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Abstract

Given trained models from multiple source domains, how can we predict the labels of unla-

beled data in a target domain? Unsupervised multi-source domain adaptation (UMDA) aims

for predicting the labels of unlabeled target data by transferring the knowledge of multiple

source domains. UMDA is a crucial problem in many real-world scenarios where no labeled

target data are available. Previous approaches in UMDA assume that data are observable

over all domains. However, source data are not easily accessible due to privacy or confi-

dentiality issues in a lot of practical scenarios, although classifiers learned in source

domains are readily available. In this work, we target data-free UMDA where source data

are not observable at all, a novel problem that has not been studied before despite being

very realistic and crucial. To solve data-free UMDA, we propose DEMS (Data-free Exploita-

tion of Multiple Sources), a novel architecture that adapts target data to source domains

without exploiting any source data, and estimates the target labels by exploiting pre-trained

source classifiers. Extensive experiments for data-free UMDA on real-world datasets show

that DEMS provides the state-of-the-art accuracy which is up to 27.5% point higher than

that of the best baseline.

Introduction

Given trained models from multiple source domains, how can we predict the labels of unla-

beled data in a target domain? Unsupervised multi-source domain adaptation (UMDA) aims

at predicting the labels of unlabeled target data by utilizing the knowledge of multiple source

domains. Many previous works [1–9] for UMDA have focused on finding domain-invariant

features z of data x to transfer the knowledge of conditional probability p(y|z), where y repre-

sents the label of data x, from the source domains to the target domain. It is thus essential for

UMDA that data x is observable in all domains to be able to estimate the conditional probabili-

ties p(z|x) of all domains while finding the domain-invariant features z.

However, source data are not always accessible, although models of conditional probabili-

ties p(y|x) learned in source domains are often readily available, due to privacy or confidential-

ity issues in many practical scenarios. For instance, a hospital is allowed to access disease

classifiers that are trained in other hospitals but not the data the classifiers observed because of

privacy issues. Fig 1 illustrates the UMDA problems with two different constraints. It is
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problematic to find a shared manifold z and to translate data between domains if source data

are not observable at all (Fig 1b), compared to the setting where data are observable in all

domains (Fig 1a).

In this paper, we focus on data-free UMDA (Fig 1b), a more difficult but practical problem

of knowledge transfer from multiple source domains to an unlabeled target domain. The main

challenges are that: 1) we cannot directly estimate the target conditional probability p(y|x)

since target labels are not given, and 2) we cannot directly learn the shared manifold z between

domains since there is no information of source domain data distributions p(x). We propose

DEMS (Data-free Exploitation of Multiple Sources), a novel architecture that adapts target

data to source domains without using any source data and estimates the target labels exploiting

pre-trained source classifiers. To the best of our knowledge, there has been no approach for

data-free UMDA.

Table 1 compares DEMS with other algorithms for data-free UMDA in various perspec-

tives. Since data-free UMDA is a new problem without previous studies, we introduce several

Fig 1. An illustration of unsupervised multi-source domain adaptation (UMDA) problems. (a) illustrates UMDA problem with observable source

data, and (b) illustrates data-free UMDA problem with no observable source data. It is challenging to reduce the distribution discrepancy between

source and target domains in (b) since there are no accessible source data.

https://doi.org/10.1371/journal.pone.0253415.g001

Table 1. Comparison of DEMS and other methods.

Method Utilize multiple sources Consider domain proximity Domain adaptation

Best Single Source X X X

Average O X X

Weighted Sum O O X

DEMS (proposed) O O O

DEMS is the only method supporting all the desired properties.

https://doi.org/10.1371/journal.pone.0253415.t001
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baselines. The first one is Best Single Source which employs source classifiers individually and

to find the best source classifier. The second one is Average which averages the results of all

source classifiers. The third one is Weighted Sum which combines the results of all source clas-

sifiers by calculating domain proximities in a heuristic way. DEMS is the only method that uti-

lizes multiple sources, considers domain proximity, and adapts source domains into target

domain. Table 2 lists the symbols used in this paper. The contributions of this work are as

follows:

• Problem Formulation. We formulate a new problem of data-free UMDA which is challeng-

ing but important task for transfer learning (see Fig 1b). Unlike traditional UMDA, data-free

UMDA needs to handle the issue of inaccessible source data.

• Approach. We propose DEMS, a novel approach to solve data-free UMDA. DEMS adapts

target data to source domains and exploits given source classifiers based on our proposed

domain proximity. DEMS learns the adaptation functions while regulating the classification

results of the source classifiers after adaptation.

• Performance. Our extensive experiments demonstrate that DEMS provides the state-of-the-

art accuracy which is up to 27.5% point higher than that of the best baseline (see Fig 2).

Related work

Domain adaptations (DA) aim at transferring the knowledge of a source domain to a different

but related target domain. Unsupervised domain adaptation (UDA) aims to leverage a labeled

source domain dataset for label prediction for an unlabeled target domain dataset. Various

approaches for UDA have been proposed including adversarial methods [10–13], distance-

based methods [14–18], and optimal transportations [19, 20].

Recent works [1–9] address unsupervised multi-source domain adaptation (UMDA) which

aims at transferring the knowledge from multiple source domains rather than a single one to

an unlabeled target domain. UMDA bestows high potential of a superior performance by

exploiting multiple source domain knowledge, but poses challenges of reducing domain dis-

crepancy between multiple domains and obtaining appropriate domain-invariant features.

Many previous works have tackled UMDA problems with various approaches. Table 3 sum-

marizes the key differences in various approaches. Zhao et al. [5] propose an adversarial net-

work based approach with generalization bounds for UMDA. Xu et al. [6] propose Deep

Cocktail Network which addresses the domain and category shifts among multiple source

domains in a multi-way adversarial manner. Peng et al. [9] introduce moment matching to

Table 2. Table of frequently-used symbols.

Symbol Description

T Target domain

Sk k-th source domain

MSk
k-th source classifier

xT , yT Data and label of target domain

xSk
, ySk

Data and label of k-th source domain

Ak Adaptation model from target domain to k-th source domain

E Encoder

DT Decoder for target domain

DSk
Decoder for k-th source domain

https://doi.org/10.1371/journal.pone.0253415.t002
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UMDA to dynamically align moments of low-dimensional features in source and target

domains while training source classifiers. However, these approaches assume that source data

are observable and train adaptation networks to align manifolds of source and target domains.

Thus they are not applicable to our setting where no source data are accessible due to strict pri-

vacy or confidentiality issues. On the other hand, DEMS trains adaptation networks using tar-

get data while regulating the results of the given source classifiers.

Proposed method

Problem definition

Suppose there are N source domains S1;S2; . . . ;SN and one target domain T where all

domains have different data distributions. We are given pre-trained source classifiers

fMSk
: xSk

! ySk
g

N
k¼1

that predict the labels of data from the corresponding source domains

fSkg
N
k¼1

, and an unlabeled target dataset XT ¼ fxi
T g

nT
i¼1

from the target domain T ; for simplic-

ity, we assume the target dataset is sampled from uniform label distribution. Each source clas-

sifier MSk
is trained under a labeled dataset fðxi

Sk
; yi

Sk
Þg

nSk
i¼1

which is drawn from the

Fig 2. Classification accuracy. DEMS shows the best classification accuracy for five target domains; each percentage

indicates the accuracy increase compared to the second-best one for each target domain.

https://doi.org/10.1371/journal.pone.0253415.g002

Table 3. Comparison of different latent space transformation methods for unsupervised multi-source domain

adaptation (UMDA).

Method Source data accessibility Feature alignment method

[5, 6] Accessible Adversarial approach

[9] Accessible Discrepancy-based approach

DEMS (proposed) Inaccessible Source classifier-based approach

Previous studies have proposed adversarial and discrepancy-based approaches which necessitate source data. On the

other hand, DEMS works without source data by carefully utilizing source classifiers.

https://doi.org/10.1371/journal.pone.0253415.t003
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corresponding domain data distribution pSk
ðx; yÞ. Note that the source datasets are unavailable

to us, and only the source classifiers are available. In this work, we assume 1) homogeneity
which indicates that sources and target domains have similar feature spaces and label distribu-

tions, and 2) closed label set, i.e. ySk
; yT 2 Y for k = 1, 2, . . ., N, where Y is the label space, indi-

cating all domains have the same label space. The goal of data-free UMDA is to accurately

predict the target domain labels YT ¼ fyi
T g

nT
i¼1

of the corresponding target domain data

XT ¼ fxi
T g

nT
i¼1

.

Method overview

In UMDA, directly training a target classifier MT : xT ! yT from the target dataset is not pos-

sible since the target labels are not observable. Thus, most UMDA methods train N adaptation

functions fAk : XT ! XSk
g

N
k¼1

and exploit the pre-trained source classifiers fMSk
g

N
k¼1

to pre-

dict the target labels YT of the target data XT . However, in data-free UMDA, we face the chal-

lenge of defining the objective function to train the adaptation functions fAkg
N
k¼1

, sincethe

source data are unobservable and we have no information about the source data distribution

pSk
ðxÞ that was used to train MSk

.

To address the challenge, we propose DEMS (Data-free Exploitation of Multiple Sources), a

novel method for unsupervised multiple domain adaptation problem when the source data are

entirely unavailable. We cannot directly learn the adaptation results of the target data to the

source domains since we have no information on the source domains at all. Hence, we regulate

the classification results using the source classifiers instead of learning the translation between

the target and the source domains directly.

We introduce four ideas in DEMS to regulate the classification results.

• The first idea is label consistency regularization which regulates the label predictions of all

source classifiers to be similar. The adapted examples from the target domain to the source

domains should all have the same label if the adaptation functions work properly; we relax

the constraint so that the conditional probability p(y|x) of adapted examples should be simi-

lar across all source domains.

• The second idea is batch entropy regularization which maximizes the label entropy of a shuf-

fled mini-batch. The labels of randomly selected target examples are uniformly distributed;

note that we assume the target dataset is sampled from uniform label distribution. Thus, we

maximize the batch entropy to prevent mode collapse where most of the target examples are

mapped to a specific label.

• The third ideas are instance entropy regularization and pseudo label which minimize the

label entropy of each instance. A target example naturally has a clear single label. Thus, the

adapted examples should all have clear labels if the adaptation functions work properly; we

minimize the label entropy after adaptation. We further bolster the entropy minimization by

labeling highly confident target data with pseudo labels and minimizing cross-entropy loss

between predictions and the pseudo labels.

• The last idea is reconstruction regularization that forces an autoencoder to reconstruct target

data from the shared manifold. The autoencoder helps find the manifold without losing

meaningful information. Thus, we introduce the autoencoder in DEMS with shared parame-

ters and reconstruct target examples to learn their manifold effectively.

The overall architecture of DEMS is depicted in Fig 3. DEMS adapts the target features XT

to the source domains fSkg
N
k¼1

via an encoder and decoders to exploit the source classifiers
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fMSk
g

N
k¼1

. Each adaptation function Ak : XT ! XSk
is divided into two components: encoder E

and decoder DSk
. The encoder E takes a target data xT as an input and returns its low-dimen-

sional representation vector z; E is shared over all domain adaptation functions. The decoder

DSk
takes the vector z as an input and returns x̂Sk

, the translated data into the domain Sk.

Additionally, we introduce a decoder DT that decodes the low-dimensional representation z
into the target domain T . We describe the label prediction and the objective function of

DEMS in the next.

Method details

Label prediction. For each unlabeled target instance xT , DEMS exploits pre-trained

source models fMSk
g

N
k¼1

in predicting its label yT . Specifically, the predicted label by DEMS is

formulated as:

ŷT ¼
XN

k¼1

wSk
MSk
ðx̂Sk
Þ: ð1Þ

In the equation, x̂Sk
is DSk

ðEðxT ÞÞ which indicates the translated data instance into source

domain Sk utilizing the encoder E and the decoder DSk
; 0 � wSk

� 1 (Eq 2) denotes the weight

for the source domain Sk. All weights add up to 1, i.e.
PN

k¼1
wSk
¼ 1, which states that DEMS

predicts label ŷT of data xT as a weighted sum of the source classifiers’ predictions after domain

adaptations. DEMS depends more on the prediction of a source classifier with a higher

Fig 3. Overall architecture of DEMS.

https://doi.org/10.1371/journal.pone.0253415.g003
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proximity as:

wSk
¼

expðFðT ;SkÞ=l1Þ
PN

k0¼1
expðFðT ;Sk0 Þ=l1Þ

; ð2Þ

where F(A, B) (Eq 3) denotes the degree of proximity between domains A and B, and λ1 > 0 is

a hyperparameter that controls the balance of dependency on source domains. For instance,

all the source classifiers contribute almost equally to the label prediction if λ1 is a large value,

while a source classifier with higher proximity F becomes dominant to the label prediction if

λ1 is close to 0.

It is challenging to estimate the degree of proximity between domains since data distribu-

tions p(x) of domains are not observable except for the target domain. Our approach is to

learn it using an objective function; the degree of proximity F(A, B) between domain A and B

is defined by

FðA;BÞ ¼ v⊺AvB; ð3Þ

where vA; vB 2 R
d

are learnable parameters with dimensionality d, which indicates that the

degree of proximity between domains A and B is estimated by an inner-product of their

trained embedding vectors. The embedding vectors are trained in the optimization process.

Objective function. DEMS is trained to minimize the following loss:

Ltotal ¼ aLlabel þ bLentropy þ gLpseudo þ Lrecon; ð4Þ

which consists of four different loss terms Llabel, Lentropy, Lpseudo, and Lrecon. α, β, and γ are non-

negative hyperparameters that adjust the balance between the loss terms. We define these loss

terms in Eqs 5, 9–11, respectively.

Label consistency regularization. The aim of domain adaptation is to translate domain-

specific features of an example from the target domain to any source domain while preserving

its semantics. If a target example xT is adapted to multiple source domains while preserving its

semantics, the conditional probability p(y|x) of the adapted examples in all source domains

should be similar. For instance, if an example has a high probability of label 4 in the target

domain, the adapted example should likewise have high probabilities of label 4 in any source

domain. To guarantee this property, we propose a label-consistency regularization for multi-

source domain adaptation as:

Llabel ¼
�N

2

�� 1 X

1�i<j�N

rSi ;Sj
JSDðŷSi

jjŷSj
Þ; ð5Þ

where ŷSk
is MSk

ðx̂Sk
Þ indicating the label probability distribution of xT estimated by source

domain classifier MSk
after adapted to the source domain Sk. JSD(�) in the equation indicates

Jensen-Shannon divergence [21] which is a symmetrized and smoothed version of the Kull-

back-Leibler divergence [22]. Jensen-Shannon divergence measures the distance between two

probability distributions; a small JSD indicates that the two distributions are similar, and a

large JSD indicates otherwise. rSi;Sj
(Eq 6) is a degree of proximity between Si and Sj over the

sum of all possible proximities between source domains:

rSi ;Sj
¼

expðFðSi;SjÞ=l2Þ
P

1�i0<j0�NexpðFðS0i;Sj0 Þ=l2Þ
: ð6Þ

rSi;Sj
strengthens label-consistency between close source domains while mitigating that
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between distant source domains. λ2 > 0 is a hyperparameter to control the degree of the

regularization.

Entropy regularizations. Entropy regularizations include two distinct losses based on

information entropy [23]: 1) batch-entropy loss Lbe for maximizing the label entropy of a

batch, and 2) instance-entropy loss Lie for minimizing the label entropy of each instance.

We assume that the target dataset is balanced against classes, i.e. examples are sampled with

a similar probability from each label, which is a common prior for real-world data. By the

assumption, the average of all target label probabilities follows a uniform distribution, i.e.

1

jCj ;
1

jCj ; . . . ; 1

jCj

� �
where C denotes the set of classes. Using the fact that a uniform distribution

has the maximum value of information entropy, we define the batch-entropy loss as follows:

Lbe ¼ �
1

N

XN

k¼1

H
1

jBj

X

i2B

ŷi
Sk

 !

; ð7Þ

where B is set of instances of a mini-batch fxi
T � pT ðxÞg, and H(�) indicates the information

entropy [23];the mini-batch is also balanced against classes since it is randomly sampled from

the whole dataset. By minimizing the batch-entropy loss, we force the average of batch-wise

label probabilities estimated by each source classifier after adaptation to have a uniform proba-

bility distribution.

On another aspect, each target instance inherently has a clear single label, which indicates

that it has a one-hot label probability even if the exact label probability is unknown. Based on

the fact that a one-hot probability distribution has the minimum value of information entropy

[23], we define the instance-entropy loss as follows:

Lie ¼
1

NjBj

XN

k¼1

X

i2B

Hðŷi
Sk
Þ: ð8Þ

We finally define the total entropy loss by summing up batch-entropy loss (Eq 7) and

instance-entropy loss (Eq 8) as follows:

Lentropy ¼ Lbe þ Lie: ð9Þ

Pseudo label. High confidence of the predicted label of a target example, which is esti-

mated by Eq 1, indicates that the example is successfully adapted to source domains and clearly

classified by the source classifiers. Accordingly, we employ pseudo-labels to bolster the current

predictions by pretending that the predicted label is the ground-truth label. The pseudo-label

loss is formulated by a cross-entropy between the predictions and the pseudo-labels as follows:

Lpseudo ¼ �
1

jbj

X

i2b

X

j2C

ð�yi
T Þj log ðŷ

i
T Þj; ð10Þ

where C is the set of classes, �yT ¼ DiracðŷT Þ, and (y)j denotes the probability of j-th class in y.

ŷT is a predicted target label by DEMS (Eq 1). Dirac(�) is a function that makes a Dirac distri-

bution; for simplicity, we choose one-hot vectorization that sets the maximum probability to 1

and the rest to 0. Only examples that meet maxjðŷT Þj > �, where 0� �� 1 is a hyperparameter

that regulates the threshold of confidence, are sampled from the mini-batch B; b � B in Eq 10

indicates the selected subset of the mini-batch.

Reconstruction. Autoencoders [24], which encode input data to low-dimensional vectors

and decode them into the original space by reconstruction regularization, learn a meaningful
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low-dimensional manifold by preventing the simple copy of the input data. We employ an

autoencoder sharing the encoder E in finding a low-dimensional manifold z. The reconstruc-

tion loss is formulated as follows:

Lrecon ¼ jxT � x̂T j1; ð11Þ

where x̂T is DT ðEðxT ÞÞ indicating the reconstruction of xT by encoder E and decoder DT , and

k�k1 denotes the l1 norm.

Algorithm 1 Training DEMS (Data-free Exploitation of Multiple Sources)

Require: unlabeled target dataset XT ¼ fxi
T g

nT
i¼1

Require: trained source classifiers fMSk
: xSk

! ySk
g

N
k¼1

Require: adaptation networks fAk : XT ! XSk
g

N
k¼1

Require: hyperparameters α, β, γ, λ1, λ2, and �

Ensure: trained adaptation networks fAk : XT ! XSk
g

N
k¼1

1: for [1, num_epochs] do
2: Calculate the label consistency loss Llabel (Eq 5)
3: Calculate the batch-entropy loss Lbe (Eq 7)
4: Calculate the instance-entropy loss Lie (Eq 8)
5: Calculate the entropy loss Lentropy  Lbe þ Lie (Eq 9)
6: Predict the target labels ŷT (Eq 10) and filter only ones that
meet maxjðŷT Þj > �

7: Calculate the pseudo-label loss Lpseudo (Eq 10)
8: Calculate the reconstruction loss Lrecon (Eq 11)
9: Calculate the total loss Ltotal  aLlabel þ bLentropy þ gLpseudo þ Lrecon (Eq 4)

10: Update the parameters of fAkg
N
k¼1

to minimize Ltotal

11: end for
Algorithm. We summarize the training algorithm of DEMS in Algorithm 1. DEMS takes

initialized adaptation networks fMSk
: xSk

! ySk
g

N
k¼1

and trains them while exploiting pre-

trained source classifiers without any source data. DEMS calculates the total loss Ltotal in lines

2 to 9. Then, in line 10, DEMS updates the parameters of the adaptation networks fMSk
g

N
k¼1

to

minimize the total loss Ltotal. This is repeated until the adaptation networks fMSk
g

N
k¼1

are

trained properly; we use validation set and the training is performed until the total loss Ltotal of

the validation set is the lowest. After being trained, DEMS predicts the target labels of test data

by Eq 10 using the trained adaptation networks. The predicted target labels are evaluated by

the ground-truth labels and we report the accuracies in the next section. The computational

complexity is dependent on the architecture of the encoder and decoders. In the case of a

CNN-based architecture, the computational complexity of label prediction of DEMS is

OðHWk2MNÞ; H and W are height and width of input image, respectively, k is size of kernel,

and M and N are sizes of input and output channels, respectively.

Experiments

We conduct experiments to answer the following questions:

• Q1. Accuracy. How accurate is DEMS on real-world datasets?

• Q2. Qualitative analysis. How well does DEMS adapt a given target example to source

domains?

• Q3. Parameter sensitivity. How much do � (Eq 10) and λ (Eqs 2 and 6) affect the accuracy?

PLOS ONE Unsupervised multi-source domain adaptation with no observable source data

PLOS ONE | https://doi.org/10.1371/journal.pone.0253415 July 9, 2021 9 / 16

https://doi.org/10.1371/journal.pone.0253415


Experimental settings

Datasets. We use five different number datasets: MNIST [25], MNIST-M [10], SVHN

[26], SynDigits [27], and USPS [28], which are summarized in Table 4; Fig 4 shows sample

images of each dataset. For SynDigits, we use a randomly selected subset of 60,000 images for

training and validation out of 479,400 images;the subset is considered to possess sufficient

domain knowledge since a classifier trained on it shows 95.9% accuracy. We use the original

datasets for the other datasets. The five datasets are scaled to the size of (3 × 32 × 32) to have

the same input dimensionality. We set one of them as a target and the rest as sources in the

experiments.

Baselines. We set three baselines: Best single source, Average, and Weighted sum. Best sin-
gle source directly feeds the target data into source classifiers, and the source classifier which

yields the best performance is chosen. Average feeds the target data into all source classifiers

and averages the resulting label probabilities to predict target labels. Weighted sum takes a

weighted sum of the results after feeding the target data into source classifiers; we utilize Eq 2

for the weights, and set FðT ;SkÞ as x � LT!Sk
entropy, where LT!Sk

entropy is the sum of batch-entropy loss

and instance-entropy loss that are estimated when the target data are directly fed into source

classifier MSk
. ξ is a hyperparmeter and we set it to 1 for all experiments. The intuition behind

the definition of FðT ;SkÞ is that LT!Sk
entropy is presumable to be low if the degree of proximity

between T and Sk is high.

Network architecture. We pre-train ResNet14 [29] for each dataset to generate the source

classifiers. We adopt the architecture of generator in CycleGAN [30]; the encoder is composed

of two convolutional layers with stride size two and three residual blocks [29]; each of the

decoder is composed of three residual blocks and two transposed convolutional layers with

stride size two. We use batch normalization [31] for the encoder and the decoders. Note that

an appropriate network architecture should be selected for each domain of application;

Table 4. Summary of datasets.

Dataset Features Training Validation Test

MNIST 1 × 28 × 28 55,000 5,000 10,000

MNIST-M 3 × 32 × 32 55,000 5,000 10,000

SVHN 3 × 32 × 32 68,257 5,000 26,032

SynDigits 3 × 32 × 32 55,000 5,000 9,553

USPS 1 × 16 × 16 6,291 1,000 2,007

https://doi.org/10.1371/journal.pone.0253415.t004

Fig 4. Sample images (10 classes).

https://doi.org/10.1371/journal.pone.0253415.g004
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recurrent neural networks [32] and graph autoencoders [33] could be selected in the natural

language processing domain [34, 35] and in the graph domain [36–39], respectively.

Training details. We first minimize Lrecon during the first 5 epochs, initialize fDSk
g

N
k¼1

with the trained DT , and then minimize Ltotal. Finally, a classification accuracy of the test target

dataset is reported at the lowest validation loss Ltotal among 100 epochs. Each experiment is

performed 5 times with different random seeds, and the standard deviation is reported along

with the average. We use the hyperparameters that give the best performance. We set α = 0.1,

β = 1, and γ = 1 among {0.1, 0.5, 1, 5, 10} in Eq 4. Unless otherwise noted, � (Eq 10) is set to 0.9

among {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. We set λ1 (Eq 2) and λ2 (Eq 6) the same as λ; λ is

set to 1 among {0.125, 0.25, 0.5, 1, 2, 4, 8}. We set the dimensionality of vA and vB as 10 in Eq 3.

All the networks are trained with Adam optimizer [40] with learning rate 0.001, l2 regulariza-

tion coefficient 0.0001, β1 = 0.9, and β2 = 0.999. We implement all the codes with PyTorch and

perform a grid search to find the best hyperparameters, using a workstation with RTX 2080 Ti.

Accuracy

Overall performance. We compare DEMS with other baselines for data-free UMDA.

Table 5 shows the classification accuracy. DEMS shows the best performance outperforming

the baselines in all experiments. In particular, the performance differences between DEMS and

the baselines are large for the MNIST-M target which has very complex patterns as shown in

Fig 4; DEMS shows 27.5% point higher accuracy than the best baseline. In all experiments

except the USPS target, Average and Weighted sum exploiting the knowledge of multiple

source domains show worse performances than Best single source exploiting the knowledge of

single source domain. This demonstrates how challenging data-free UMDA problem is and

supports the contribution of this work.

Ablation study. We conduct an ablation study to evaluate how each loss of DEMS con-

tributes to the performance.Table 6 shows the ablation study that evaluates the effectiveness of

each loss in DEMS. Note that each of the proposed losses in the objective function (Eq 4) con-

tributes significantly to the performance of DEMS, showing the effectiveness of our ideas.

Table 5. Classification accuracy of DEMS and baselines.

Target dataset Best single source (Single source) Average (Multi-sources) Weighted sum (Multi-sources) DEMS (proposed) (Multi-sources)

MNIST 97.65 ± 0.75% 94.87 ± 1.22% 96.37 ± 0.40% 99.01 ± 0.12%

MNIST-M 45.03 ± 3.74% 33.50 ± 1.72% 40.91 ± 1.24% 72.57 ± 3.20%

SVHN 71.87 ± 3.53% 23.11 ± 1.61% 56.09 ± 5.17% 76.60 ± 1.39%

SynDigits 91.89 ± 1.79% 60.47 ± 5.69% 78.66 ± 4.37% 93.74 ± 0.79%

USPS 82.03 ± 3.77% 84.54 ± 5.31% 88.09 ± 2.04% 96.14 ± 0.41%

The remains except for the target dataset are used for sources. The best method is in bold, and the second best one is underlined. Note that DEMS gives the best

performance.

https://doi.org/10.1371/journal.pone.0253415.t005

Table 6. Ablation study on MNIST-M target dataset.

DEMS DEMS � Llabel DEMS � Lbe DEMS � Lie DEMS � Lpseudo DEMS � Lrecon

72.69 ± 2.60% 65.65 ± 5.55% 10.33 ± 0.62% 59.58 ± 3.57% 43.88 ± 1.73% 11.11 ± 1.59%

DEMS � L indicates a variant of DEMS with L excluded from Ltotal. Note that each of the loss significantly contributes to the accuracy of DEMS.

https://doi.org/10.1371/journal.pone.0253415.t006
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Qualitative analysis

We analyze DEMS and its variants DEMS � L qualitatively to evaluate how well DEMS adapts

data to different domains; DEMS � L indicates a variant of DEMS with L excluded from Ltotal.

Note that the baseline algorithms are not analyzed qualitatively since they do not adapt data to

different domains (see Table 1). For DEMS � L, we select three variants DEMS � Lpseudo,

DEMS � Lbe, and DEMS � Lrecon which show the lowest accuracies in the ablation study (see

Table 6).

Fig 5 visualizes adapted sample examples from MNIST-M to MNIST, SVHN, SynDigits,

and USPS, respectively. DEMS (Fig 5b) translates the images into noises at the beginning of

training (epoch 1). As training progresses, however, meaningful patterns (e.g. shape of digits

rather than backgrounds) of the target images are detected and adapted to each source domain

(epoch 7). As training progresses more (epoch 30), DEMS focuses adaptation on closer source

domains (MNIST, SVHN, and SynDigits) than to the far source domain (USPS), and its

Fig 5. Visualization of image adaptation from MNIST-M to other source domains. Fig (a) enumerates target samples for Figs (b), (c), (d), and (e).

The target samples are adapted by adaptation networks which are trained with different losses. For DEMS (Fig (b)), the adaptation gradually focuses on

the close source domains (MNIST, SVHN, and SynDigits), resulting in performance enhancement. For DEMS � Lpseudo (Fig (c)), some classes (digits 3,

7, and 9) are failed to be adapted to source domains. For DEMS � Lbe and DEMS � Lrecon (Figs (d) and (e)), the adaptations are not trained at all.

https://doi.org/10.1371/journal.pone.0253415.g005
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classification performance improves. DEMS � Lpseudo (Fig 5c) successfully adapts most of the

classes to MNIST and SynDigits, but fails to adapt some classes (digits 3, 7, and 9) to the source

domains yielding degraded classification performance. It is shown that DEMS � Lbe (Fig 5d)

and DEMS � Lrecon (Fig 5e) do not learn to adapt the target data to the source domains.

Parameter sensitivity

Sensitivity of �. The hyperparameter �, which is involved in Lpseudo (Eq 10), governs the

threshold of pseudo-labels. As � increases, the selected examples have higher confidence while

fewer examples are selected. On the other hand, as � decreases, the number of selected exam-

ples increases while the confidence of the examples decreases. As shown in Fig 6a, the accuracy

is the highest when � is 0.9 for all datasets, and the accuracy is significantly reduced in the

extreme case when � = 1. The results demonstrate that DEMS is best optimized through high-

quality pseudo-labels.

Sensitivity of λ. The hyperparameter λ, which is involved in Eqs 2 and 6, controls the bal-

ance of dependency between domains; note that λ1 = λ2 = λ for our experiments. For instance,

if λ is a large positive value, all the source classifiers almost equally contribute to the target

label prediction in Eq 1 and are highly regulated to output the similar predictions in Eq 5. For

instance, if λ is a large positive value, all the source classifiers almost equally contribute to the

target label prediction in Eq 1 and even source classifiers that are not close to each other are

regulated to output the similar predictions in Eq 5. Conversely, if λ is close to zero, a source

classifier closer to the target domain contributes more to the target label prediction in Eq 1

and source classifiers that are not closer to each other are less regulated to output similar pre-

dictions in Eq 5. Fig 6b shows that the best results are obtained when λ = 1 for all target

domains, and the performance degrades if the λ is too large or too small. In particular, SVHN

which has relatively complex patterns shows a severely degraded performance when λ is larger

Fig 6. Sensitivity of accuracy to the hyperparameters � (Eq 10) and λ (Eqs 2 and 6).

https://doi.org/10.1371/journal.pone.0253415.g006
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than 2, which means that it is more helpful for a complex target to consider a nearby source

than all sources.

Conclusion

We propose DEMS (Data-free Exploitation of Multiple Sources), a novel architecture for

multi-source domain adaptation without any observable source data. DEMS learns to adapt

target data to each source domain to exploit the pre-trained source classifiers. Experiments on

real-world datasets show that DEMS outperforms baselines up to 27.5% point higher accuracy,

by successfully learning the adaptation function and exploiting the source classifiers in target

label predictions. However, DEMS assumes that the source and target domains have similar

feature spaces and have the same label space. Thus, DEMS is not applicable in domain adapta-

tion between heterogeneous domains. Future works include extending DEMS to transfer

knowledge between heterogeneous domains, e.g. from images to text or vice versa, that may

require careful design of adaptation networks.
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