
intubation (2). Schematically, treatment should aim at minimizing
the risk of muscular exhaustion leading to rapid shallow
breathing and hypercarbia, while avoiding the risk of additional lung
injury, self-inflicted by high transpulmonary pressure and VT.
Noninvasive respiratory support that grants lung- and diaphragm-
protective ventilation should then be considered as ideal (3, 4).

The authors should be commended for providing a
complete set of physiological data that could enhance our
understanding of the effects of different noninvasive support
in patients with AHRF. Overall, helmet NIV dramatically decreased
the inspiratory effort compared with HFNC. Thus, helmet NIV
could be highly efficient in decreasing the diaphragm workload to a
desired physiological level, able to protect it from myotrauma and
failure (3). On the lung protection side, the authors measured
transpulmonary pressure swings (ΔPL) as a surrogate of dynamic
lung stress during both study phases, reporting nonsignificant
differences between HFNC and helmet NIV (Figure 2 of Reference
1, right upper panel; P= 0.11) (1). The reduction in inspiratory
effort during helmet NIV might have been due to two
different mechanisms: the improvement in respiratory mechanics
because of higher positive end-expiratory pressure effect and/or the
muscles unloading owing to pressure support. For a given VT, with
the first mechanism, the decrease in inspiratory effort (DPES) would
be associated with a decrease in ΔPL (5); on the opposite side,
pressure support could decrease DPES with unchanged (if
mechanics remain stable) or even increased ΔPL (in the presence
of overdistension). Thus, identifying which mechanism is
predominant in each patient might help individualize the type
of support and NIV settings more than looking at average
global values. As an example, it could be interesting to investigate
whether the changes in DPES and ΔPL between HFNC and helmet
NIV were correlated with end-expiratory transpulmonary pressure
during HFNC (6), with subjects with highly negative values
experiencing unchanged or even decreased ΔPL. If this correlation
does exist, helmet NIV would be preferred to HFNC in patients
with very low end-expiratory transpulmonary pressure. The finding
that patients with lower DPES during HFNC increased ΔPL more
during helmet NIV could further corroborate this hypothesis:
indeed, there was no correlation between DPES and
oxygenation during HFNC, suggesting that the major determinant
of respiratory effort is not altered gas exchange, but rather worse
respiratory mechanics and inflammation (4).

The authors also describe that higher ΔPL during helmet NIV was
associated with the need for intubation and with mortality. The latter
is undoubtedly an exploratory analysis, but it is interesting to note that
seven out of eight patients who ultimately required intubation were
clinically supported by helmet NIV for a certain number of hours.
It would be interesting to explore whether this might have
led to higher lung stress and additional lung injury. Additional
explorative analyses could include comparing gas exchange
during the study protocol and the last one measured before
intubation to check whether lung edema worsened or if
derangements of pH and PaCO2

were the main determinants
of intubation.

Already, looking at the results, it seems that the ability to limit
lung stress by helmet NIV might be lower than during HFNC.
Helmet NIV could be considered as step-up support before
intubation only in selected patients or if monitoring confirms
lung-protective conditions. n
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Reply to Spinelli and Mauri

From the Authors:

We read with great interest the letter by Drs. Spinelli and Mauri
discussing our recently published manuscript (1). We are grateful to
the authors for their positive comments, useful suggestions for
further analyses, and brilliant insights regarding interpretation of
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the results. We believe these remarks will foster an important
debate about the role of noninvasive strategies in patients
exhibiting intense inspiratory effort because of acute hypoxemic
respiratory failure (2). Excessive inspiratory effort may be
detrimental in hypoxemic patients because it leads to increased
VT and lung stress; causes abnormal increases in transvascular
pressure and worsening lung edema; generates overstretch in
the dependent lung owing to a pendelluft phenomenon; and
contributes to diaphragm injury (3–5).

In our study, we showed that, as compared with high-flow nasal
cannula (HFNC), helmet noninvasive ventilation (NIV) is capable
of reducing inspiratory effort. The decrease in inspiratory effort
by helmet NIV is proportional to the degree of inspiratory effort
during HFNC; accordingly, patients with low inspiratory effort
while onHFNCmay experience increases in transpulmonary pressure
swings with helmet NIV. This suggests that monitoring of inspiratory
effort would be crucial to tailor interventions and balance the benefits
and harms of noninvasive strategies. Unfortunately, neither
oxygenation nor respiratory rate was related to inspiratory effort in

our cohort. Following the authors’ suggestion, we performed
additional analyses, which showed that inspiratory effort during
HFNC was weakly but significantly related to end-expiratory
esophageal pressure (r= 0.64; P=0.011). Changes in inspiratory
effort and in transpulmonary pressure swings with helmet NIV were
associated with this parameter as well (Figure 1). Indeed, the end-
expiratory esophageal pressure reflects the lung weight, which can be
increased to a variable extent according to different degrees of
edema, alveolar flooding, and disease severity (6).

In our cohort, eight patients (53%) required endotracheal
intubation. Drs. Spinelli and Mauri question whether hypercapnia
and pH derangements occurred after the end of the study and
eventually led to the need for intubation. None of the intubated
patients developed hypercapnia; unbearable dyspnea was the most
common primary cause of endotracheal intubation (four patients),
followed by worsening oxygenation (three patients) and altered
consciousness with ineffective cough (one patient). Whether
worsening oxygenation reflects increased lung edema cannot be
established by our data. In our unit, we apply strict monitoring
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Figure 1. (Top) Correlation between end-expiratory esophageal pressure (PES) and inspiratory effort (DPES) during high-flow nasal cannula (HFNC).
Patients with higher end-expiratory PES had more intense inspiratory effort. (Bottom) Correlation between end-expiratory PES and the change in DPES and
transpulmonary pressure swings (DPL) induced by helmet noninvasive ventilation (NIV). In all graphs, data from individual patients (1) and Pearson’s
correlation are reported.
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of patients undergoing noninvasive respiratory support due to
hypoxemic respiratory failure, to avoid any delay in endotracheal
intubation. It is possible that prompt detection of treatment failure
prevented muscle exhaustion–induced hypoventilation in failing
patients.

Finally, because in some patients (i.e., those with lower
inspiratory effort) helmet NIV increased transpulmonary pressure
swings, the authors suggest that helmet NIV is less able to limit lung
stress than HFNC and that this treatment should be reserved for
selected patients as a step-up support. Unfortunately, we fear that it
is not possible to draw conclusions regarding this specific aspect
from our results. However, global lung stress (estimated by
transpulmonary pressure swings) is only one determinant of self-
inflicted lung injury, and inspiratory effort seems the most
important parameter to be taken into account in this setting. Helmet
NIV allows the application of high positive end-expiratory pressure,
which reduces inspiratory effort and prevents pendelluft-induced
overstretch in the dependent lung, as well as other ventilatory
heterogeneities, making spontaneous effort less injurious (7).
Importantly, during lung injury, limiting transpulmonary pressure
swings cannot prevent injurious inflation patterns or diaphragm
injury if inspiratory effort is not reduced as well (5, 8). n
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Loss of Alveolar Attachments as a
Pathomechanistic Link between Small Airway
Disease and Emphysema

To the Editor:

Vasilescu and colleagues are the first to provide confirmation that an
imaging biomarker, parametric response mapping (PRM), has
the ability to differentiate small airway disease (PRMSAD) from
emphysema (PRMEmph) in patients with established chronic
obstructive pulmonary disease (COPD) (1). This is of utmost
importance given the urgent clinical and scientific need to
noninvasively detect terminal bronchial pathology.

COPD is characterized by the presence of persistent airflow
limitation and respiratory symptoms. Airways smaller than 2 mm in
internal diameter are the dominant site of airflow obstruction in
patients with COPD. This obstruction is caused by a mixture of
pathogenic events (with)in and around the small airways, namely,
loss of airways (2, 3), thickening of remaining airway walls (3),
luminal obstruction by endobronchial mucus, and loss of
bronchiolar–alveolar attachments leading to reduced radial traction.

Emphysema is a key pathological condition in COPD that is
defined by an abnormal, permanent enlargement of airspaces distal to
the terminal bronchiole, accompanied by destruction of their walls
and without obvious fibrosis. Whereas in an editorial addressing the
landmark study of McDonough and colleagues (2), Mitzner (4)
questioned whether emphysema formation starts in the small
airways or lung parenchyma, accumulating evidence now strongly
suggests that small airway disease precedes emphysema formation
(2, 3, 5). It has been demonstrated that a significant proportion of
terminal and transitional bronchioles are lost in lung samples from
patients with COPD without signs of emphysema (2, 3), and that the
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