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Potentiality of multiple modalities 
for single‑cell analyses to evaluate 
the tumor microenvironment 
in clinical specimens
Yukie Kashima1,13, Yosuke Togashi2,13, Shota Fukuoka2, Takahiro Kamada2, Takuma Irie2, 
Ayako Suzuki3, Yoshiaki Nakamura4, Kohei Shitara4, Tatsunori Minamide5, Taku Yoshida6, 
Naofumi Taoka6, Tatsuya Kawase6, Teiji Wada7, Koichiro Inaki8, Masataka Chihara7, 
Yukihiko Ebisuno9, Sakiyo Tsukamoto10, Ryo Fujii10, Akihiro Ohashi1*, Yutaka Suzuki3, 
Katsuya Tsuchihara11, Hiroyoshi Nishikawa2 & Toshihiko Doi12*

Single-cell level analysis is powerful tool to assess the heterogeneity of cellular components in tumor 
microenvironments (TME). In this study, we investigated immune-profiles using the single-cell 
analyses of endoscopically- or surgically-resected tumors, and peripheral blood mononuclear cells 
from gastric cancer patients. Furthermore, we technically characterized two distinct platforms of 
the single-cell analysis; RNA-seq-based analysis (scRNA-seq), and mass cytometry-based analysis 
(CyTOF), both of which are broadly embraced technologies. Our study revealed that the scRNA-seq 
analysis could cover a broader range of immune cells of TME in the biopsy-resected small samples 
of tumors, detecting even small subgroups of B cells or Treg cells in the tumors, although CyTOF 
could distinguish the specific populations in more depth. These findings demonstrate that scRNA-
seq analysis is a highly-feasible platform for elucidating the complexity of TME in small biopsy 
tumors, which would provide a novel strategies to overcome a therapeutic difficulties against cancer 
heterogeneity in TME.

The complexity of tumors arises from various cellular components comprising the tumor microenvironment 
(TME); these include cancer cells, immune cells, fibroblasts, blood vessels, and the extracellular matrix1. Each 
cellular component also internally exhibits heterogeneous profiles with distinct morphology and phenotype, and 
the intra-tumor heterogeneity makes tumor contexture more complicated. Tumor heterogeneity, the diversity 
of cancer cell types in the tumor microenvironment, has recently attracted attention as a burgeoning research 
area, which is multi-directionally approached on the basis of cellular morphology, gene expression, metabolism, 
motility, proliferation, and metastatic potential. The interplay between the heterogeneous cancer cells with their 
microenvironments appears to play an important role in not only tumor development, but also therapeutic 
response/resistance to anticancer drugs2,3. Tumor-infiltrating lymphocytes (TILs) in TME, for instance, have a 
prominent role in determining the antitumor activity of immune checkpoint blockades (ICBs) such as anti-PD1 
and anti-PD-L1 antibodies4–9. As for cancer cells, on the contrary, presentation of neo-antigens and/or PD-L1 
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expression on the surface of cancer cells apparently contribute to the efficacy of ICBs10,11. Given that cancer 
cells exhibit heterogeneous expression levels of these factors, the use of these factors as biomarkers requires 
further improvements for efficacious predictive precision12–14. To capture a view of tumor complexity more 
comprehensively and panoramically, single cell analysis, rather than a conventional bulk analysis, is expected to 
be a powerful tool since this methodology could profile small heterogeneous populations in the tumor micro-
environment (TME)15,16.

For decades, flow cytometry is the most widely-used methodology to analyze single cells, especially immune 
cells. A novel research platform of flow cytometry equipped with mass spectrometry, termed mass cytometry 
(CyTOF), has been recently developed. CyTOF could detect single-cell resolution using ~ 40 simultaneous cel-
lular parameters, which evaluates the complexity of cellular systems and processes17–19. Although single-cell 
analysis with CyTOF has been well-established, especially for the analysis of peripheral blood mononuclear 
cells (PBMCs)20,21, it also possesses technical difficulties to overcome. Firstly, analysis for TIL in a small biopsy 
sample is technically challenging. Secondly, the number of measured parameters is limited (~ 40 parameters), 
indicating that only focused cell populations can be detected by CyTOF18. On the contrary, single-cell RNA-
sequencing (scRNA-seq) is based on the expression level of the entire gene in individual cells and is expected 
to cover various biological pathways comprehensively22,23. Recently, a droplet-based scRNA-seq successfully 
characterized various clusters of immune cells based on the gene expression profile; this methodology is gaining 
popularity for widespread use24,25.

In this study, we investigated immune-profiles using the single-cell analyses of clinical specimens, endoscopi-
cally- or surgically-resected tumors, as well as PBMCs from gastroenterological cancer patients. Furthermore, 
we technically characterized two distinct platforms of the single-cell analysis, 10 × Genomics Chromium Single 
cell 3′ v2-based scRNA-seq analysis and Fluidigm Helios-based CyTOF analysis, both of which are broadly 
embraced technologies for single-cell level analysis. Using the two-distinct methodologies, we demonstrated that 
single-cell analysis is a powerful tool for classifying the cell types in clinical specimens as well as to understand 
the complexity of the TME.

Results
Evaluation of TILs in TME by CyTOF analysis, comparing fresh and frozen tumors.  We first 
conducted single-cell analysis in Fluidigm Helios-based CyTOF to evaluate and compare TILs isolated from 
freshly-prepared and frozen-stocked tumor samples. For this analysis, surgically-resected gastrointestinal cancer 
specimens were used (Sup. Table S1 and S2: patient). As shown in Fig. 1a, we detected significantly higher cell 
numbers, as well as higher numbers of marker-positive cells, from the fresh samples than the frozen samples 
(Fig. 1b; upper panel). Similar to the surgically-resected samples, the endoscopically-resected biopsy samples 
(Sup Table S1) also exhibited higher cell numbers (Fig. 1a) and more marker-positive cells (Fig. 1b; lower panel) 
in the fresh samples than the frozen samples, revealing that CyTOF analysis of freshly-prepared samples worked 
better for both surgically-resected and endoscopically-resected specimens. These results indicate that freshly-
prepared tumors would be preferred for single-cell analyses to evaluate TILs in TME, especially for analyses of 
small pieces of the biopsy samples.

Evaluation of two distinct platforms for single‑cell analysis in PBMCs: scRNA‑seq and 
CyTOF.  We evaluated two distinct platforms for single-cell analysis: Chromium v2 (10X Genomics) for 
scRNA-seq and Fluidigm Helios-based CyTOF using the same PBMC sample sets. R package Seurat for scRNA-
seq and CytoBank for CyTOF were used to classify PBMC populations based on the indicated markers (Figs. 2a, 
S1, S2 and Sup Table S3 and S4) 26,27. Both scRNA-seq and CyTOF clearly distinguished the classified immune-
cell types such as T cells, NK cells, B cells, and other immune-related cells in PBMCs. However, scRNA-seq 
exhibited less accuracy to identify the differences between T cells and NK cells (Fig. 2a, S1, S2 and Sup Table S4). 
We also compared the abilities of scRNA-seq and CyTOF single-cell analysis to detect % T + NK cell, % B cell, 
and % myeloid cell in CD45+ immune cell populations, revealing similar proficiencies between these platforms. 
The values of coefficient of determination (R2) were 0.86 in T + NK cells, 0.87 in B cells, and 0.83 in myeloid cells 
(Fig. 2b). However, one sample (gc_007) showed poor agreement between the techniques, which could be due 
to a technical error in the recovery from the frozen stock, since cell viability of this sample was extremely low 
(Fig. S3a).

Comparison of single‑cell analyses between scRNA‑seq and CyTOF in the endoscopi‑
cally‑resected biopsy samples.  Compared to the surgically-resected tumor samples, the endoscopically-
resected tumor biopsy samples were much smaller. Thus, to utilize these small numbers of cells in the biopsies as 
much as possible, we subjected the whole biopsy tumors with no sorting to the single-cell analyses for scRNA-
seq and CyTOF. In this manner, we expected to mitigate the loss of cell numbers that occurs when using small 
pieces of the biopsies. The unsorted whole tumors in the biopsies should include not only immune cells, but also 
non-immune cells, such as epithelial cells, fibroblasts, endothelial cells, and other TME-component cells. As a 
preliminary study, we first performed scRNA-seq analyses using this unsorted methodology on the surgically-
resected tumors (Fig. 3a). Freshly-prepared tumors were used for the analyses, and the experiments were quickly 
initiated within 30 min after surgical resection. The single cells in the tumors were isolated by treatment with the 
indicated dissociation enzyme and then directly, without the sorting step, subjected to Chromium v2 scRNA-seq 
analyses. The gene expression analyses of the scRNA-seq by Seurat clearly identified a number of clusters of the 
TME components in the surgical tumors—NK + T cells, B cells, plasma cells, myeloid cells, epithelial cells, and 
fibroblast + endothelial cells (Fig. 3b)—revealing that this scRNA-seq with “no sorting” protocol could clearly 
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detect the clusters of TIL components even though the unsorted tumors would contain various non-immune 
cells (Figs. 3b, Fig. S4, and Table S4).

Next, we conducted scRNA-seq analyses of the endoscopically-resected tumor biopsies. For this study, we also 
used freshly-prepared biopsies with the “unsorted protocol” as established above. As shown in Fig. 3c, the gene 
expression analyses by Seurat clearly identified a number of clusters of the TME components in the small biopsy 
samples as well, namely NK + T cells, B cells, plasma cells, myeloid cells, epithelial cells, and fibroblast + endothe-
lial cells. Taken together, the single-cell isolation protocol in unsorted tumors technically works to evaluate the 
clusters of TIL components in the endoscopically-resected tumor biopsies.

We also evaluated concordance between the scRNA-seq and CyTOF results in distinguishing % T + NK cells, 
% B cells, and % myeloid cells in the surgically-resected tumors (Fig. 3e). The values of coefficient of determina-
tion (R2) were 0.99 in T + NK cells, 0.77 in B cells, and 0.60 in myeloid cells. Although the R2 was relatively low in 
B and myeloid cells, the correlative results between the two platforms were broadly confirmed in tumors as well as 
PBMCs (Figs. 2 and 3). Interestingly, scRNA-seq identified the plasma cells, a CD45-CD138+IGKC+CD20- cluster, 
while CyTOF did not due to lack of B cell markers in our preset CyTOF panel (only CD20 was represented). 
Given that the markers of CyTOF must be selected for the target(s) prior to the experiments, this may be a tech-
nical limitation of CyTOF to cover a broader range of (unbiased) heterogeneous populations.
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Figure 1.   Freshly isolated cells showed better viability and detection compared with frozen samples in CyTOF. 
(a) The number of CD45 cells identified from the fresh and frozen surgically- and biopsy-resected samples. (b) 
Their representative staining figures. Fractions with approximately 5 mm square size from surgically resected 
samples or three fractions from biopsy samples were used for CyTOF. After sampling, the tumor tissues were 
minced by gentleMACS. Half of the cell suspension was applied for CyTOF at the fresh state, and the remaining 
one was stocked, which was analyzed a few weeks later. *p < 0.05.
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Comparison between scRNA‑seq data and IHC or CyTOF data.  Next, we evaluated the concord-
ance between scRNA-seq and IHC data. The location of sampling area for CyTOF and scRNA-seq were marked, 
and the marked blocks were stained for IHC (Fig. 4a). We analyzed the ratio of immune cells/epithelial cells by 
IHC staining of CD45 and pan-cytokeratin and compared them with the scRNA-seq data (Fig. 4b). While a simi-
lar tendency was observed, the immune cell ratio was remarkably high in scRNA-seq data compared with that 
in IHC data, indicating that a considerable number of epithelial cells, which include cancer cells, can be dam-
aged and lost during the procedure. Next, to evaluate further detailed concordance, we compared scRNA-seq 
data with CyTOF data, focusing on immune cells and observed poor concordances in some samples (Fig. S3b). 
Populations of B cell and myeloid cell had poor concordances as well (Fig. 3e). These findings suggest that there 
are the technical limitations of the experimental procedure in addition to data analyses, and its influence on the 
analysis of tumor tissue is greater as compared with PBMC (Fig. S3).

As with the result by scRNA-seq data (Fig. 3b), CD138+CD79a+CD20- plasma cells were also identified by 
IHC (Fig. 4c). Tumor-infiltrating B cells highly expressed HLA class II and CD40 (Fig. 4d), were also identified, 
suggesting these cells play as antigen-presenting cells. A fraction of B cells expressed PDCD1, IL10, and TGFB1. 
In addition, PRDM1 was also expressed, similarly to plasma cells (Fig. 4d). These suggest that regulatory B cells 
infiltrated into the TME28. We also found this plasma-cell population in biopsy samples by scRNA-seq (Fig. 3c). 
Taken together, our established scRNA-seq technique enabled us to find novel cell populations, although there 
were some technical limitations.

Classification of regulatory T cells (Treg cells) in TILs.  To investigate the detail of Treg function, 
T + NK-cell scRNA-seq datasets were re-analyzed (Fig. 5a). Treg datasets were extracted based on FOXP3 and 
IL2RA gene expressions among CD4+ T cells (Fig. 5b). As in Fig. 5b, we classified the Treg cell into 6 clusters. 
Top 10 genes (average log2 fold change > 0.5 compare to other clusters and adjusted p-value < 0.05) are summa-
rized in Sup Table S6. Cluster 0 and 4 (35.5% ± 4.7%) were characterized by CTLA4, TNFRSF4, TNFRSF18, and 
TIGIT, which are highly expressed by activated Treg cells in general (Fig. 5c)29. By contrast, these molecules were 
low, and MKI67 were highly expressed by cluster 5 cells (7.3% ± 4.9%), which were considered as proliferative 
Treg cells (Fig. 5c). Treg cells in cluster 1 (24.1% ± 4.9%) expressed KLRB1 (CD161) and CCL20, which are spe-
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Figure 2.   Comparison between scRNA-seq data using a droplet-based system and CyTOF data showed good 
concordances in PBMCs. (a) t-SNE plot based on scRNA-seq (left) and t-SNE plot based on CyTOF (right) of 
PBMCs. The same samples were divided into two groups for each method. After clustering, cells are annotated 
using representative genes or molecules in Table S3 (for CyTOF) and Table S5 (for scRNA-seq). (b). Comparison 
between CyTOF data (x-axis) and scRNA-seq data (y-axis). %T + NK cell, %B cell and %Myeloid cell in 
CD45 + immune cells are presented.
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cific for Th17 (Fig. 5c). Accordingly, CCR6, a receptor of CCL20, and IL17A were also highly expressed by this 
cluster (Fig. 5c). Thus, this cluster indicated CD161+ Th17-like Treg cells produce proinflammatory cytokines. 
CCR7 and SELL (CD62L) were highly expressed by cluster 2 cells (19.0% ± 7.1%), which were considered as 
naïve Treg cells (Fig. 5c). Cluster 3-specific molecules, including IFI44L, STAT1, ISG15, and IFITM1, are gen-
erally induced by interferon response, suggesting that cluster 3 cells (14.1% ± 5.1%) are interferon-related Treg 
cell (Sup Table. S6). STAT4 did not express by all clusters, including cluster 3, as previously reported (Fig. S6)30.
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Figure 3.   ScRNA-seq using whole tissues could reveal TME. (a) The procedure of sample processing. We 
marked the location of sampling for CyTOF and scRNA-seq. When IHC was performed, we used the marked 
blocks. Fractions with approximately 5 mm square size from surgically resected samples were used for CyTOF 
and scRNA-seq. After sampling, tumor tissues were minced, and then isolated using the dissociator. Enzyme 
treatments were used for scRNA-seq for 30 min at 37 °C (*). The isolated cell suspension was subjected to 
CyTOF and scRNA-seq at the fresh state. (b–d) t-SNE plots based on scRNA-seq of surgical resection (b), 
biopsy sample (c), and on CyTOF of surgical resection (d). (e) Comparison between CyTOF (x-axis) data 
and scRNA-seq data (y-axis) in each immune-cell population. %T + NK cell, %B cell, and %Myeloid cell in 
CD45 + immune cells are presented.
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Discussion
In this study, we evaluated the two distinct single-cell-based platforms, scRNA-seq and CyTOF, for single-cell 
level immune profiling using surgery-/biopsy-resected tumors and PBMC from gastric cancer patients. The 
number of previous studies focusing on gastric cancer biopsy in single-cell level is limited31–33. Our study revealed 
that the scRNA-seq analysis could cover a broader range of immune cells of TME in the endoscopically-resected 
small biopsy tumor samples, detecting even small subgroups of B cells or Treg cells in the tumors. These findings 
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Figure 4.   Comparison between scRNA-seq data using a droplet-based system and CyTOF data showed a little 
worse concordances in the TME. (a) Representative Immunohistochemistry (IHC) analysis for CD45 (left) and 
pan-cytokeratin (right). (b) Comparison between IHC and scRNA-seq with the ratio of epithelial cells / immune 
cells. Sample processing was performed as described in Fig. 3a. *p < 0.05. (c) Representative IHC analysis for 
plasma cells (CD138 + CD79a + CD20− cells). (d) Violin plots for comparison between tumor-infiltrating B cells 
and plasma cells based on scRNA-seq data. Antigen-presenting related genes (top) and regulatory B-cell related 
genes (bottom) are presented.
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demonstrate that scRNA-seq analysis is a highly-feasible platform for elucidating the complexity of the tumor 
microenvironments in small biopsy tumors.

Recent advances in single-cell level analysis, such as scRNA-seq and CyTOF, allowed us to investigate the 
complexity of heterogeneity in TME in more detail, detecting small heterogeneous populations (e.g., TILs) at 
a high dimensional level34,35; however, each of these platforms has strengths and weaknesses in their technical 
performance36,37. CyTOF, which has an advantage in higher throughput compared to scRNA-seq, could detect 
the targeting immune cell subsets more clearly using the ~ 40 selected antigen markers19,38. However, since these 
markers must be selected for target detection prior to experiments, the parameters that CyTOF can measure 
are technically limited to cover a broader range of heterogeneous populations18. In addition, there is the techni-
cal challenge of generating marker antibodies conjugated with metal-isotopes, which also results in narrowing 
down the populations that CyTOF can detect. On the contrary, scRNA-seq is a transcriptome-based platform, 
which detects wider unbiased-populations without marker selection. However, one limitation of droplet-based 

Figure 5.   ScRNA-seq revealed Treg cells in the TME have heterogeneity. (a) The procedures followed for the 
data processing. Briefly, the Treg-cell population was extracted from each sample as FOXP3 + CD25 + CD4 + T 
cells, concatenated, and analyzed. (b) t-SNE plot (left) and gene expression feature plot for Foxp3 (right, top) 
and IL2RA (right, bottom) of concatenated Treg cells. Six clusters of Treg cells were identified in the TME. (c) 
Violin plots showing the gene expression of Treg cells in the TME of representative genes.
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scRNA-seq is that its transcription-based data are relatively shallow and sparse39,40; the numbers of transcriptomes 
in every single cell are in the range of several thousands. Our study also demonstrated the features of these two 
distinct platforms clearly: CyTOF is “narrow and clear,” whereas scRNA-seq is “wide and indistinct.” CyTOF 
distinguished NK cells and T cells more accurately, while scRNA-seq detected plasma cells that CyTOF markers 
did not cover (Figs. 2 and 3). Taken together, we need to choose the best platform of single-cell analysis for the 
purpose and/or the combination of multiple platforms to compensate for their individual limitations.

We also optimized and established the protocols of scRNA-seq analysis for small clinical specimens of the 
biopsy-resected tumors. The same procedure used for the surgically-resected tumors could be applied to the 
protocols for the endoscopically-resected small tumor biopsies as well. Keys to success for single-cell analysis 
in the small biopsies appear to be (1) to use freshly-prepared tumor biopsies, and (2) to run the unsorted cells 
for the analysis. We initiated the single cell isolation as quickly as possible (~ 30 min) after receiving the tumor 
samples. The “no sorting” technique appears to mitigate physical damage to the primary cells, thus making it 
more suitable for analyses of small numbers of cells.

The optimized protocols allowed us to identify small heterogeneous populations of Treg in TME, suggest-
ing the scRNA-seq analysis appears to be a highly-feasible platform to understand the complexity of the tumor 
microenvironments in the small biopsy tumors (Fig. 5). A number of scRNA-seq studies in the surgery-resected 
clinical specimens have been reported, providing a large amount of comprehensive information to deeply under-
stand the clinically-relevant cancer biology, invasion, metastasis, and cancer evolution41. However, since the 
surgery-resected tumors are basically at the earlier stages of tumor development, the information obtained from 
the surgery-resected tumors may be restricted to the earlier-stage biological events of tumorigenesis, presumably 
missing the later-stage events. The small pieces of biopsy-resected tumors, on the contrary, could be technically 
collected from the later-stage cancer patients; thus, the single-cell analysis using these biopsy-resected tumors 
is expected to cover the valuable information from later-stage cancer. In addition, if the biopsy samples could 
be collected before and after the drug treatment in the same patients, the single-cell analysis with these pre-/
post-treatment specimens should provide a great advantage for a deep understanding of the mechanisms of 
actions and/or biomarker development for cancer therapeutic drugs41–43. In fact, the single-cell analyses in the 
biopsy samples, including the scRNA-seq analysis in gastric cancer, have received a lot of attention in recent 
years, while the number of reports is extremely limited31–33. Although several technical challenges still need to 
be cleared for scRNA-seq of the biopsy-resected tumors, especially the cell isolation steps to miss certain cell 
populations by “bottle-neck effects”33,44, this research platform of scRNA-seq should have potential to open the 
doors to the new generation of cancer biology, overcoming a number of difficulties that currently-used conven-
tional methodologies are facing.

In conclusion, we demonstrated two-distinct methodologies for single-cell analysis as powerful tools to clarify 
the subpopulations of clinical specimens. Although deeper analysis is required, the methods of the single-cell 
analysis showed the potential to identify various cell populations, which could not be identified by other modali-
ties providing novel insights into the tumor microenvironment. Taken with the technical advantages for each 
methodology, the single-cell analysis would be more powerful tools to understand the complexity of the TME.

Methods
Patients.  Patients with gastrointestinal cancer, who underwent surgical resection or endoscopic biopsy at 
National Cancer Center Hospital East in 2017, were enrolled in this study (Sup Table S1 and S2). All patients 
provided written informed consent before sampling, according to the Declaration of Helsinki. This study was 
performed in a blinded manner and was approved by the National Cancer Center Ethics Committee.

The procedure of sample processing.  Tumor sample processing.  Single fraction (~ 5 mm square size) 
from surgically-resected tumor samples or three fractions (~ 3 mm square size for each) from endoscopically-re-
sected tumor biopsy samples were subjected to CyTOF and scRNA-seq analyses. The freshly resected surgery or 
biopsy samples were kept in ~ 3 ml of cold saline solution, to start single-cell isolation in ~ 30 min after the tumor 
dissection. The tumor samples were substantially minced with a surgical blade and scissor into small pieces, and 
then isolated into single cells using gentleMACS Dissociator (Miltenyi Biotec, Bergisch Gladbach, Germany) at 
37 °C for 30 min digesting with ~ 5 ml of enzyme mixture, which includes 4 ml of DMEM medium with 10% 
FBS (DMEM/FBS), 1 ml of Collagenase P (final conc. 2 mg/ml, cat# 11213865001, Merck KGaA, Darmstadt, 
Germany) or Dispase (final conc. 2.5 mg/ml, cat# 4942078001, Merck KGaA, Darmstadt, Germany), and 50 μl of 
DNase I (final conc. 0.1 mg/ml, Qiagen, Venlo, Netherlands). The digested tumors were filtrated through 40 μm 
and 100 μm nylon mesh to remove cell aggregates, and cell viability was determined by microscopy (> 80% vi-
ability is preferable). Collecting the cell pellets by spin-down at 300 g for 10 min at 4 °C, the cells were suspended 
with 1 ml of Red Blood Cell Lysis Solution (cat# 130-094-183, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, 
Germany). After incubation for 2 min at 4 °C, the cells were suspended with 20 ml of DMEM/FBS, spinning 
down the cell pellets at 300 g for 5 min at 4 °C. The cells were substantially suspended in 1 ml of PBS with 10% 
FBS (PBS/FBS) and were filtrated through 40-μm nylon mesh. The resuspended cells with PBS/FBS at 1 × 106 
cell/ml were subjected to the single-cell analysis. The remaining portion of the isolated tumors were stocked in 
CELLBANKER (cat# CB011, Nippon Zenyaku Kogyo, Tokyo, Japan) according to the manufacturer’s instruc-
tion, which were used as “frozen samples”.

PBMC sample processing.  PBMC isolation by density gradient centrifugation with Ficoll-Paque was performed 
according to the manufacturer’s instruction (cat#17-1440-03, GE Healthcare Bio-Science AB, Uppsala, Sweden). 
Briefly, 4 ml of blood samples were carefully layered on to 3 ml of Ficoll-Paque media to the centrifuge tube, and 
then centrifuged at 400×g for 30 min at room temperature. The PBMCs were collected from the interface layer. 
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After washing with DMEM/FBS, PBMCs were suspended in 1 ml of PBS/FBS and were filtrated through 40-um 
nylon mesh. The resuspended cells with PBS/FBS at 1 × 106 cell/ml were subjected to the single-cell analysis.

IHC.  Surgically resected samples were formalin-fixed, paraffin-embedded, and the blocks which we marked 
before sampling for CyTOF and scRNA-seq were sectioned onto slides for IHC, which was conducted using 
monoclonal antibodies against CD20 (L26, Roche, Basel, Switzerland), CD45 (2B11 + PD7/26, DAKO, Agilent 
Technologies, Santa Clara, CA the USA), pan-cytokeratin (AE1, AE3, PCK26, Roche, Basel, Switzerland), CD79a 
(SP18, Roche, Basel, Switzerland), and CD138 (M115, DAKO, Agilent Technologies, Santa Clara, CA USA). 
CD45 and pan-cytokeratin staining were counted in five high-power microscopic fields (× 400; 0.0625 mm2), 
and their averages were calculated. Two researchers (Y.T. and T.K.) independently evaluated the stained slides.

CyTOF procedure.  CyTOF staining and analysis were performed as described20. The antibodies used in 
CyTOF analyses are summarized in Table S3. The cells were subjected to staining after washing with PBS supple-
mented with 2% fetal calf serum (FCS, Biosera, Orange, CA, USA) (washing solution) followed by incubation in 
5 μM of Cell-ID rhodium solution (Fluidigm, South San Francisco, CA, USA) in PBS, washed using the washing 
solution, and stained with a mixture of surface antibodies. After washing, the cells were fixed and permeabilized 
using Foxp3/Transcription Factor Staining Buffer Set (Thermo Fisher Scientific, Waltham, MA) according to 
the manufacturer’s instructions. The fixed and permeabilized cells were stained with intracellular antibodies. 
After washing twice, the cells were incubated overnight in 125 nM MaxPar Intercalator-Ir (Fluidigm) diluted 
in 2% paraformaldehyde PBS solution at 4 °C. The cells were then washed once with the washing solution and 
twice with MaxPar water (Fluidigm), distilled water with minimal heavy element contamination, to reduce the 
background level. The cells were then suspended in MaxPar water supplemented with 10% EQ. Four Element 
Calibration Beads (Fluidigm) were applied to the Helios instrument (Fluidigm), and data were acquired at speed 
below 300 events/s.

CyTOF data processing.  Using Cytobank45, a manual-gating scheme was processed to remove doublet 
cells, dead cells, and beads. After the cleanup processes, multidimensional data were clustered using R package 
FlowSOM46 and reduced dimension using R package Rtsne. After the visualization, cells were annotated by the 
expression of the following representative cell surface markers; T cell (CD3+ and CD8a+, or CD3+ and CD4+), 
B cell (CD19+), NK cell (CD56+), and myeloid cell (CD11b+ or CD11c+).

scRNA‑seq procedure.  Samples were processed using the Chromium Single Cell 3′ Solution v2 chemistry 
(10 × Genomics, CA, USA) as per the manufacturer’s recommendations24. Briefly, cell suspension is resuspend-
eed at 1 × 106 cells per ml. To generate GEMs, master mix with cell suspension, gel beads and partioning oils 
are loaded on Chromium Chip. GEM-RT reaction, cDNA amplification, gene expression library generation 
were followed using Chromium kits and reagents. After library generation, sequencing was performed using 
Illumina HiSeq 2500 Rapid run with 98-bp pair-end reads. Using Cell Ranger (version 2.0, 10 × Genomics), 
the fastq files were generated from the bcl files. The sequence reads were aligned to UCSC hg38 and UMIs 
(Unique Molecular Identifiers) were counted for each gene in each cell barcode using Cell Ranger count (option: 
–expect_cells = 6000). Then, the data were polished by R package Seurat as below26,27.

scRNA‑seq data processing for PBMC samples.  Using Cell Ranger output files, barcodes.tsv, genes.
tsv, and matrix.mtx, Seurat objects were created. Cells with UMI < 1500, expressing < 100 genes, and with > 10% 
mitochondrial genes were removed from PBMC datasets using Seurat v2.3.4. Then, the UMI counts were nor-
malized and scaled. Clustering and 2D projection by t-distributed Stochastic Neighbor Embedding (t-SNE), was 
also performed after dimensional reduction using the first 10 Principal Components (PCs). For the feature plot, 
the dataset was updated and plotted using Seurat v3. The number of cells after the process was shown in Table S5. 
Cells were annotated with cell types by the expression levels of 40 markers in Table S4.

scRNA‑seq data processing for TIL samples.  Using Cell Ranger output files, barcodes.tsv, genes.tsv, 
and matrix.mtx, Seurat objects were created. The number of cells with UMI ≥ 1500 were counted using the 
gene-cell matrix of Cell Ranger. To extract the data of single cells with UMI ≥ 1500, Cell Ranger count was re-
conducted with the option “–force_cells” with the number of cells with UMIs ≥ 1500 in each sample. Then, the 
data was aggregated using Cell Ranger aggr with the option “normalize = none” for combining the data from 
the same patients. Using Seurat v2.3.4, cells with > 10% mitochondrial genes and expressing < 500 genes were 
discarded from the datasets. The total reads and the number of detected cells were shown in Table S7. Then, 
the UMI counts were normalized and scaled. Clustering and 2D projection by t-SNE were also performed after 
dimensional reduction using the first 20 PCs using Seurat. Using representative marker genes of each cell type in 
Table S4, the cell clusters were annotated22.

As gc_003 differs from other samples in total reads, it was removed for the analysis of Figs. 4d and 5.
For the analysis of Fig. 4d, the cell clusters, which were defined as B or plasma cells, were extracted from 

four patients and individually gathered into B-cell and plasma-cell groups. Then, the expression levels of the 
representative B-cell and plasma-cell related genes were plotted using Seurat v3.

For the analysis of Fig. 5, the cell clusters, which were defined as regulatory T cells, were extracted from the 
datasets of each patient. Briefly, T + NK clusters were first extracted from the TIL datasets and the T + NK cells 
were re-clustered after cell cycle regression and dimensional reduction using the first eight PCs. Then, clusters 
were extracted according to the expression of CD3, CD4, and FOXP3 as Tregs. The extracted Treg clusters of 
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all the cases were combined using the first eight PCs by performing Seurat RunMultiCCA and AlignSubspace. 
The Tregs were re-clustered into six sub-clusters (clusters 0–5). For each cluster, the top 10 marker genes were 
identified, as shown in Table S6.

Data availability
The datasets generated and/or analyzed during the current study will be available on Database of National Bios-
ceience Database Center before this manuscript is published.
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