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Abstract
TransCelerate reports on the results of 2019, 2020, and 2021 member company (MC) surveys on the use of intelligent auto-
mation in pharmacovigilance processes. MCs increased the number and extent of implementation of intelligent automation 
solutions throughout Individual Case Safety Report (ICSR) processing, especially with rule-based automations such as robotic 
process automation, lookups, and workflows, moving from planning to piloting to implementation over the 3 survey years. 
Companies remain highly interested in other technologies such as machine learning (ML) and artificial intelligence, which 
can deliver a human-like interpretation of data and decision making rather than just automating tasks. Intelligent automa-
tion solutions are usually used in combination with more than one technology being used simultaneously for the same ICSR 
process step. Challenges to implementing intelligent automation solutions include finding/having appropriate training data 
for ML models and the need for harmonized regulatory guidance.

Key Points 

Pharmacovigilance organizations are very interested in 
and moving rapidly with planning, piloting, and produc-
tion implementation of intelligent automation solutions 
that automate tasks (rule-based automation) and/or 
mimic human-like data interpretation and decision mak-
ing (machine learning [ML] and artificial intelligence).

Multiple technologies can be applied simultaneously to 
the same process step.

Implementation of intelligent automation solutions faces 
challenges regarding quality training data for ML models 
and regulatory guidance.

1  Introduction

Intelligent automation, as defined by Lewis and McCa-
llum, including machine learning (ML) and artificial 
intelligence (AI), has started changing the way safety 
and pharmacovigilance (PV) professionals work to pro-
cess and analyze data in support of decision making [1]. 
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Intelligent automations are gaining traction as sponsors 
aim to improve efficiency, quality, timeliness of Individual 
Case Safety Report (ICSR) processing, and consistency of 
data for analysis and decision making, with the ultimate 
goal to benefit patients through more rapid identification 
and communication of product safety information.

In 2018, TransCelerate’s Intelligent Automation Oppor-
tunities (IAO) in Pharmacovigilance Initiative (IAO team) 
coalesced around the vision of enabling organizations to 
manage and process the growing volumes of ICSRs effi-
ciently through application of sophisticated technology 
[2]. The TransCelerate IAO team began evaluating risks 
and barriers to PV adoption and implementation of intel-
ligent automation with a vision of identifying technology 
that could enable organizations to realize the potential 
benefits, such as improving scalability, improving effi-
ciency, and quality [2]. Since its inception, the IAO team 
has published on potential use cases [1], the current state 
of automation within ICSR processing as of 2019 [3], and 
validation considerations [4]to enable value realization. 
IAO chose ICSR processing as the first area of study due 
to the disproportionate number of resources, human and 
financial, expended by PV departments compared with the 
interpretation and analysis of the data generated during the 
intake, processing, and submission steps.

This paper presents the current industry perspective on 
the role of intelligent automation in pharmacovigilance 
supported by recent TransCelerate survey data (conducted 
in 2021) and recently published literature. Furthermore, 
we discuss the challenges for developing and implement-
ing advanced technologies, including (1) availability of 
representative training data and (2) the current regulatory 
environment.

Through the 2021 survey, several key themes emerged 
regarding the current state of intelligent automation in PV.

•	 Rule-based automations have long been used in ICSR 
processing, and PV organizations continue to embrace 
newer rule-based technologies such as robotic process 
automation (RPA) alongside other structured program-
ming techniques in the ICSR process.

•	 There is continued interest in the implementation of 
emerging cognitive technologies such as ML, with 
increased activity compared with 2019. This activity is 
often in combination with other technologies or human 
effort.

•	 Implementers are stacking multiple intelligent automa-
ton technologies in addition to single-point solutions to 
realize the benefits beyond what traditional, rule-based 
technologies have allowed.

In addition to these key themes, there are other areas 
for consideration in the implementation of intelligent 
automation.

•	 Implementors of intelligent automation need to plan for 
potential challenges in curating suitable training data.

•	 Risk perceptions are changing, with respondents citing 
lower implementation risks. This change may be due 
to experience gained on prior pilot studies and imple-
mentations and may be despite challenges in generating 
voluminous, representative, and labeled training data and 
an emerging regulatory environment. Sponsors are pro-
actively engaging with regulators on expectations when 
implementing IA.

This paper posits that intelligent automation will continue 
to transform ways of working within PV and more broadly 
within research and development (R&D) organizations faced 
with increasing volumes and velocity of data to expedite 
drug development and marketing approval.

2 � Transcelerate Survey Methodology

The IAO team surveyed TransCelerate’s Member Compa-
nies (MCs) in 2019, 2020, and 2021, with 15/19 (79%) MCs 
participating in 2019, 20/21 (95%) MCs participating in 
2020, and 18/20 (90%) MCs participating in 2021. However, 
the 2019 survey measured attitudes about the ICSR process 
(i.e., the current manual effort of each process step and the 
perceived risk and expected benefit from automating each 
step) [3], and the 2020 survey collected benchmark technol-
ogy implementation data based on the ICSR process (i.e., 
the type and maturity of automations implemented within 
each ICSR process step) [5]. The 2021 survey, discussed 
in this paper, sought to replicate and extend these results 
by combining elements of the 2019 and 2020 surveys into 
one follow-up survey. To facilitate consistency between the 
surveys, the same example ICSR process definition was used 
as described by Ghosh et al. [3], and the analysis is based 
on the three main processing blocks of intake, processing, 
and reporting.

In each case, the IAO team developed and distributed 
the survey to identified contact points within each Trans-
Celerate MC. The contact points collated responses from 
their respective organizations and returned the completed 
survey forms to a single point of contact (POC) for IAO, 
a third-party consultant who serves as project manager for 
the IAO team. The data collection POC aggregated the data 
for analysis by the IAO technology subteam. The data were 
blinded and aggregated so that responses from individual 
MCs could not be discerned. To account for changes in the 
number of responses from one year to the other, the survey 
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response data were further processed to analyze the relative 
use of technology for the ICSR processes so trends could 
be identified. Survey responses from MCs were only shared 
with the TransCelerate POC, who ensured anonymization of 
each MCs name and aggregated the data without any com-
pany-identifying information remaining. A merger between 
two MCs resulted in fewer potential respondents in 2021 
compared with 2020.

To aid in the analysis of the data, several visualizations 
were produced from the aggregated survey responses. 
Colors of varying intensity were used to show movement in 
responses between the survey. The stronger the movement, 
either increasing or decreasing, the deeper the color satura-
tion, resulting in darker cells within the visualizations.

Survey forms from 2019, 2020, and 2021, including 
definitions of the ICSR process steps, intelligent automa-
tion technologies, and assessment categories, are pro-
vided in the electronic supplementary materials (ESM). 
Definitions used within the IAO team for the technologies 

discussed in the surveys and this analysis are also included 
in the ESM. Several themes were identified through the 
analysis of survey data.

The TransCelerate MC survey results were further sup-
plemented with a review of recently published literature 
conducted in PubMed from January 2019 to August 2021. 
Literature was retrieved using the search terms ‘pharma-
covigilance automation’ and ‘pharmacovigilance machine 
learning’ and all abstracts were reviewed to select articles 
for full-text review.

Fig. 1   Changes in TransCelerate’s Technology Survey from 2020 
to 2021. In 2020 and 2021, TransCelerate member companies were 
asked to assess their activities in the adoption of intelligent automa-
tion technologies for the ICSR management process based on the 
planning, piloting, and implementation phases. ICSR management 
processes are represented on the y-axis and automation technologies 
used in the survey are represented on the x-axis. Results on the x-axis 
are grouped by the planning, pilot, and production phases. Blue indi-
cates fewer responses when 2021 results were compared with 2020 

results, and orange indicates more responses in the 2021 survey 
compared with 2020. Deeper/more intense colors indicate more dif-
ference in responses in 2021 compared with 2020. Response values 
ranged from −  14% (darkest blue) to +  35% (darkest orange), with 
white indicating 0% change. ICSR Individual Case Safety Report, QC 
quality check, RPA robotic process automation, ML machine learning, 
OCR optical character recognition, NLP natural language processing, 
NLG natural language generation
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3 � Identified Themes

3.1 � Theme 1: Continued Development and Growth 
of Rule‑Based and Other Structured 
Programming

In comparing the 2020 technology survey results with 
the 2021 responses (Fig. 1), we observed an implementa-
tion trend in the movement from planning or piloting into 
production. This trend is particularly observable for rule-
based automations such as RPA, lookups, and workflows. 
In Fig. 1, a decrease in implementation is displayed in 
blue, whereas red-colored items indicate an increase. The 
color saturation/intensity is providing a measure repre-
senting the amount of change. For example, the duplicate 
check process step within the case processing block was 
largely piloted in 2020 with rule-based technologies such 
as RPA, lookups, and workflow; however, in 2021 it was 
moved into production for several TransCelerate MCs.

This trend is observed across the entire ICSR process 
(i.e., intake, processing, and reporting), although predomi-
nantly within intake and processing and less so in report-
ing. The increased adoption of rule-based automation 
within the intake block is possibly supported by existing, 
well-defined requirements for the tasks associated with 

these process steps. For example, with an RPA bot, a pro-
cess with fixed parameters can be automated (e.g., extrac-
tion of structured information from a defined form). Thus, 
the effort (i.e., time) spent on ‘local structuring’ can be 
reduced. As shown in Fig. 1, other process steps, such as 
duplicate check, appear to benefit from rule-based automa-
tions such as RPA.

Further industry survey data from PVNet® member 
organizations suggest broad interest in the adoption and 
implementation of rule-based automations such as workflow 
automation, labeling, and coding compared with the adop-
tion of ML [6]. The PVNet® data predates TransCelerate’s 
IAO initiative and provides a contrast to show how percep-
tions of intelligent automation such as ML have evolved.

Lookups are another type of rule-based automation that 
is broadly used across all process steps. A lookup array is 
used in computer programming and holds values that would 
otherwise need to be manually decided (e.g., a list of adverse 
event terms that must always be considered ‘serious’). 
Since this technology is pervasive across the ICSR process, 
organizations may have already realized the potential value 
of rule-based automations. These diminishing returns may 
necessitate further innovation in the development and imple-
mentation of ML/AI to derive further benefit.

Figure 2 explores not only what process blocks are auto-
mated but also depicts the impact of intelligent automation 

Fig. 2   Heatmap of effort-benefit-risk associated with the use of intel-
ligent automation in ICSR processes. In the 2021 survey, the member 
companies were asked to assess, for each activity in the ICSR man-
agement, what risk, effort, and benefit is associated with the imple-
mentation of IA. This matrix displays the averages of process step 
data displayed in Table  1 of the associated effort, benefit, and risk 

aggregated for the three main process blocks (intake, case processing 
and case reporting). The selected color schema indicates high values 
in red and low values in blue. The higher or lower the response was, 
the more intense the color is shown in the matrix. ICSR Individual 
Case Safety Report, IA intelligent automation
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across the three ICSR process blocks of intake, processing, 
and reporting in terms of (1) the related effort associated 
with the task; (2) the risk associated with automation of 
that task; and (3) the benefit obtained through automation 
of that step. The same color scheme as in Fig. 3 was applied, 
with shades of red for the indication of high and shades 
of blue for a low association. Figure 2 displays the high 
perceived benefit associated with intake and case process-
ing blocks, as indicated with a more intense red, compared 
with the medium perceived benefit for case reporting. This 
finding could be related to the high effort currently spent in 
intake and case processing without automation, and hypo-
thetically could be saved using automation. The associated 
risk related to the automation of case intake is assessed as 
slightly lower than the associated risk for case process-
ing, which could be explained by the fact that rules can be 
applied more efficiently during intake. In contrast, during 
case processing, the medical assessment-related activities 
are conducted under conditions requiring more complexity 
or presenting limitations to automation based on current, 
rules-based approaches.

A more granular look into the detailed ICSR process 
steps is shown in Table 1. This heatmap is an evolution 
from the previous publication, ‘Automation Opportunities 
in Pharmacovigilance: An Industry Survey’ by Ghosh et al. 
[3], and compares effort, benefit, and risk for the detailed 
process steps. As outlined in the caption for Table 1, this 
heatmap contains benefit and perceived implementation 
risk data from the 2019 survey; effort, benefit, and risk 
from the 2021 survey; and technology implementation data 
from the 2020 and 2021 surveys. While Fig. 1 focuses on 
the type of intelligent automation applied in the individual 
steps of the process, Table 1 visualizes effort, benefit, and 
risk per step and the percentage of MCs using automation 
at each step. For the ‘duplicate check’ step in the case pro-
cessing block, the percentage of companies using intelli-
gent automation increased from 25 to 78%. The significant 
progress in implementing automation, like RPA, could be 
attributed to the implicit logic and structure across the 
highly transactional ICSR process. Moreover, an RPA bot 
can be developed that mimics human interaction in safety 
database systems.

Fig. 3   TransCelerate’s Technology Survey Results 2021. In 2021, 
TransCelerate member companies were asked to assess their activities 
in the adoption of intelligent automation technologies for the ICSR 
management process based on the planning, piloting, and imple-
mentation phases. ICSR management processes are represented on 
the y-axis and automation technologies used in the survey are repre-
sented on the x-axis. Results on the x-axis are grouped by the plan-

ning, pilot, and production phases. The more a technology is used, 
the more intense the color is displayed in the matrix. Response values 
range from 0% (white) to 61% (darkest orange). QC quality check, 
RPA robotic process automation, ML machine learning, OCR optical 
character recognition, NLP natural language processing, NLG natural 
language generation
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3.2 � Theme 2: Continued Interest in Emerging 
Cognitive Technologies Such as Machine 
Learning

According to the 2021 survey results, there is interest 
in emerging cognitive technologies such as ML, natural 
language processing (NLP), and Natural Language Gen-
eration (NLG) [Fig. 3], as indicated by frequent use in 
Planning. There is consistent interest in ML, NLP, and 
NLG planning from 2020 to 2021 (count of responses 
across all process steps for ML, NLP, and NLG, respec-
tively, where survey response = ‘planning’: 100 to 100; 
64 to 63; 16 to 15) [see also Fig. 1], even as pilot/pro-
duction activity decreased (count of responses across 
all process steps for ML, NLP and NLG, respectively, 
where survey response = ‘pilot’ or ‘production’: 12/23 

to 14/33; 7/24 to 6/30; 2/7 to 0/7). Furthermore, these 
gains were observed with fewer MC respondents in 2021 
compared with 2020 (18 vs. 20). Significant planning for 
implementing these technologies was already observed in 
the previous survey results, which aligns with the rise of 
digitalization embraced by the pharmaceutical industry. 
Interest in automating these process steps remains con-
stant, as automation decreases the effort for activities that 
do not require significant human perceptual or cognitive 
skills. As mentioned above, the results also show sustained 
growth in RPA. However, with increased growth in AI and 
ML implementation, it is now possible to automate tasks 
that are assumed to require human perceptual or cognitive 
skills, such as recognizing handwriting, speech, or faces; 
understanding language; planning; reasoning from partial 
or uncertain information; and learning. Technologies able 

Table 1   Perceived levels of current effort and benefit versus risk from automation, automation opportunity, and level of applied automation per 
ICSR process step.

Heat map of perceived effort, benefit and risk of automation from the 2021 TransCelerate MC survey based on the average of the responses for 
each process step, represented at levels of low, medium and high. 2019 survey responses for benefit and risk, originally collected at different 
scales, were converted to low, medium and high values and are shown in comparison. Data on process steps not covered by the 2019 survey 
are marked as ‘not collected’. Automation opportunity scores are calculated as effort * benefit/risk (with low = 1, medium = 2, high = 3), with 
a higher score indicating a higher value opportunity. The table also shows the percentage of responding companies that were already applying 
automation for individual process steps in response to the 2020 and 2021 surveys, as well as the delta between the survey responses. QC quality 
check, ICSR Individual Case Safety Report, MC member company
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to perform tasks such as these traditionally assumed to 
require human intelligence are called cognitive technolo-
gies [1].

It was evident that companies are interested in using ML 
across the entire range of process steps, and that ML is in 
planning for almost all process steps, especially in Intake 
and Case Processing, as seen in the technology heat map 
(Fig. 3).

Focusing on the changes from the 2020 to 2021 surveys 
(Fig. 1), we can see progress with intelligent automation 
tools reaching production across many process steps, while 
many intelligent automation solutions remain in the planning 
or pilot phase.

3.3 � Theme 3: Stacking of Technologies for Value

According to the 2021 survey results, there are no process 
steps in the example ICSR process flow, where companies 
had not taken any action to automate the process steps. 
Even for steps with no intelligent automation in production, 
respondents were planning or piloting some intelligent auto-
mation technology (Fig. 3). For all process steps, respond-
ents have implemented some degree of intelligent automa-
tion. In these areas where intelligent automation was being 
implemented, respondents typically used multiple technolo-
gies in each step. In both the 2020 and 2021 survey, there 
were 38/40 process steps where some MCs reported imple-
menting two or more intelligent automation technologies for 
the process step. Although a majority of MCs implemented a 
single technology for any given process step (70.1% in 2020 
and 58.9% in 2021), some MCs have reported applying as 
many as six discrete intelligent automation technologies for 
a single process step. Comparing results from the 2020 and 
2021 surveys indicates an increasing technology stacking 
trend, at least to a certain point, across all ICSR process 
steps among companies implementing at least two technolo-
gies for a given step: two technologies in production (20.1% 
in 2020 vs. 27.7% in 2021), three technologies (3.7% vs. 
7.2%), four technologies (5.1% vs. 5.1%), five technologies 
(0.7% vs. 0.3%), and six technologies (0.3% vs. 0.8%) [see 
the full table in the ESM for more detail].

From the survey results, intelligent automation technolo-
gies are often not implemented in isolation, but instead, 
multiple technologies are increasingly being combined or 
stacked to produce a working solution.

Nearly every step in the example ICSR process has some 
workflow support. Workflow technologies are not necessar-
ily new, and many commercial adverse event systems have 
extensive workflow capabilities. It would make sense intui-
tively that companies would combine other orchestration 
technologies in conjunction with workflow. This result is 
visible in our 2021 survey results (Fig. 3), showing RPA in 
production for 33/40 process steps. Workflow Orchestration 

is also in widespread production. For every step where RPA 
is being applied, the respondents also report having work-
flow in production on those same steps. There are no steps in 
our survey where only one intelligent automation technology 
has been implemented to automate the process flow fully.

Optical character recognition (OCR) technology is 
another technology that appears in the automation plans for 
several process steps. In both the 2020 and 2021 survey, 
MCs reported having OCR in production for 11 process 
steps. Many companies receive source materials for ICSRs 
in portable document format (PDF). Where the PDF is com-
puter-generated, extracting relevant text from the document 
through traditional programming methods is easily feasible. 
In many cases though, the PDF contains a rendered image of 
some structured format, such as a MedWatch or Council for 
International Organizations of Medical Sciences (CIOMS) 
form. In many cases, the PDF will be a rendering of a paper 
form that has been imaged. Both the 2020 and 2021 survey 
results show MCs using both OCR and NLP stacked or in 
combination in process steps where PDF images would be 
processed. For non-English text, automated translation can 
be used to obtain an English translation. NLP can classify 
the type of information in the document to facilitate down-
stream case-processing activities. MCs survey responses 
from both 2020 and 2021 show that for 11 process steps 
where NLP is in production, OCR is also in production. 
NLP can be used to identify demographic information such 
that the information relevant to the reporter can be identi-
fied separately from information relevant to the patient. The 
NLP classifier can be used to identify terms that should be 
coded using Medical Dictionary for Regulatory Activities 
(MedDRA), where adverse events can then be separated 
from medical history, indications for use, or concurrent 
conditions.

Within the ICSR process framework, several cases exist 
of ML and AI applied alongside orchestration technologies 
such as RPA or workflow automation. For example, ML 
algorithms trained on small sets of ICSRs from the US FDA 
Adverse Event Reporting System (FAERS) showed prom-
ise in classifying causality as certain, probable, possible, 
and unlikely [7]. Similarly, ML models showed promise in 
identifying adverse drug reactions (ADRs) from a patient-
reported narrative text but fell short at assessing seriousness, 
a task that could be viewed as more complex [8]. While 
these technology evaluations are exploratory to date, further 
development and enhanced performance would undoubtedly 
benefit an RPA-orchestrated ICSR processing pipeline.

4 � Discussion

There are several areas where further exploration is required, 
and implementors of intelligent automation should take note.
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4.1 � Training Data Challenges

As ML becomes a significant contributor to task automa-
tion within the pharmaceutical industry, additional emphasis 
needs to be put on data quality and data understanding. A 
supervised ML model requires representative training data 
with a valid ground truth established. In the pharmaceuti-
cal industry, this is often represented as historical datasets 
from existing systems that may come in various forms (e.g., 
sensor data, images, voice, text, and video). These data may 
not have been created to train future ML models and may 
lack the proper formatting or annotation. Within PV, ICSR 
processing may be an exception as companies have been 
extracting and interpreting millions of source documents 
into a structured database.

Representative training data are important as patterns 
from training data are generalized and then applied to new 
incoming data to make decisions based on similar problems 
or slight variations from data observed in the training data-
set. If these patterns are inaccurate in the context of the new 
data, the decisions will be of low quality. This risk presents 
a challenge for companies if data were never collected for 
this purpose or never cleansed to accommodate such activi-
ties. Even within a single company’s database, variations in 
ICSR data may exist regarding multiple languages, different 
conventions over time, or as the result of acquisitions and 
mergers. Other strategies to create a training dataset include 
voluminous manual curation by PV professionals, which can 
be costly and onerous. One novel alternative is crowdsourc-
ing a training dataset that proved accurate, taking only a 
fraction of the time [9].

4.2 � Perceived Risk in an Emerging Regulatory 
Environment

Survey data in Table 1 shows that from 2019 to 2021, the 
perceived level of risk from automation decreased in 36/38 
(94.7%) evaluable ICSR process steps (two steps could not 
be compared as they were not collected in 2019). Duplicate 
check and manual assessment, defined as manual review of 
non-automatic submissions (e.g., automatable with rule-
based technologies), showed higher risk from automation 
in the recent survey. This change in perceived risk may be 
attributable to the experience gained through previous pilots 
and production implementations.

Despite this gained experience, the emerging regula-
tory environment may present challenges to implementa-
tion progress such that many intelligent automation use 
cases in planning or piloting could experience unnecessar-
ily long delays before advancing into production. Surpris-
ingly, industry experts considered AI more mature in PV 
than in other R&D functions, such as regulatory and clini-
cal operations, but still identified regulatory and compliance 

concerns as one of the top reasons for not implementing AI 
[10]. As companies evaluate digital tools, they must consider 
and monitor the risk associated with AI use in certain areas 
of work.

In the absence of clear guidance on validation approaches, 
companies tend toward a conservative validation approach 
and carefully consider actions and approaches to ensure 
unforeseen events, model drift, and other risks are managed 
post-implementation. This approach has often accompanied 
proactive dialog with regulators and the consensus of accept-
able quality levels, production monitoring, and risk manage-
ment. This approach is further elaborated by Huysentruyt 
et al. in the proposed framework for validating intelligent 
automation systems, focusing on quality assurance and 
health authority engagement for acceptable performance 
measures [4].

The principles of the International Society for Pharma-
ceutical Engineering (ISPE) Good Automated Manufactur-
ing Practices and the FDA Good Machine Learning Practices 
continue to be the foundation of standard-setting organiza-
tion and health authority publications, including those of 
the Danish Medicines Agency (DKMA) [11], US National 
Institute of Standards and Technology (NIST) [12], and UK 
Medicines and Health products Regulatory Agency (MHRA) 
[13]. These documents signal a pragmatic approach toward 
AI validation focusing on training data, performance meas-
ures, and production oversight appropriate for using the 
system. We hope that AI validation expectations harmonize 
globally in an already complex operating environment bur-
dened with numerous local requirements.

Other functions within the pharmaceutical industry 
that may not be subject to such rigid quality standards and 
inspections, such as drug discovery, have moved forward 
with AI implementation. As many as 88% of large-sized 
and 74% of mid-sized pharmaceutical companies used some 
form of AI somewhere within their organizations, compared 
with 50% of MCs in our survey who reported implementing 
AI within ICSR processing [10].

5 � Conclusions

Automation has and will continue to change how PV organi-
zations collect, process, analyze, and act on data. While rule-
based automations are commonplace, they offer incremental 
efficiencies primarily by mimicking human transformation 
and processing of structured data. ML and other AI-based 
intelligent automations can genuinely be transformational 
and change how data enters and flows through PV organiza-
tions. Mockute et al. identified 51 decision points within 
ICSR processing that are candidates for AI [14], while 
countless others exist downstream in signal detection and 
management.
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Intelligent automation technologies are not deployed in 
isolation and are complemented by rule-based automations 
to facilitate workflows and other ML models optimized for 
specific data points or tasks. While there is a vision for 
touchless case processing [15], the current state of ML 
will augment PV professionals by increasing their effi-
ciency and effectiveness [7, 16].

Beyond ICSR processing, other PV processes, including 
AI literature review and social listening, were frequently 
reported, as in the pilot or planning stages [10]. Additional 
signal detection and evaluation uses include the ability 
to connect and synthesize evidence from multiple data 
sources across R&D from multiple data sources and syn-
thesize evidence from molecule to patients [17]. The con-
tinued evolution of sponsor risk perceptions and regula-
tor acceptance of validation approaches will allow greater 
future benefits from ML and other intelligent automation 
across PV domains.
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