022.132675
https://www.dovepress.com
https://www.dovepress.com


13. Rossing P, Anker SD, Filippatos G, et al. Finerenone in patients with chronic kidney disease and type 2 diabetes by sodium–glucose cotransporter 2 
inhibitor treatment: the FIDELITY Analysis. Diabetes Care. 2022;45(12):2991–2998. doi:10.2337/dc22-0294

14. Sharma D, Verma S, Vaidya S, Kalia K, Tiwari V. Recent updates on GLP-1 agonists: current advancements & challenges. Biomed Pharmacother. 
2018;108:952–962. doi:10.1016/j.biopha.2018.08.088

15. Tokalı FS, Demir Y, Türkeş C, Dinçer B, Beydemir Ş. Novel acetic acid derivatives containing quinazolin-4(3H)-one ring: synthesis, in vitro, and in 
silico evaluation of potent aldose reductase inhibitors. Drug Dev Res. 2023;84(2):275–295. doi:10.1002/ddr.22031

16. Ertano BY, Demir Y, Nural Y, Erdoğan O. Investigation of the effect of acylthiourea derivatives on diabetes-associated enzymes. ChemistrySelect. 
2022;7(46):e202204149. doi:10.1002/slct.202204149

17. Fioretto P, Mauer M. Diabetic nephropathy—challenges in pathologic classification. Nat Rev Nephrol. 2010;6(9):508–510. doi:10.1038/ 
nrneph.2010.96

18. Gao Z, Chen X. Fatty acid β-oxidation in kidney diseases: perspectives on pathophysiological mechanisms and therapeutic opportunities. Front 
Pharmacol. 2022;13:805281.

19. Palabıyık E, Sulumer AN, Uguz H, et al. Assessment of hypolipidemic and anti-inflammatory properties of walnut (Juglans regia) seed coat extract 
and modulates some metabolic enzymes activity in triton WR-1339-induced hyperlipidemia in rat kidney, liver, and heart. J Mol Recog. 2023;36(3): 
e3004. doi:10.1002/jmr.3004

20. Çağlayan C, Taslimi P, Demir Y, et al. The effects of zingerone against vancomycin-induced lung, liver, kidney and testis toxicity in rats: the 
behavior of some metabolic enzymes. J Biochem Mol Toxicol. 2019;33(10):e22381. doi:10.1002/jbt.22381

21. Gray SP, Di Marco E, Okabe J, et al. NADPH oxidase 1 plays a key role in diabetes mellitus–accelerated atherosclerosis. Circulation. 2013;127 
(18):1888–1902. doi:10.1161/CIRCULATIONAHA.112.132159

22. Ghosh A, Gao L, Thakur A, Siu PM, Lai CW. Role of free fatty acids in endothelial dysfunction. J Biomed Sci. 2017;24(1):1–15. doi:10.1186/ 
s12929-017-0357-5

23. De Vries AP, Ruggenenti P, Ruan XZ, et al. Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes 
Endocrinol. 2014;2(5):417–426. doi:10.1016/S2213-8587(14)70065-8

24. Miguel V, Tituaña J, Herrero JI, et al. Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis. 
J Clin Invest. 2021;131(5). doi:10.1172/JCI140695

25. Shu Z, Chen S, Xiang H, et al. AKT/PACS2 participates in renal vascular hyperpermeability by regulating endothelial fatty acid oxidation in 
diabetic mice. Front Pharmacol. 2022;13. doi:10.3389/fphar.2022.876937

26. Yao F, Li Z, Ehara T, et al. Fatty acid-binding protein 4 mediates apoptosis via endoplasmic reticulum stress in mesangial cells of diabetic 
nephropathy. Mol Cell Endocrinol. 2015;411:232–242. doi:10.1016/j.mce.2015.05.003

27. Zhang Y, Kurupati R, Liu L, et al. Enhancing CD8+ T cell fatty acid catabolism within a metabolically challenging tumor microenvironment 
increases the efficacy of melanoma immunotherapy. Cancer Cell. 2017;32(3):377–391. e379. doi:10.1016/j.ccell.2017.08.004

28. Chen J, Liu Q, He J, Li Y. Immune responses in diabetic nephropathy: pathogenic mechanisms and therapeutic target. Front Immunol. 
2022;13:958790. doi:10.3389/fimmu.2022.958790

29. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in 
high-throughput experiments. Bioinformatics. 2012;28(6):882–883. doi:10.1093/bioinformatics/bts034

30. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 
2015;43(7):e47. doi:10.1093/nar/gkv007

31. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics. 2010;26 
(12):1572–1573. doi:10.1093/bioinformatics/btq170

32. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 2008;9(1):1–13. doi:10.1186/1471-2105- 
9-559

33. Steen CB, Liu CL, Alizadeh AA, Newman AM. Profiling cell type abundance and expression in bulk tissues with CIBERSORTx. In: Stem Cell 
Transcriptional Networks. Springer; 2020:135–157.

34. Gao Y, Kim S, Lee Y-I, Lee J. Cellular stress-modulating drugs can potentially be identified by in silico screening with connectivity map (CMap). 
Int J Mol Sci. 2019;20(22):5601. doi:10.3390/ijms20225601

35. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Software. 2010;33(1). 
doi:10.18637/jss.v033.i01

36. Lin X, Yang F, Zhou L, et al. A support vector machine-recursive feature elimination feature selection method based on artificial contrast variables 
and mutual information. J Chromatogr B. 2012;910:149–155. doi:10.1016/j.jchromb.2012.05.020

37. Harrell FE. RMS: Regression Modeling Strategies. R Package Version 5.1-2. Nashville, TN, USA: Dept. Biostatist., Vanderbilt Univ; 2017.
38. Sharma D, Tekade RK, Kalia K. Kaempferol in ameliorating diabetes-induced fibrosis and renal damage: an in vitro and in vivo study in diabetic 

nephropathy mice model. Phytomedicine. 2020;76:153235. doi:10.1016/j.phymed.2020.153235
39. Burnette WN. “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellu-

lose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981;112(2):195–203. doi:10.1016/0003-2697(81) 
90281-5

40. Sharma D, Gondaliya P, Tiwari V, Kalia K. Kaempferol attenuates diabetic nephropathy by inhibiting RhoA/Rho-kinase mediated inflammatory 
signalling. Biomed Pharmacother. 2019;109:1610–1619. doi:10.1016/j.biopha.2018.10.195

41. Li B, Hao J, Zeng J, Sauter ER. SnapShot: FABP functions. Cell. 2020;182(4):1066–1066. e1061. doi:10.1016/j.cell.2020.07.027
42. Li L, Tao S, Guo F, et al. Genetic and pharmacological inhibition of fatty acid-binding protein 4 alleviated inflammation and early fibrosis after 

toxin induced kidney injury. Int Immunopharmacol. 2021;96:107760. doi:10.1016/j.intimp.2021.107760
43. Labes R, Dong L, Mrowka R, et al. Annexin A1 exerts renoprotective effects in experimental crescentic glomerulonephritis. Front Physiol. 

2022;13:2164.
44. Li J, Yang Y, Li Q, et al. STAT6 contributes to renal fibrosis by modulating PPARα-mediated tubular fatty acid oxidation. Cell Death Dis. 

2022;13:1–11.
45. Chow FY, Nikolic-Paterson DJ, Atkins RC, Tesch GH. Macrophages in streptozotocin-induced diabetic nephropathy: potential role in renal fibrosis. 

Nephrol Dial Transplant. 2004;19(12):2987–2996. doi:10.1093/ndt/gfh441

Journal of Inflammation Research 2024:17                                                                                          https://doi.org/10.2147/JIR.S440374                                                                                                                                                                                                                       

DovePress                                                                                                                         
709

Dovepress                                                                                                                                                              Zhu et al

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.2337/dc22-0294
https://doi.org/10.1016/j.biopha.2018.08.088
https://doi.org/10.1002/ddr.22031
https://doi.org/10.1002/slct.202204149
https://doi.org/10.1038/nrneph.2010.96
https://doi.org/10.1038/nrneph.2010.96
https://doi.org/10.1002/jmr.3004
https://doi.org/10.1002/jbt.22381
https://doi.org/10.1161/CIRCULATIONAHA.112.132159
https://doi.org/10.1186/s12929-017-0357-5
https://doi.org/10.1186/s12929-017-0357-5
https://doi.org/10.1016/S2213-8587(14)70065-8
https://doi.org/10.1172/JCI140695
https://doi.org/10.3389/fphar.2022.876937
https://doi.org/10.1016/j.mce.2015.05.003
https://doi.org/10.1016/j.ccell.2017.08.004
https://doi.org/10.3389/fimmu.2022.958790
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.3390/ijms20225601
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1016/j.jchromb.2012.05.020
https://doi.org/10.1016/j.phymed.2020.153235
https://doi.org/10.1016/0003-2697(81)90281-5
https://doi.org/10.1016/0003-2697(81)90281-5
https://doi.org/10.1016/j.biopha.2018.10.195
https://doi.org/10.1016/j.cell.2020.07.027
https://doi.org/10.1016/j.intimp.2021.107760
https://doi.org/10.1093/ndt/gfh441
https://www.dovepress.com
https://www.dovepress.com


46. Chow F, Ozols E, Nikolic-Paterson DJ, Atkins RC, Tesch GH. Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state 
and progressive renal injury. Kidney Int. 2004;65(1):116–128. doi:10.1111/j.1523-1755.2004.00367.x

47. Tervaert TWC, Mooyaart AL, Amann K, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21(4):556–563. 
doi:10.1681/ASN.2010010010

48. Tang SC, Yiu WH. Innate immunity in diabetic kidney disease. Nat Rev Nephrol. 2020;16(4):206–222. doi:10.1038/s41581-019-0234-4
49. Tesch GH. Diabetic nephropathy–is this an immune disorder? Clin Sci. 2017;131:2183–2199.
50. Hills C, Siamantouras E, Smith SW, et al. TGFβ modulates cell-to-cell communication in early epithelial-to-mesenchymal transition. Diabetologia. 

2012;55(3):812–824. doi:10.1007/s00125-011-2409-9
51. Li L, Zhang CT, Zhu FY, et al. Potential natural small molecular compounds for the treatment of chronic obstructive pulmonary disease: an 

overview. Front Pharmacol. 2022;13:911.
52. Zhang B, Dömling A. Small molecule modulators of IL-17A/IL-17RA: a patent review (2013–2021). Expert Opin Ther Patents. 2022;32 

(11):1161–1173. doi:10.1080/13543776.2022.2143264
53. Lei L, Bai Y, Fan Y, et al. Comprehensive diagnostics of diabetic nephropathy by transcriptome RNA sequencing. Diabetes Metabol Syndr Obes. 

2022;Volume 15:3069–3080. doi:10.2147/DMSO.S371026
54. Wei Z, Cheng G, Ye Y, et al. A fatty acid metabolism signature associated with clinical therapy in clear cell renal cell carcinoma. Front Genetics. 

2022;13. doi:10.3389/fgene.2022.894736
55. Zhang Y, Kong X, Xin S, Bi L, Sun X. Discovery of lipid metabolism-related genes for predicting tumor immune microenvironment status and 

prognosis in prostate cancer. J Oncol. 2022;2022. doi:10.1155/2022/8227806
56. Yang J, Yang X, Guo J, Liu S. A novel fatty acid metabolism-related gene prognostic signature and candidate drugs for patients with hepatocellular 

carcinoma. PeerJ. 2023;11:e14622. doi:10.7717/peerj.14622

Journal of Inflammation Research                                                                                                     Dovepress 

Publish your work in this journal 
The Journal of Inflammation Research is an international, peer-reviewed open-access journal that welcomes laboratory and clinical findings on 
the molecular basis, cell biology and pharmacology of inflammation including original research, reviews, symposium reports, hypothesis 
formation and commentaries on: acute/chronic inflammation; mediators of inflammation; cellular processes; molecular mechanisms; pharmacology 
and novel anti-inflammatory drugs; clinical conditions involving inflammation. The manuscript management system is completely online and 
includes a very quick and fair peer-review system. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.  

Submit your manuscript here: https://www.dovepress.com/journal-of-inflammation-research-journal

DovePress                                                                                                               Journal of Inflammation Research 2024:17 710

Zhu et al                                                                                                                                                              Dovepress

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1111/j.1523-1755.2004.00367.x
https://doi.org/10.1681/ASN.2010010010
https://doi.org/10.1038/s41581-019-0234-4
https://doi.org/10.1007/s00125-011-2409-9
https://doi.org/10.1080/13543776.2022.2143264
https://doi.org/10.2147/DMSO.S371026
https://doi.org/10.3389/fgene.2022.894736
https://doi.org/10.1155/2022/8227806
https://doi.org/10.7717/peerj.14622
https://www.dovepress.com
http://www.dovepress.com/testimonials.php
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
https://www.dovepress.com
https://www.dovepress.com

	Introduction
	Methods
	Data Processing
	Access of Fatty Acid Metabolism-Related Genes
	Identification of differentially expressed fatty acid metabolism-related genes
	Molecular Typing of Fatty Acid Metabolism-Related Genes
	Weighted Gene Co-Expression Network Analysis (WGCNA) and critical module genes determination
	Functional Enrichment Analysis
	Immune Landscape Analysis
	Potential Small-Molecular Drugs Prediction
	Screening of Diagnostic Biomarkers and Establishment of DN Risk Prediction Nomogram
	Evaluation for Diagnostic Efficacy of the Prediction Model
	Correlation Analysis of Clinical Features
	Establishment of an Experimental Animal Model
	Renal Function and Histology
	Protein Extraction and Western Blotting (WB)
	Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)
	Statistical Analysis

	Results
	Differential Expression Analysis of FA Metabolism-Related Genes in Patients with Diabetic Nephropathy
	Identification of Molecular Subtypes Based on FA Metabolism-Related Genes
	Determination of the Differences in Functional Enrichment and Immunological Characteristics Between the Clusters Based on FA Metabolism-Related Genes
	Relationship Between the Differentially Expressed FA Metabolism-Related Genes and Immune Cell Infiltration
	Prediction of Candidate Small Molecular Drugs for Treating FA Metabolism-Based DN Subtypes with Poor Outcomes
	Establishment of aPrediction Model Based on FA Metabolism-Related Genes via Machine Learning Algorithms
	Predictive Ability and Performance of the Constructed Nomogram Based on FA Metabolism-Related Genes
	The Relevance Between FA Metabolism-Related Genes and Clinical Characteristics of DN
	Validation of Data in the Animal Model of DN

	Discussion
	Data Sharing Statement
	Author Contributions
	Funding
	Disclosure

