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FGF21 is a potent metabolic regulator of energy balance, body composition, lipid
metabolism, and glucose homeostasis. Initial studies reported that it was increased by
fasting and the associated increase in ketones, but more recent work points to the
importance of dietary protein and sensing of essential amino acids in FGF21 regulation.
For example, dietary restriction of methionine produces a rapid transcriptional activation of
hepatic FGF21 that results in a persistent 5- to 10-fold increase in serum FGF21. Although
FGF21 is a component of a complex transcriptional program activated by methionine
restriction (MR), loss-of-function studies show that FGF21 is an essential mediator of the
resulting effects of the MR diet on energy balance, remodeling of adipose tissue, and
enhancement of insulin sensitivity. These studies also show that FGF21 signaling in the
brain is required for the MR diet-induced increase in energy expenditure (EE) and
reduction of adiposity. Collectively, the evidence supports the view that the liver
functions as a sentinel to detect and respond to changes in dietary amino acid
composition, and that the resulting mobilization of hepatic FGF21 is a key element of
the homeostatic response. These findings raise the interesting possibility that therapeutic
diets could be developed that produce sustained, biologically effective increases in FGF21
by nutritionally modulating its transcription and release.

Keywords: methionine restriction, protein restriction, energy expenditure, essential amino acids (EAA), nutrient
sensing mechanisms
OVERVIEW

The mammalian Fibroblast growth factors (Fgf) include an intracellular subfamily (Fgf11-14), a
hormone-like subfamily (Fgf15/19/21/23), and a canonical subfamily (Fgf1-10, Fgf16-18, and Fgf20)
(1). The Fgf family arose from an ancestral Fgf gene (e.g., Fgf13) during vertebrate evolution through
two distinct gene and genome duplication events (2, 3). The resulting expansion diversified the
signaling capabilities of Fgf family members, transforming them into ubiquitous regulators of
developmental and metabolic processes. Canonical FGFs act locally as paracrine agents while
hormonal FGFs are released into the circulation and function in an endocrine manner. The initial
recognition of canonical FGFs as growth factors came after their isolation from the pituitary (4, 5)
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and from conditioned liver cell media (6). The remaining FGFs
were identified using degenerative primers and homology-based
PCR in conjunction with searches of DNA databases for
homologous sequences (7). Canonical FGFs act through
heparin-binding sites that stabilize their binding to FGF
receptors. In contrast, hormone-like FGFs acquired endocrine
functions by losing the heparin binding requirement and
acquiring the ability to bind to their receptors using bKlotho
as a cofactor. FGF receptors are ubiquitously expressed across
multiple tissues, but the expression of bKlotho is far more
restricted. This provides a mechanism to limit the target
tissues of endocrine FGFs to specific sites. Of particular
interest is the endocrine FGF, Fgf21, which came into sharp
focus after it was discovered and shown to have beneficial effects
on energy balance, insulin signaling, glucose uptake, and lipid
metabolism (8–11). These properties inspired great enthusiasm
for development of FGF21-based therapies for treatment of
metabolic disease. The goal of this minireview is to briefly
summarize recent efforts in that arena, the obstacles
encountered, and outline an alternative approach to obtaining
the beneficial metabolic effects of FGF21 through chronic
nutritional modulation of endogenous FGF21 expression.
BIOLOGICAL EFFECTS OF EXOGENOUS
FGF21

FGF21 was identified in cDNA from mouse embryos, found to be
highly expressed in mouse liver (12), and shown to enhance
glucose uptake in 3T3-L1 adipocytes through an insulin-
independent increase in Glut1 expression (10). Administration
of FGF21 to genetically obese rodents reduced their body weights,
lowered blood glucose and plasma triglycerides, and reduced
fasting insulin (10). These metabolic effects were recapitulated in
transgenic Fgf21– overexpressing mice (10) and in C57BL/6J mice
treated with FGF21 via osmotic minipumps (8). FGF21 increased
food intake per unit body weight in these studies but was still able
to reduce body weight because it simultaneously increased EE (8).
FGF21 increased thermogenic gene expression in white adipose
tissue while reducing lipogenic genes in the liver (8). These
findings were extended to C57BL/6J mice fed a high fat diet
where FGF21 also improved overall insulin sensitivity by
decreasing hepatic glucose production and increasing insulin-
dependent glucose uptake in adipose tissue (11). FGF21
produced these diverse effects through a combination of
centrally-mediated effects on sympathetic outflow (13),
peripherally-mediated effects on glucose uptake in adipose tissue
(14–18), suppression of hepatic glucose production (11), and
improvements in biomarkers of metabolic health that are
secondary to FGF21-dependent reductions in adiposity. FGF21
also proved effective in non-human primates, as daily injections of
the hormone in diabetic rhesus monkeys reproduced the beneficial
metabolic effects of FGF21 observed in rodents (9). Collectively,
these studies with pre-clinical models provided a compelling
rationale for developing FGF21-based pharmacotherapies for
metabolic disease.
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TRANSLATIONAL RESPONSES TO FGF21
ANALOGS AND MIMETICS

The relatively short biological half-life of FGF21 (19) and its
conformational instability in solution presented significant
logistical impediments to using native FGF21 in the clinic (20).
Efforts to re-engineer the FGF21 molecule to improve its
formulation stability and biopharmaceutical properties have
been successful and multiple labs have developed FGF21
analogs or receptor mimetics that are stable in solution, have
long biological half-lives, and show minimal toxicology (21–25).
In addition, pre-clinical studies with rodents and non-human
primates have verified that several FGF21 analogs and mimetics
successfully reproduce the full range of metabolic benefits
produced by the native molecule (19, 20, 26–30). Many of the
FGF21 analogs and mimetics have progressed to clinical trials in
patients with type 2 diabetes [see review by (31)]. However, the
primary end points of improved glycemic control have not been
met, although significant reductions in circulating lipids, hepatic
fat, and body weight were documented in two studies (27, 32). In
studies of patients with non-alcoholic steatohepatitis (NASH),
pegylated versions of FGF21 produced significant decreases in
hepatic fat, markers of hepatic fibrosis, and liver injury (33, 34).
Although the FGF21 analogs were generally well tolerated, one of
the analogs increased blood pressure and heart rate and
produced modest increases in circulating markers of bone
resorption (27). The latter safety concern is consistent with
pre-clinical findings showing that transgenic Fgf21 mice had
higher rates of bone resorption and lower rates of bone
formation (35, 36). Another adverse effect was the generation
of FGF21 antibodies caused by the immunogenicity of the FGF21
analog (33, 34). This could be a more pervasive problem if the
engineered structures of other FGF21 analogs and mimetics are
recognized as foreign by the immune system, particularly since
their use is expected to involve chronic treatments. It is clear that
the safety issues associated with the long-term use of these drugs
will need to be thoroughly examined going forward. Equally
concerning is whether there are fundamental differences in the
way non-human primates and humans respond to FGF21 in
terms of glucose lowering (31). Viewed collectively, it appears
that these unresolved issues will delay implementation of FGF21-
based mimetics for broad-based treatment of metabolic disease
for now.

A potential solution to the obstacles encountered with
injectable pharmacotherapies based on FGF21 mimetics is
provided by an approach that involves chronically increasing
endogenous FGF21 transcription and release from the liver.
Discovery research over the last decade has shown that the
liver functions as a sentinel to monitor and respond to changes
in dietary composition, particularly the protein and amino acid
content of the diet (37–39). Reductions in the overall protein
content of the diet or the amounts of specific essential amino
acids (EAA) produce a rapid transcriptional activation of the
hepatic Fgf21 gene, and the increased expression of FGF21 is
maintained for as long as the experimental diet is consumed (40,
41). The reductions in dietary EAA content needed to
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transactivate Fgf21 without also compromising growth and
development occur within a narrow concentration range, but
within these defined ranges the resulting increase in circulating
FGF21 reproduces the full range of metabolic responses
produced by treatment with exogenous FGF21 (42). Therefore,
the development of therapeutic diets that produce the required
degree of EAA restriction provides a potentially attractive
approach to obtain the benefits of FGF21 biology through diet-
induced modulation of its expression. The specific dietary
modifications that produce these effects have been rigorously
established in recent years and potential approaches to their
implementation will be the subject of the current minireview.
PHYSIOLOGICAL REGULATION OF
FGF21 EXPRESSION

The physiological context in which FGF21 regulation was
originally identified was fasting or starvation when the
associated increases in fatty acids and ketones activated
PPARa and increased transcription of the hepatic Fgf21 gene
(43, 44). Ketogenic diets were proposed as important regulators
and FGF21 was originally dubbed as a starvation hormone (43–
45). However, except under extreme conditions, the significance
of fasting and ketones now seems relatively unimportant in
regulation of human FGF21 (46–48). Given the impact of
FGF21 on dysfunctional glucose and lipid metabolism, a
concerted effort has been made to identify the key metabolic
states, physiological signals, hormones, signaling pathways, and
transcription factors responsible for regulation of Fgf21 (49–60).
In vivo studies have been complemented by extensive in vitro
work to identify and dissect the sensing and signaling systems
responsible for transcriptional activation of the Fgf21 gene (53,
55, 61–65). While it is beyond the scope of this minireview to
provide a detailed accounting of the many signaling systems
providing regulatory input to the Fgf21 gene, several excellent
reviews are available (45, 62, 66–71). A particularly useful
illustration of the regulatory complexity of Fgf21 transcription
was presented by Erickson and Moreau (66), who used
bioinformatic tools to map the response elements contained
within the 5’-flanking region of 4600 bp of the transcription
start site for the human, mouse, and rat Fgf21 gene. They
identified multiple copies of binding sites for no fewer than 10
nuclear receptors and/or transcription factors in the promoters.
In addition, multiple sensing and signaling systems provide
input to each nuclear receptor and transcription factor so this
map of response elements does not capture the true complexity
of Fgf21 regulation (66). For example, ER stress signals through
PERK and eIF2a to increase transcriptional activation of Fgf21
through ATF4 (56, 72), but sensing of essential amino acids
through GCN2 and eIF2a can also signal through ATF4 to
increase Fgf21 expression (73). Viewed collectively, the
physiological state of the liver at any point in time is providing
a vast amount of regulatory input to the Fgf21 gene. However,
from a therapeutic viewpoint, the most important question is
whether the prevailing rate of Fgf21 transcription can be reset to
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a higher overall rate that chronically increases circulating FGF21
and produces the associated metabolic benefits.
DIETARY REGULATION OF FGF21
EXPRESSION

Dietary protein restriction and methionine restriction (MR)
produce a comparable series of behavioral, physiological,
biochemical, and transcriptional responses that result in a
significant improvement in metabolic health [reviewed in (37, 38,
74–76)]. The responses include increased energy intake and
expenditure, decreased adiposity, enhanced insulin sensitivity, and
reduction in circulating and tissue lipids. A common model used to
study protein restriction involves reducing the dietary concentration
of casein from 20% to 5% (77). Dietary MR involves formulation of
diets from elemental amino acids, reducing the methionine content
from 0.86% to 0.17%, and eliminating cysteine. Both dietary
regimens result in a similar reduction in methionine and cysteine
intake (77, 78), and both diets increase expression and release of
hepatic FGF21 (77, 79, 80). Rodent studies show that protein
restriction increases circulating FGF21 within 24 h (77) while
chronic protein restriction permanently increased FGF21,
enhanced metabolic health, and extended lifespan (81). The
mouse longevity study (81) used an integrative modeling
approach called the Geometric Framework with groups of mice
fed one of 25 diets that systematically varied the protein,
carbohydrate, and fat content. They found that FGF21 was
maximally elevated under low protein intakes and the increased
FGF21 was strongly correlated with improvements in biomarkers of
metabolic health (41). Dietary MR produces a comparable 5- to 10-
fold increase in circulating FGF21 within 6 h of initiating the MR
diet (72) and the increase in FGF21 is maintained for as long as the
MR diet is consumed (80, 82, 83). Based on what is known about
FGF21 biology and the responses of rodents to exogenous or
overexpressed FGF21, it is attractive to speculate that
transcriptional activation of hepatic Fgf21 by protein restriction or
MR provides the causative link to the metabolic phenotypes
produced by each diet. This hypothesis has been systematically
addressed using multiple loss of function approaches with each diet.
The Morrison lab (77) established that FGF21 was the endocrine
signal linking protein restriction to increased EE, and showed in
later work that FGF21 was also necessary for the low protein diet to
increase thermogenic gene expression in brown and white adipose
tissue (84). Low protein diets also enhanced glucose homeostasis in
mice and FGF21 was necessary for this effect (85). FGF21 signaling
in the brain increases EE by increasing sympathetic nervous system
outflow (13) and mice that lack either Fgf21 or FGF21 signaling in
the brain are unable to increase EE in response to protein restriction.
Parallel studies of dietary MR have been conducted with Fgf21-/-

mice and mice with ablation of central FGF21 signaling. In Fgf21-/-

mice, the ability of dietary MR to increase EE and enhance
thermogenic gene expression in brown adipose tissue (BAT) and
white adipose tissue (WAT) was totally dependent on FGF21, while
effects of dietary MR to reduce lipogenic gene expression in the liver
did not require FGF21 (40). Deletion of bKlotho in the CNS also
November 2021 | Volume 12 | Article 773975
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completely blocked the ability of dietary MR to increase EE and
remodel adipose tissue (86), supporting the view that the increase in
FGF21 produced by dietary MR acts primarily in the brain to affect
energy balance. Viewed together, these findings make a compelling
case that it is possible to obtain a rapidly deployed but long-lasting
set of metabolic responses to FGF21 by diet-induced transcriptional
activation of the hepatic gene. An important remaining question is
whether therapeutic diets can be developed that produce chronic,
biologically effective increases in FGF21 in a clinical setting that
produce some or all beneficial metabolic effects attributed to
the hormone.
PATHS TO IMPLEMENTATION OF
DIETARY MR TO CHRONICALLY
INCREASE FGF21

Casein restriction to 5% faithfully reproduces the full metabolic
profile of dietary methionine restriction and restricts sulfur amino
acids to a similar extent. Therefore, it seems likely that dietary casein
restriction is producing most of its biological effects by limiting
dietary methionine intake. An important implication of this
conclusion is that it supports the feasibility of deriving the
therapeutic benefits of dietary MR by restricting protein intake in
conjunction with a careful accounting of methionine content of the
various proteins that make up the diet. The most straightforward
way to restrict methionine is to formulate amino acid-based diets
that reduce themethionine content to ~0.17% and eliminate cystine.
This is the approach used in pre-clinical studies of MR because
rodents readily adapt to consumption of these diets. However, this
approach works poorly in humans because of poor tolerance of the
bitter, metallic taste of elemental amino acids. The medical food,
Hominex®-2 is a methionine free mixture of essential amino acids
that was developed to provide nutritional support to patients with
pyridoxine-insensitive hypercystinuria or hypermethionemia (87).
Although Hominex-2 was moderately effective in increasing fat
oxidation and reducing hepatic lipid content in patients with
metabolic syndrome, the high withdrawal rates from the study
and subsequent feedback made it clear that poor palatability was a
significant drawback (88). A second major drawback to the use of
Hominex-2 is that it contains significant amounts of cystine, which
effectively spares methionine and lessens the severity of the
methionine restriction (89). As shown by several authors, the
addition of even small amounts of cystine to MR diets effectively
reverses the metabolic effects of MR (72, 90, 91). For example, in
work using diets containing 0.17%methionine, the addition of 0.2%
cystine completely reversed the ability of the 0.17% methionine diet
to increase EE and reduce fat mass (72). Therefore, a critical
question to be answered is how much dietary cystine can be
present for a given amount of MR and still preserve the effects of
the methionine restriction alone. In earlier work, the upper
threshold of methionine restriction was ~0.25% methionine when
no cystine was present in the diet (42). Recent work suggests that
protein restriction producing reductions of methionine and cystine
in the range of 0.24% to 0.26% retain full efficacy (78). Together
these findings suggest that careful attention to the total amount of
Frontiers in Endocrinology | www.frontiersin.org 4
methionine and cystine will be needed to implement a protein-
restricted diet that produces therapeutically effective reductions in
sulfur amino acids.

Lastly, an alternative approach to dietary methionine
restriction was recently described which reduced the
methionine and cystine content of casein by targeted, oxidative
deletion of the sulfur amino acids in the intact protein (92). The
advantage of this approach is that the sulfur amino acid-depleted
casein maintains its palatability and can produce the metabolic
benefits of protein restriction without reducing overall protein
content of the diet. Proof-of-concept studies comparing me-
thionine-depleted casein-based diets to elemental amino acid-
based methionine restricted diets established the feasibility of
this approach and showed that the beneficial metabolic effects of
methionine restriction were reproduced by the oxidized casein-
based MR diets (92). It will be interesting in future studies to
determine whether combinations of mild protein restriction
coupled with targeted methionine depletion of the proteins to
be restricted can be implemented to produce therapeutically
effective diets for the treatment of obesity and metabolic disease.
CONCLUSIONS AND FUTURE
DIRECTIONS

Figure 1 provides a conceptual model of the anatomical
organization of the sensing and signaling systems that link
increased transcription and release of FGF21 from the liver to the
metabolic responses produced by dietary methionine restriction.
We propose that FGF21 is the critical mediator of all the
physiological responses to MR except its effects on hepatic lipid
metabolism. An important remaining objective is to identify the
sites where FGF21 is acting to produce the components of
the overall biological response to dietary MR. For example, are
the documented effects of dietary MR on insulin sensitivity in
adipose tissue the result of direct actions of FGF21 signaling in this
tissue, or are they secondary to the FGF21-mediated remodeling of
adipose tissue that results from FGF21-dependent increases in SNS
outflow to adipose tissue? These questions could be addressed in
future studies using a tissue-specific loss of function approach that
alternatively and selectively deletes FGF21 signaling in adipose
tissue or the hypothalamus.

Although significant progress has been made in identifying
specific cell types within the hypothalamus that respond to
FGF21 (93–95), much additional work is needed to precisely
identify the population(s) of neurons that link MR-dependent
increases in FGF21 to the resulting biological responses.

Success in these experiments will guide the development of
targeting vectors and the corresponding loss of function models
that will be needed to provide definitive in vivo identification of
the neurons linking MR-dependent increases in FGF21 to SNS
activation. An additional challenging aspect of these experiments
will be the interdependence of the multiple components of the
phenotype (e.g., adiposity, insulin sensitivity) and correctly
mapping the loss of MR-dependent responses to the
anatomical site where FGF21 is acting to produce them.
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The path to translational implementation of dietary MR using
either protein restriction or targeted oxidation of methionine and
cysteine in intact proteins will involve producing and testing the
acceptability and efficacy of the resulting diets. A more practical
path forward might be to use a combination of both approaches
to develop a limited but highly palatable group of modified
proteins that could be the basis for a therapeutic diet that is
consumed under medical supervision for a specified interval. The
successful implementation of dietary MR in a translational
context will require the collaboration of food scientists to
produce palatable modified protein, nutritionists to make sure
methionine and cysteine are kept within the required range, and
translational scientists to evaluate the safety and efficacy of the
resulting diets.
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