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ABSTRACT

Drug resistance invariably limits the response of oncogene-addicted cancer cells to targeted therapy. The up-
regulation of signal transducer and activator of transcription 3 (STAT3) has been implicated as a mechanism of
drug resistance in a range of oncogene-addicted cancers. However, the development of inhibitors against STAT3
has been fraught with challenges such as poor delivery or lack of specificity. Clinical experience with small
molecule STAT3 inhibitors has seen efficacy signals, but this success has been tempered by drug limiting toxi-
cities from off-target adverse events.

It has emerged in recent years that, contrary to the Warburg theory, certain tumor types undergo metabolic
reprogramming towards oxidative phosphorylation (OXPHOS) to satisfy their energy production. In particular,
certain drug-resistant oncogene-addicted tumors have been found to rely on OXPHOS as a mechanism of sur-
vival. Multiple cellular signaling pathways converge on STAT3, hence the localization of STAT3 to the mi-
tochondria may provide the link between oncogene-induced signaling pathways and cancer cell metabolism.

In this article, we review the role of STAT3 and OXPHOS as targets of novel therapeutic strategies aimed at
restoring drug sensitivity in treatment-resistant oncogene-addicted tumor types. Apart from drugs which have
been re-purposed as OXPHOS inhibitors for-anti-cancer therapy (e.g., metformin and phenformin), several novel
compounds in the drug-development pipeline have demonstrated promising pre-clinical and clinical activity.
However, the clinical development of OXPHOS inhibitors remains in its infancy. The further identification of
compounds with acceptable toxicity profiles, alongside the discovery of robust companion biomarkers of
OXPHOS inhibition, would represent tangible early steps in transforming the therapeutic landscape of cancer cell
metabolism.

1. STAT3 signaling in cancers and STAT3 as a therapeutic target

Complex cell signaling pathways have been described to be inter-
connected, and integrate information which regulate processes such as
protein synthesis, cell growth, differentiation, and cell death. Signal
transducer and activator of transcription 3 (STAT3) is a key element in
multiple oncogenic signaling pathways, and is the most strongly asso-
ciated with tumorigenesis of the seven members of the STAT protein
family. Distinct from the transient physiological STAT3 signaling ob-
served in normal cells, STATS3 is persistently activated in many cancers
and in many human cancer models, in-vitro STAT3 inhibition leads to
growth inhibition and apoptosis [1]. STAT3 Tyrosinem5 (Y705)

phosphorylation is responsible for the activation of this canonical
pathway, and results in malignant transformation by promoting cell
proliferation, angiogenesis, and immune evasion [2]. Aside from this,
an additional role of STAT3 as a modulator of mitochondrial respiration
has been described, which is activated by non-canonical signaling
through the phosphorylation of the Serine”?” (Ser727) residue of STAT3
[2—-4]. The major pathways contributing to STAT3 activation are the
cytokine and growth factor rich tumor microenvironment, over-
expression of tyrosine kinases, and epigenetic modulation of negative
regulators of STAT3.

STAT3 has been extensively studied as a therapeutic target for
several reasons: it is frequently activated in a variety of malignancies
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Table 1
Preclinical and clinical development of STAT3 inhibitors.
Site of action Class Preclinical data Clinical Data  Challenges
SH2 domain dimerization inhibitors ~ Peptides Src-transformed fibroblasts - Poor in-vivo stability, and cellular
XpYL [65] permeability
Peptidomimetics Breast, NSCLC, Src-transformed -

Upstream TKI

Oligonucleotides

STAT3 DNA-binding domain

1SS610 [66]

Small molecule inhibitors
STA-21 and analogues
LLL-3

S31-201

STATTIC [67]

OPB-31121 [68]
OPB-51602 [9]

Natural compounds
Cucurmin and analogues [70]

Small molecule inhibitors
AZD1480 [10]
Dasatinib [71]

Antisense oligonucleotide (mRNA)

STAT3 decoy oligonucleotide(DNA-

binding) [72,73]
STAT3 post-transcriptional(siRNA)

Platinum IV compounds [74]
1S3295
CPA-1
CPA-7

fibroblasts

Breast, sarcoma, GBM

Lack of potency and specificity

GBM -

Breast -

Breast, HCC, GI -

HCC, Leukemia [69] Phase 1 Toxicities

CRC, Liver, Lung Phase 1

RCC, Breast, Pancreas, HCC, GI, - Lack of potency and specificity
NSCLC

EGFR NSCLC Phase I Toxicities

NSCLC, HNSCC Phase II Lack of efficacy
Lymphoma, NSCLC Phase 1/11 Rapid degradation
NSCLC, colorectal, HNSCC Phase 0

Breast, Brain, SCC

Breast
Colon
NSCLC

Lack of specificity

NSCLC - non small cell lung cancer, GBM - glioblastoma, HCC - hepatocellular carcinoma, GI — gastrointestinal, RCC - renal cell carcinoma, HNSCC - head and neck
squamous cell carcinoma, SCC - squamous cell carcinoma, TKI - tyrosine kinase inhibitor.

and the inhibition of STAT3 signaling results in selective apoptosis of
STAT3 dependent tumor cells, but not normal cells [5]. Several onco-
genic pathways converge on STAT3, hence its inhibition has the po-
tential to simultaneously block several upstream pathways. Alvarez
et al. made the observation that STAT3 is a critical mediator of the
oncogenic effects of epidermal growth factor receptor (EGFR) muta-
tions and postulated that targeting it might be an effective strategy in
the treatment of EGFR oncogene-addicted non-small cell lung cancer
(NSCLQ) [2].

Several strategies have been studied to target the STAT3 signaling
pathway. These include direct inhibition of the STAT3 protein, in-
hibiting upstream tyrosine kinases, and the DNA binding complex.
However, in contrast to the “druggable” classic binding pockets found
in tyrosine kinase receptors or other enzymatic targets, targeting the
STATS3 protein-protein interaction with a large and diffuse surface area
has been technically challenging [6]. Upstream regulators of STAT3 and
platinum complexes lack specificity, while decoy oligonucleotides and
antisense oligonucleotide inhibitors pose a challenge in delivery [7,8].
While direct STAT3 small molecular inhibitors appear to be the most
favorable candidates, those evaluated to date have suboptimal potency,
unfavorable PK properties, and even potentially life threatening toxi-
cities [9,10]. Table 1 summarizes the development of STAT3 inhibitors
to date. Overall, single-pathway STAT3 inhibition has not demonstrated
a high potential for success, due to extensive cross talk and alternative
signaling pathways found in STAT3 activated malignancies, in addition
to its activation by non-canonical pathways, including epigenetic me-
chanisms [8].

2. The upregulation of STAT3 as a mechanism of drug resistance

More recently, STAT3 activation has surfaced as a mechanism of
resistance in oncogene-addicted tumor types which have been treated
with their respective oncogene-pathway inhibitors. The phosphoryla-
tion of STAT3 has been shown to be activated by various forms of

mutant EGFR [L858R, E746_A750 deletion] and BRAF V600E signaling
[11,12]. The BRAF/STAT3/Mcll signaling cascade has been described
to be crucial for melanocyte and melanoma cell survival, and increased
levels of phosphorylated STAT3 occur frequently during the progression
of melanoma from local to metastatic disease [13]. Lee et al. demon-
strated that STAT3 upregulation was a generalizable mechanism of
drug resistance across a range of oncogene-addicted phenotypes treated
with their primary pathway inhibitors, including EGFR, HER2, ALK,
MET and KRAS mutant cell lines [11]. Interestingly, the co-targeting of
the MEK/ERK pathway and STAT3 through FGFR/JAKI inhibition re-
stored sensitivity of the oncogene-addicted cells to their respective
pathway inhibitors. The clinical significance of this finding was con-
firmed in a phase I clinical trial of a small molecular inhibitor, OPB-
51602, where partial responses were observed in two patients with
EGFR TKI-resistant NSCLC. However, the further development of this
compound was curtailed by a toxicity profile suggestive of mitochon-
drial dysfunction, namely peripheral neuropathy and elevated serum
lactate [9]. These toxicities were eventually explained when the me-
chanism of action of OPB-51602 was elucidated; the compound binds
with high affinity to the STAT3-SH2 domain, triggering a downstream
cascade by interfering with mitochondrial STAT3 (mSTAT3). This in-
duces mitochondrial dysfunction and the accumulation of proteotoxic
STATS3 aggregates, leading to cell death. Its efficacy is enhanced under
conditions which increase reliance on mitochondrial respiration (e.g.
glucose starvation), suggesting that the inhibition of STAT3 in meta-
bolically stressed cells results in metabolic synthetic lethality [14].

3. The link between STAT3 signaling and mitochondrial
respiration

The discovery of mSTAT3 revealed its novel role and provided a link
between oncogene-induced cellular signaling pathways and cancer cell
metabolism, which is now recognized as a hallmark of cancer [15].
STAT3 has been reported to reside in the mitochondria and a
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mitochondrial protein, gene associated with retinoid interferon-induced
mortality 19 (GRIM-19). Specifically, it is associated with the GRIM-19-
containing mitochondrial complexes I and II, which are components of
the electron transport chain (ETC) that generate energy by oxidative
phosphorylation (OXPHOS) [4]. Functionally, mSTAT3 augments ETC
activity; cells which are deficient in mSTAT3 display markedly reduced
cellular ATP production [16].

In addition, mSTAT3 confers a protective role during cellular stress,
by the reduction of reactive oxygen species (ROS) production and re-
tention of cytochrome C in the mitochondria of cardiomyocytes ex-
posed to ischemic damage [17]. Targeting STAT3 results in the dysre-
gulation of mitochondrial activity, which is associated with excessive
ROS formation, reduced mitochondrial membrane potential and en-
hanced apoptosis [17-19]. In cells under oxidative stress, functional
mSTATS3 has a crucial role in preventing ROS-induced ASK1/p38MAPK.
mediated apoptosis [19]. Excessive or prolonged endoplasmic re-
ticulum (ER) stress response results in a progressive reduction in
mSTAT3 and resultant endothelial cell death via the loss of focal ad-
hesion kinase-mSTATS3 signaling, leading investigators to conclude that
mSTAT3 also has a protective effect on endothelial cells [20]. Fur-
thermore, functional mSTAT3 is required for malignant transformation
by protein tyrosine kinase oncoproteins, such as anaplastic lymphoma
kinase (ALK) and v-Src, as well as oncogenes that lack tyrosine kinase
activity, e.g the RAS oncogene [11,12,16,21]. A preclinical study de-
monstrated that in certain circumstances, mSTAT3 plays a more critical
role in malignant transformation than canonical STAT3 activation, as in
the case of Barrett's cells possessing oncogenic H-RasG12V [22].

4. Cancer cell metabolism

Half a century ago, Otto Warburg described the metabolic switch
from OXPHOS to glycolysis in cancer cells, even in conditions of high
oxygen tension (“aerobic glycolysis”) [23]. It is now evident that tumor
mitochondrial metabolism is not defective, but rather, reprogrammed
to meet the challenges of macromolecular synthesis in proliferating
cells [24]. Metabolic reprogramming of cancer cells leading to OXPHOS
upregulation is now well-described, representing a paradigm shift from
Warburg's classic hypothesis. It has been proposed that the cancer cell
progresses through four waves of metabolic regulation. Oncogene
mediated signaling leads to cancer stem cell transformation in the first
wave. The second wave is prompted by hypoxia, inducing hypoxia-in-
ducible factor (HIF) pathway signaling and a glycolytic switch. These
first two waves provide gene reprogramming towards the glycolytic
Warburg phenotype. From aglycemia secondary to high proliferation
rates, arises the third wave, wherein the AMP-activated protein kinase
(AMPK)-liver kinase B1 (LKB1) pathway is upregulated. This functions
as a metabolic checkpoint, driving cells back towards oxidative meta-
bolism. AMPK enhances sirtuin-1 (SIRT1) activity by increasing cellular
NAD + levels, leading to deacetylation and modulation of the activity of
downstream targets, such as peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC-1a). This causes expression of genes
controlling mitochondrial biogenesis and activity. Retrograde signaling
from revitalized mitochondria constitutes the fourth wave [25]. The
bioenergetic mode of a tumor switches between glycolytic and oxida-
tive depending on tumor microenvironment and activated oncogenes
[26]. Cell lines of various tumor types, including breast, cervical,
pancreatic and liver cancers, have demonstrated flexibility in switching
from aerobic glycolysis to OXPHOS for derivation of energy in glucose
limited conditions [25]. Despite these attempts to describe cancer cell
metabolism, it is likely a more complex entity with different states
occurring simultaneously within heterogenous tumor populations.
Apart from aerobic glycolysis and OXPHOS, it is recognized that cancer
cells adapt to their microenvironment and the availability of nutrients,
then utilize alternate metabolic fuel such as glutamine via reductive
carboxylation, and fatty acids via lipid metabolism [27,28].
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5. The upregulation of oxidative phosphorylation as a mechanism
of drug resistance

The metabolic switch towards OXPHOS as a mechanism of drug
resistance is best described in relation to oncogene-addicted tumors.
Many patients with oncogene-addicted tumors are treated with tyrosine
kinase inhibitors (TKIs) with excellent response rates and limited
toxicities. Examples are NSCLC with activating EGFR mutations or
which contain EML4-ALK fusions, malignant melanoma with BRAF
mutations, chronic myelogenous leukemia (CML) harboring the BCR-
ABL fusion oncogene, myelodysplastic syndrome with JAK2 mutations
[29-32]. These can be treated with EGFR kinase, ALK kinase, ABL Kki-
nase and BRAF and JAK2 kinase inhibitors respectively [33]. However,
the duration of benefit from these TKIs are finite and drug resistance
eventually sets in [34]. Small molecule inhibitors that target driver
oncogenes can potentially inhibit the glycolytic pathway [35]. There-
fore, cancer cells which have survived TKI therapy are critically reliant
on OXPHOS for efficient production of ATP [36]. This highlights the
role of metabolic plasticity in cancer cell survival [34]. To date, this has
been shown in oncogene-addicted malignant melanoma and NSCLC.
BRAF mutant melanomas treated with BRAF inhibitors became ad-
dicted to oxidative metabolism via increased expression of the mi-
tochondrial master regulator, PGCla. This adaptive induction of OX-
PHOS resulted in the limited the efficacy of BRAF inhibition [37]. The
EGFR T790M mutation, commonly associated with secondary drug re-
sistance in EGFR mutant NSCLC, may be effectively targeted by osi-
mertinib, a third generation EGFR TKI [38,39]. In osimertinib-sensitive
EGFR-mutant NSCLC cell lines, osimertinib treatment suppressed gly-
colysis and induced a metabolic switch towards OXPHOS, making the
cells critically reliant on OXPHOS for survival. The combination of
osimertinib with OXPHOS inhibition significantly delayed the time to
osimertinib drug resistance, representing a novel therapeutic strategy to
overcome resistance [35].

Cancer stem cells (CSCs) are a sub-population of cells within a
tumor, which have the ability to self-renew and simultaneously gen-
erate progenitors that lose their stemness [40]. CSCs are notoriously
resistant to standard anti-cancer therapies, and are critical drivers of
relapse and disease progression. Previously, CSC metabolism was
thought to be glycolytic, however there is growing evidence that show
CSCs possess metabolic plasticity and have a preference for mitochon-
drial oxidative metabolism [41,42]. This metabolic plasticity enables
CSCs to survive in the unfavorable environments related to tumor
progression and metastatic sites. Newly emergent data from a BCR-ABL
oncogene-addicted CML model revealed that although TKIs successfully
targeted differentiated cells, acquired resistance arose due to the per-
sistence of leukemic stem cells (LSCs). These stem cells were found to be
critically dependent on OXPHOS for their survival and the combined
targeting of OXPHOS and BCR-ABL successfully led to their eradication
[43]. Surviving tumor cells of oncogene ablation in pancreatic adeno-
carcinoma, responsible for tumor relapse, have also demonstrated re-
liance on mitochondrial respiration for energy. Though resistant to
nutrient deprivation and environmental stressors, they were unable to
compensate for fluxes induced by OXPHOS inhibition. This high sen-
sitivity to OXPHOS inhibitors impacted their tumorigenic potential,
implying that targeting OXPHOS may eliminate these surviving cells
and prevent tumor relapse [44]. Overall, we conclude that a subset of
oncogene-addicted cancers acquire a metabolic switch towards the
OXPHOS pathway as a mechanism of secondary resistance, mediated by
the metabolic reprogramming of stem cell populations. This represents
a therapeutic niche for OXPHOS inhibition, either alone or in combi-
nation with inhibitors of activated co-operative signaling pathways
(Fig. 1).

6. Oxidative phosphorylation as a therapeutic target

There are presently very few agents targeting mitochondrial
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Fig. 1. Warburg's theory that cancer cells depend on aerobic glycolysis led to the assumption that OXPHOS is downregulated in cancer. Increasing evidence
demonstrates that certain cancers are reliant on OXPHOS for energy production. Oncogene addicted tumors are typically sensitive to primary pathway tyrosine
kinase inhibitor therapy. After prolonged treatment, differentiated cancer cells are eliminated, however a subpopulation of malignant cells, the cancer stem cells,
persist. Upregulation of STAT3 occurs via both canonical and non-canonical pathways. In the non-canonical pathway, serine”’-phosphorylation (P-S7%”) of STATS is
signaled via the MAP kinase (MAPK). P-S7%7-STAT3 activates mitochondrial STAT3 (mSTAT3), while GRIM-19 imports STAT3 into the mitochondria. The upre-
gulation of mitochondrial STAT3 increases mitochondrial complex I and II activity, and therefore OXPHOS. The upregulation of mitochondrial STAT3 and OXPHOS
are resistance mechanisms to TKI therapy, evident in work studying the metabolic reprogramming of persistent cancer stem cells. Treating oncogene addicted tumors

with both primary pathway TKIs and OXPHOS inhibitors may therefore reverse resistance. P-Y”°°: Tyrosine

function in clinical use as anti-cancer therapy or in the developmental
pipeline for solid tumors. Efforts have been made to repurpose met-
formin, widely used in the treatment of type II diabetes mellitus, into an
anti-neoplastic agent. The antitumor mechanism of metformin involves
the activation of AMPK which inhibits the phosphoinositide 3 kinase
(PI3K)/ Akt/ mTOR signal transduction pathway, thus reducing cell
growth [45]. A recent phase II study of metformin in the pre- and post-
operative management of ovarian cancer has revealed tolerability and
favorable results. Tumors treated with metformin were found to have
an improved sensitivity to cisplatin in-vitro, associated with a reduction
in CSC populations [46]. Despite these promising results, trials have yet
to determine if the administration at clinically tolerable doses will
achieve sufficient drug levels in neoplastic tissue, and have yet to es-
tablish a definitive role as anti-cancer therapy [47]. Another biguanide,
phenformin, similarly decreases ATP levels by inhibiting mitochondrial
complex I, and is more potent and bioavailable than metformin due to
more efficient delivery to the mitochondria [36]. It was developed as an
anti-diabetic drug but withdrawn in the 1970s due to risks of fatal lactic
acidosis. It is currently being re-purposed for use as cancer therapy.
Phenformin has been shown to selectively trigger apoptosis in NSCLC
cell lines lacking functional LKB1 pathways [48]. Synergy of phen-
formin in combination with selumetinib, a MEK inhibitor, was de-
monstrated in-vitro, and confirmed in-vivo using xenograft models. The
loss of LKB1 in KRAS-mutant NSCLC conferred resistance to selume-
tinib, while sensitizing cells to phenformin. Phenformin enhanced the
therapeutic effect of selumetinib, regardless of LKB1 status. Thus, tar-
geting both MEK and cancer metabolism is a potential strategy to treat
this subset of NSCLC [49]. An ongoing phase I trial is evaluating the
safety and efficacy signals of administering phenformin in combination
with dabrafenib and trametinib in patients with metastatic
BRAFV600E/K mutated melanoma. (ClinicalTrials.gov Identifier:
NCT03026517).

IACS-10759 is a novel and potent small molecular inhibitor of mi-
tochondrial complex I, which possesses favorable physicochemical
properties in-vivo. It demonstrated robust activity in specific biologic
contexts, including acute myeloid leukemia (AML) and glycolysis-de-
ficient [Enolase-1 (ENO1) - and phosphoglycerate dehydrogenases

795_phosphorylation.

(PGD)-null] glioblastoma multiforme and neuroblastoma models. There
is an ongoing phase I trial of this agent in AML and other solid tumors
[50,51]. (ClinicalTrials.gov Identifier: NCT03291938, NCT02882321).
Other inhibitors of mitochondrial complex I include carboxyamido-
triazole (CAI) and BAY 87-2243. CAI inhibits angiogenesis and tumor
growth in a range of cell lines in-vitro and in-vivo [52]. Despite positive
outcomes in preclinical studies, CAI did not demonstrate clinical benefit
in NSCLC as maintenance therapy against placebo in a phase III ran-
domized trial [53]. The novel complex I inhibitor, BAY 87-2243, re-
duces HIF protein levels under hypoxic conditions. In-vivo, BAY
87-2243 suppressed HIFa protein levels and reduced target gene ex-
pression in a H460 NSCLC xenograft model. Under glucose deprived
conditions, which shifts cells towards reliance on OXPHOS for energy
production, BAY 87-2243 potently inhibited cell proliferation [54]. It
significantly reduced tumor growth in BRAF mutant melanoma mouse
xenografts, especially in more OXPHOS-dependent slowly proliferating
tumors. BAY 87-2243 induced cell death by stimulating ROS genera-
tion and inducing oxidative stress [55]. Unfortunately, a phase I trial of
the compound has been terminated early due to toxicities [56]. (Clin-
icalTrials.gov Identifier: NCT01297530).

Inhibiting STAT3 has been found to inhibit OXPHOS. The OPB
compounds have been found to indirectly inhibit mitochondrial com-
plex I and II via their action on mSTAT3. A second generation OPB
compound (OPB-111077) with an improved safety profile has com-
pleted evaluation in a phase I study of advanced, treatment-refractory
solid tumors, and is currently being studied in drug resistant oncogene-
addicted tumors [57]. (ClinicalTrials.gov Identifier: NCT03158324).
The feasibility of inhibiting OXPHOS by targeting mSTAT3 has also
been demonstrated in preclinical studies of compounds developed as
STAT3 inhibitors. MDC-1112 inhibited STAT3 mitochondrial localiza-
tion and selectively induced mitochondrial ROS in pancreatic cancer
cells. By blocking the mitochondrial membrane potential, MDC-1112
was able to induce mitochondrial cell death [18]. Mitocur-1 and Mi-
tocur-3 are STAT3 inhibitors which have been shown to reduce mi-
tochondrial oxygen consumption and levels of Ser727 STAT3 phos-
phorylation in a dose dependent manner, but have yet to be evaluated
in cancer [58]. Similarly, the treatment of cardiomyocytes with Stattic,



Redox Biology 25 (2019) 101073

M. Lee, et al.

BIWIDYNI| dNSe[qOYdWA] 91nde — TTY ‘RIWLYNS] PIO[OAUI DIUOIYD — TND “IOWN] ISAI] asnour d[qejueldsuen — 1] ‘PwounIed un|
SIMIT — DTT ‘BWOUIDILD [[92 snowrenbs ydau pue peay — DDSNH [0 Wdls I19dued — DS ‘BwoydwiA] [[90 g 981e] 9SNYIp — TOFTJ ‘BTWINNS] PIO[oAW aInde — TNV ‘BwoIse[qo13 — NGO ‘19oued Junj [[99 [[euws uou — HTIOSN

- [#0T‘c0T] 21eISOId qruiniuen
(€3
- [201] wotod ‘[T0T] TIV ‘[00T] Isea1g  duUIUIEIIA) SUOIPRUIN
[86]
aelsoxd ‘[86] INGD ‘[86] rwouepW ‘[86] dneasued ‘[86]
[66] TV - I @seyd ueLeso ‘[g6] Isealq ‘[£6] OTOSN (961 TIND ‘[S6] TNV auIPA331L,
- [¥6] Jown DTT ‘[Ppou I'TL SPIXOLI) JIUISIY
- [€6] sDSD Isearg suonbeaoyy stoyqrqur
Aoedryge jo yoe [Z6] 1sealq - 111 9seyd [16] ewouRRA QuUIWePIUOT xa[1dwod [eLIPUOYD0IIUI JDYIQ
Aoedygo Jo yoe] pajeuluia) — 1 aseyd [06] wo10D 009X'TA
[£S] s190UED A1010BIDI /PIDUBAPE - | SEYJ [£5] TD9T1A LLOT11-9dO
[68]
erurayeloeradAy (pareurunIa)) saroueudifeur fedrdojojeway — | aseyd ejep paysiqndun
pue Ayjedomoau Tersydirad Surpnpour saNIIXO], ‘[6] s190ouRD AI010RIJOI /PIDURAPE — [ 3seUd ur (3uny “I9AI] ‘UOJ0D) SAUT] [9D B0 [+ 1] 1LIS0Id 2091S-9dO
- [88] TAV TETT-SOVI
- [0s] TAV 6S2010-SOVI
SINIIXOT, paleuIULIa) — | dseyd [¥S] DOSNH £YCC-L8 AV
[€S] DTOSN - III 9seyd [zg] stowm DT IvD
[£8] sisopioe d1oe[ JO YSII pajeAd[d (£1S920€0.LDON) BWOUR[PW Ul qIUpdURT) pue
U1 01 NP SOLET Y} U J9YILW Y} WO UMBIPYNA,  QIUSJRIQEp (M UOHEBUIqUIOD UT [eln) [ dseyd Sulo8uQ  [98] INGD [S8-€8] ewouepW ‘(618 ] DTOSN JURINW SV uruIoyusyq
[9G] 8uro8uo AJUa1MD a8 S[ELI) ISYJ0 [BIAAIS
*[28] sunsayur [[euss ur saye[nwmdde anssp dnse[doau  [18°08] DTOSN ‘[64°8.] Iseaid ‘[9f] uelLreAQ II dseyd
ur s[aAs] 3nup Jusmdyns Surastyde ur Amoygiq [££] s190uRD A1010RIJ1 /PIdURAPE — [ 3Seyd [9£] uojoD ‘[9/] 1sea1g ‘[G/] sealdueq UTWLIOJIDN s10)IqIYuI SOHdXO
saduaqreyn BlRQ [RIIUID BIRp [RIIUTDRI] 1wy UuordE JO IS

*S1031qIYUT [ELIPUOYDOIIUI IS0 PUB SIONQIYUI SOHIXO dWOS JO JUaWdO[2A3P [EITUID PUE [edIUI[IDI]
¢ dlqeL



M. Lee, et al.

a small molecule STAT3 inhibitor, led to lower mitochondrial oxygen
consumption and ATP production. Oxidative stress and therefore ROS
formation was enhanced, resulting in cell death via mitochondrial
permeability transition pore (MPTP) opening [59].

Aside from targeting OXPHOS and the electron transport chain,
there are other ways to target the mitochondria. Several agents have
shown promising preclinical data but few have advanced to clinical
trials. Table 2 summarizes the development of OXPHOS inhibitors and
other mitochondrial targeted therapy to date.

7. Biomarkers of OXPHOS inhibition

Patient selection is pivotal to the successful development of
OXPHOS inhibitors. A major hindrance to the development of this class
of compounds is the lack of robust biomarker strategies and the eva-
luation of these compounds in unenriched patient populations.
Rigorous clinical evaluation of novel OXPHOS inhibitors in the relevant
molecular contexts has the potential to result in the clinical application
as single-agent therapy and in synthetic lethality with inhibitors of co-
operative signaling pathways in oncogene-addicted tumor types. If a
therapeutic niche for OXPHOS inhibition in drug-resistant oncogene-
addicted tumors can be established, the practical implications of this
will be immense.

In terms of identifying molecular contexts of susceptibility to
OXPHOS inhibition, mitochondrial genomic sequencing analysis by The
Cancer Genome Atlas (TCGA) has revealed deleterious tumor-specific
somatic mitochondrial DNA (mtDNA) mutations in significant propor-
tions of colorectal adenocarcinomas, ovarian serous cyst adenocarci-
nomas, and AMLs. These mutations conferred greater sensitivity to
mitochondrial complex I inhibitors, metformin and phenformin, in-
dicating their potential to be pursued as predictive biomarkers.
However, analysis of mtDNA or cancer cell metabolism gene expression
profiling may not directly correlate with functional oxidative metabo-
lism, and other tools of characterizing OXPHOS activity should also be
considered. These include metabolomics profiling and the functional
evaluation of oxygen consumption and lactate production [56,60].

GRIM-19 was originally identified as a tumor suppressor, but sub-
sequently was found to be an essential subunit of mitochondrial com-
plex I, with STAT3-suppressive effects. Downregulation or loss of GRIM-
19 is associated with a more aggressive phenotype of gastric cancer.
The progressive depression of GRIM-19 is parallel with malignant
transformation of chronic atrophic gastritis [61]. Complex I catalyzes
the first step of electron transfer in the OXPHOS system, therefore being
able to measure its function via a surrogate entity such as GRIM-19 may
help discern which tumors are more susceptible to OXPHOS inhibition
[62]. PGCla-dependent signaling, indicative of OXPHOS upregulation,
has been observed in several cancers [63]. Cells with high protein ex-
pression of PGCla have a survival advantage when exposed to meta-
bolic stresses. Although specific inhibitors of PGCla are not yet avail-
able, OXPHOS inhibitors have been observed to reduce cell growth in
PGCla immunohistochemistry (IHC)-positive cancer cells [64]. More-
over, investigators of IACS-10759 have attempted to define a glycolysis-
deficient context. ENO1 and PGD IHC was performed on 92 brain tu-
mors, with 8.6% found to be unambiguously ENO1-null or showing
very low ENO1 staining, while none were PGD-null [50].

8. Conclusion

Despite advances in targeting oncogene-addicted cancers with TKIs,
drug resistance inevitably occurs. Novel strategies to overcome drug
resistance are crucial to successful anti-cancer therapy. Aside from
targeting alternative pathways of cellular signaling and the tumor im-
mune landscape, cancer cell metabolism has emerged as an important
mechanism of resistance, and hence is an attractive therapeutic target.
STATS3, found to be constitutively activated in several malignancies, has
long been regarded as a valuable target and well-studied over the last
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two decades. Unfortunately, efforts to develop STAT3 inhibitors have
not been fruitful due to the lack of a reliable biomarker, unfavorable PK
properties and off-target adverse events. The discovery of mSTAT3 has
provided a critical link between cellular signaling pathways and cancer
cell metabolism, and emerging evidence of the metabolic reprogram-
ming of cancer cells towards OXPHOS as a mechanism of drug re-
sistance has validated OXPHOS as a therapeutic target. This is made
even more promising by the discovery of OXPHOS as a mechanism of
survival in cancer stem cells, and has given rise to the prospect of
eradicating traditionally therapy-resistant CSCs through OXPHOS in-
hibition. This provides strong rationale for the further investigation of
this class of compounds in combination with primary pathways in-
hibitors, in a synthetic lethality approach aimed at restoring sensitivity
to treatment. One of the main challenges undermining the development
of OXPHOS inhibitors for clinical use is their narrow therapeutic index
and potential for life-threatening toxicities, e.g. lactic acidosis. The
addition of OXPHOS inhibitors to TKI therapy in oncogene-addicted
tumors has the added advantage of limiting exposure to individual
agents, therefore minimizing toxicities overall.

The further identification of compounds with acceptable toxicity
profiles alongside the discovery of companion biomarkers of OXPHOS
inhibition in upcoming clinical trials, will be crucial in establishing the
role of this novel class of agents in the pharmaceutical pipeline. With a
deeper understanding of the PK and safety profile of these compounds,
the potential to effectively reverse drug resistance in oncogene-addicted
cancers is not far off on the horizon.
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