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Abstract
Primary Open Angle Glaucoma (POAG) is a common neurodegenerative disease charac-

terized by the selective and gradual loss of retinal ganglion cells (RGCs). Aging and

increased intraocular pressure (IOP) are glaucoma risk factors; nevertheless patients dete-

riorate at all levels of IOP, implying other causative factors. Recent evidence presents mito-

chondrial oxidative phosphorylation (OXPHOS) complex-I impairments in POAG. Leber

Hereditary Optic Neuropathy (LHON) patients suffer specific and rapid loss of RGCs, pre-

dominantly in young adult males, due to complex-I mutations in the mitochondrial genome.

This study directly compares the degree of OXPHOS impairment in POAG and LHON

patients, testing the hypothesis that the milder clinical disease in POAG is due to a milder

complex-I impairment. To assess overall mitochondrial capacity, cells can be forced to pro-

duce ATP primarily from mitochondrial OXPHOS by switching the media carbon source to

galactose. Under these conditions POAG lymphoblasts grew 1.47 times slower than con-

trols, whilst LHON lymphoblasts demonstrated a greater degree of growth impairment (2.35

times slower). Complex-I enzyme specific activity was reduced by 18% in POAG lympho-

blasts and by 29% in LHON lymphoblasts. We also assessed complex-I ATP synthesis,

which was 19% decreased in POAG patients and 17% decreased in LHON patients. This

study demonstrates both POAG and LHON lymphoblasts have impaired complex-I, and in

the majority of aspects the functional defects in POAG were milder than LHON, which could

reflect the milder disease development of POAG. This new evidence places POAG in the

spectrum of mitochondrial optic neuropathies and raises the possibility for new therapeutic

targets aimed at improving mitochondrial function.
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Introduction
Glaucoma is a neurodegenerative disease characterized by the selective and accelerated loss of
retinal ganglion cells (RGCs). It has been spectulated that mitochondrial dysfunction contrib-
utes to Primary Open-Angle Glaucoma (POAG) [1–9]. RGCs are particularly sensitive to mito-
chondrial dysfunction, as exemplified by two diseases: Leber Hereditary Optic Neuropathy
(LHON), caused by mitochondrial DNA (mtDNA)-linked defects in oxidative phosphoryla-
tion (OXPHOS) complex-I [10], and Autosomal Dominant Optic Atrophy (ADOA), caused in
most cases by mutations in a nuclear gene encoding the mitochondrial fusion protein OPA1
[11–13]. In late-stage disease POAG and LHON share phenotypical similarities at the optic
nerve head, and both suffer RGC loss [14–16]. A high density of mitochondria at the optic
nerve head suggests a particular dependence on mitochondrial function in this location, which
predisposes RGCs to metabolic failure when additional stresses such as age and increased intra-
ocular pressure (IOP) occur [17].

Raised IOP is a major risk factor for POAG [18] and lowering IOP can slow progression
[19], nevertheless patients continue to deteriorate despite IOP lowering [20] which implies
that other risk factors contribute to POAG. There is emerging evidence of mitochondrial
impairment in glaucoma [5,21]. Functional studies from advanced POAG patients revealed a
decreased total mitochondrial respiratory function in lymphocytes [22] and trabecular mesh-
work cells [23] that was likely due to a complex-I impairment [24]. Interestingly, patients
experiencing high IOP for many years without optic nerve degeneration had enhanced mito-
chondrial function which potentially protects their optic nerve against IOP stress [25]. Here we
report a validation study of our previous report [24] using a cohort of advanced POAG and
control patients collected from the Australian and New Zealand Registry of Advanced Glau-
coma (ANZRAG) [26–31], a well-characterised advanced glaucoma and control patient cohort.
Furthermore we compare the degree of complex-I impairment in advanced POAG patients to
that of LHON patients with advanced vision loss to correlate the degree of mitochondrial
impairment to that of disease development.

Materials and Methods

Patient selection and lymphoblast line generation
For POAG cases, patients and controls from the ANZRAG patient cohort were examined by
an experienced ophthalmologist [27]. The ANZRAG cohort is the largest cohort of advanced
POAG patients and controls recruited across Australian and New Zealand in order to identify
new clinical and genetic risk factors for developing the worst outcomes in glaucoma. Detailed
patient information is collected, including clinical examination, family history and environ-
mental risk profile. In the ANZRAC cohort patients with advanced POAG fulfilled the follow-
ing criteria in the worst eye: visual field loss related to glaucoma with at least two out of the
four central squares having a pattern standard deviation<0.5% on a Humphrey 24–2 field or a
mean deviation of<−22 dB, or in the absence of field testing, loss of central acuity related to
glaucoma was tested using a Snellen visual acuity chart with either pinhole or full refractive
error correction [27]. Subjects were also required to have evidence of glaucomatous optic disc
changes (even if mild) for the better seeing eye. Detailed clinical assessment was performed
and documented as previously described for the ANZRAG recruitment [27].

For this study advanced POAG patients and controls were carefully selected from the larger
ANZRAG cohort by experienced ophthalmologists (AWH and JEC) and geneticists (KPB and
SS). Exclusion criterion for this cohort included; the presence of any other ocular, systemic,
chronic or neurological diseases other than POAG-related optic nerve damage, the presence of
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any glaucoma types other than POAG and the presence of cancer. Stringent exclusion criteria
were maintained to reduce the risks of chronic diseases impacting on mitochondrial function.
Controls were matched from the same patient cohort for age and gender. Patient summary
information for POAG and age-matched controls can be found in Table 1.

LHON patients were recruited through the Royal Victorian Eye and Ear Hospital (RVEEH)
clinical genetics unit and patients known to carry the complex-I 11778 G>Amutation were
seen by their consulting ophthalmologist. Patients were recruited with acute vision loss above
the age of 20 years according to published criteria [32,33]. Visual acuity in affected patients
ranged from 1/24 in the better eye through to detection of hand motion in the worst eye. Geno-
type of the transformed cell lines derived from LHON patients was confirmed by Sanger
sequencing. The LHON cohort had an average age of 30 ± 15 years, and comprised of 4 males
and 2 females. Controls for the LHON cohort (Cont2) were 58 ± 8 years and comprised of 5
males and 1 female. Patient summary information for LHON and age-matched controls can be
found in Table 2.

Ethics approval was obtained from the Southern Adelaide and Flinders University Clinical
Research Ethics Committee for collection of the POAG cohort, and from the RVEEH Clinical
Research Committee for collection of the LHON cohort. The study was conducted in accor-
dance with the revised Declaration of Helsinki and following the National Health and Medical
Research Council (Australia) statement of ethical conduct in research involving humans. Writ-
ten informed consent was provided by all participants.

Epstein Barr Virus (EBV)-transformed lymphoblast lines were generated from blood sam-
ples collected in EDTA blood collection tubes (Greiner BioOne) and stored at room tempera-
ture prior to transformation. Lymphocytes were transformed using EBV as previously
described [34]. Control lymphoblast lines were age-and gender-matched to the POAG cohort
and were generated at the Department of Genetic Medicine, Women’s and Children’s Hospital,
North Adelaide, Australia. Lymphoblast lines for the LHON and age- and gender-matched
control cohort were generated at the Centre for Eye Research Australia.

Table 1. POAG patient demographics.

Controls (Cont1) POAG

Number 20 15

Age (years) 79 ± 7 80 ± 7

Gender 11 F, 9 M 7 F, 8 M

Smokers 7/20 3/15

Diabetes 1/20 3/15

Hypertension 9/20 8/15

Thyroid problems 3/20 1/15

Arthrosclerosis 5/20 8/15

Steroid medication 9/20 5/15

Migraine or headache 4/20 3/15

First-degree relative with POAG n/a 4/15

Disease duration (years) n/a 17 ± 9

Highest IOP 15 ± 1 28 ± 8

Mean Deviation OD / OS n/a -20 ± 8 / -18 ± 9

Central corneal thickness OD / OS 542 ± 28 / 541 ± 46 505 ± 49 / 505 ± 46

Cup-to-disc ratio OD / OS n/a 0.9 ± 0.1 / 0.9 ± 0.1

Control and POAG lymphoblasts were matched for age, sex and race. OD, right eye; OS, left eye.

Continuous variables are presented as means ± standard deviation.

doi:10.1371/journal.pone.0140919.t001
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Lymphoblast culture
Lymphoblasts were maintained in RPMI-1640 media containing 12 mM glucose, 15% heat-
inactivated fetal bovine serum (FBS), 2.05 mmol/L L-glutamine, 100 units/mL penicillin, and
100 μg/mL streptomycin. Lymphoblast lines were also grown in glucose-free galactose RPMI-
1640 media, containing 5 mM galactose, 4.5 mM sodium pyruvate, 15% dialyzed heat-inacti-
vated FBS, 2.05 mmol/L L-glutamine, 100 units/mL penicillin, and 100 μg/mL streptomycin.
All lymphoblast lines were cultured as described in 125 cm2 tissue culture flasks (Greiner Bio-
one, Germany) and incubated at 37°C, 5% CO2 in a humidified incubator. For all experiments
(ATP production, respiration, lymphoblast pellet harvesting for OXPHOS enzymology) lym-
phoblast lines were seeded at 2x105 cells/ml in fresh RPMI media 3 days prior to performing
experiments or lymphoblast harvesting to ensure equal lymphoblast proliferation rates
between groups. All lymphoblast lines were randomised and experiments were performed in
large batches to minimise inter-experiment variation, and analysis was performed blinded to
sample identity.

PCR genotyping for LHONmutation
Presence of the LHON 11778 G>Amutation was confirmed by PCR and Sanger sequencing.
DNA was extracted from lymphoblasts using Qiagen genomic DNA extraction kit according to
manufacturer’s protocols. PCR amplification was performed using Taq DNA polymerase (Invi-
trogen) and the following forward primer (5’-3’—CCC ACC TTG GCT ATC ATC) and reverse
primer (5’-3’—GGT AAG GCG AGG TTA GCG) for 25 cycles of 94°C for 30 sec, 51°C for 30
sec and 72°C for 60 sec. PCR product size was confirmed by agarose gel electrophoresis, resid-
ual primers removed with a PCR clean-up kit (Qiagen) and PCR fragments sequenced by
Sanger sequencing at the Australian Genomic Research Facility (Melbourne, Australia) using
the forward primer. Sequences were aligned to the revised Cambridge mitochondrial DNA
sequence (GenBank sequence NC_012920).

Lymphoblast proliferation in galactose media
Growing cells in media in which glucose is removed and galactose is provided as a carbon
source is a commonly used screening test for mitochondrial dysfunction. Because cells grown
in galactose rely on OXPHOS to synthesise ATP, cells with mitochondrial impairments have
slower proliferation rates and increased population doubling times [35]. Lymphoblast viability
and lymphoblast number were assessed with the trypan blue exclusion assay. Lymphoblasts
were cultured in either glucose or galactose media at an initial cell number of 2x105 cells/ml. At
each timepoint between 0–9 days an aliquot of resuspended lymphoblasts was stained with
0.04% (w/v) trypan blue and counted using an automated hemocytometer (Countess auto-
mated cell counter, Invitrogen). Doubling time, the time taken for the lymphoblast population

Table 2. LHON patient demographics.

Controls (Cont2) LHON

Number 6 6

Age (years) 58 ± 8 30 ± 15

Gender 5M, 1F 4M, 2F

Visual acuity Normal vision 1/24 –HM

Control and LHON lymphoblasts were matched for age, sex and race. Continuous variables are presented

as means ± standard deviation. HM: detection of hand motion in the worst eye.

doi:10.1371/journal.pone.0140919.t002
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to double (days) was calculated during the exponential phase of proliferation. For glucose-
grown lymphoblasts this was days 2–4, and for galactose-grown lymphoblasts this was days
1–6. These rates were automatically calculated using Prism 5.01 software (GraphPad Software
Inc.). The ‘exponential growth’ nonlinear regression model and the fitting method of ‘least
squares (ordinary fit)’ from Prism was used to automatically calculate doubling time.

OXPHOS-specific activity assays
All assays were performed using a Cary 300 Bio (Varian, CA, USA) single beam spectropho-
tometer. Frozen lymphoblast pellets from cultures harvested during exponential proliferation
were thawed from -80°C and resuspended in 100μl of mannitol buffer (225mMmannitol,
75mM sucrose, 10mM Tris-Cl, 0.1mM EDTA, pH 7.4 with KOH), and sonicated briefly on ice
(Milsonix homogeniser, 4 pulses at 0.04 V, power setting 1.5). Prepared samples were assayed
in quartz cuvettes. Normalisation of OXPHOS-specific activity to the activity of the Kreb’s
cycle enzyme citrate synthase allowed for correction for mitochondrial density [36,37].

Complex-I (NADH: ubiquinone oxoreductase, EC 1.6.5.3) activity was measured by moni-
toring oxidation of NADH using the extinction coefficient of 6.22 mM-1.cm-1. Briefly, 500μg
lymphoblast lysate was added to the complex-I reaction mixture (100μMNADH, 100μM decy-
lubiquinone, 3.75mg/ml BSA) in phosphate buffer (50mM KH2PO4/ 50mM K2HPO4, pH 7.5)
and oxidation of NADH was monitored for 5 minutes at 340nm and 37°C. The specific com-
plex-I activity was calculated by subtracting the rotenone insensitive activity from the total
NADH ubiquinone oxidoreductase activity by running parallel reactions with the complex-I
inhibitor rotenone (12.5μM). Rotenone insensitive activity usually accounted for less than 10%
of the overall activity. Complex-IV (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1)
activity was measured as described previously [34]. 400μg lymphoblast lysate was added to
assay medium, and the rate of oxidation of ferrocytochrome c was determined at 550nm
and 30°C. Complex-IV specific activity was calculated using the extinction coefficient of 27.2
mM-1.cm-1. Citrate synthase (EC 4.1.3.7) activity was measured as described previously [34].
Briefly 200μg lymphoblast lysate was added to assay medium and monitoring DTNB reduction
monitored at 412 nm and 30°C. Citrate synthase-specific activity was calculated using the
extinction coefficient of 13.6 mM-1.cm-1.

Mitochondrial ATP synthesis
Maximal mitochondrial ATP synthesis for complex-I (glutamate + malate) and complex-II
(succinate + rotenone) can be measured in permeabilised cells in the presence of excess ADP to
determine mitochondrial efficiency. ATP synthesis rates were measured by using a luciferin/
luciferase assay as previously described [38–40] with some modifications [34]. The measure-
ment of mitochondrial ATP synthesis was performed in lymphoblasts grown in RPMI with 12
mM glucose and 15% heat inactivated FBS for 72 hours. The rate of ATP synthesis was linear
and dependent on lymphoblast density [34], and oligomycin inhibited>95% of mitochondrial
ATP synthesis.

NAD+/NADH ratio
Lymphoblasts were seeded at 1x106 cells/ml in standard RPMI (2mg/ml glucose) with 15%
heat-inactivated fetal calf serum for 48 hours prior to harvesting lymphoblasts for analysis. At
the time of harvesting, lymphoblasts were counted, resuspended at 1x106 cells/ml in PBS and
700μl transferred to a new tube. An equal volume of bicarbonate buffer (100mM sodium car-
bonate, 20mM sodium bicarbonate, 10mM nicotinamide, 0.05% Triton-X 100, approximate
pH 10–11) + 1% dodecyltrimethylammonium bromide (DTAB) was added, lymphoblasts were
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gently mixed to lyse and preserve the dinucleotides, then snap-frozen at -80°C for future analy-
sis. NAD+ and NADH levels were measured using the NAD/NADH-Glo assay (Promega) in
two separate reactions designed to detect specifically either NAD+ or NADH, according to Part
5 of the manafacturers protocol. Data was compared to a standard curve of NAD+ (Sigma,
N7004), and from this the NAD+ and NADH amounts were calculated as well as the NAD+ to
NADH ratio.

Lactate production
Mitochondrial impairment can lead to elevated lactate levels [41], which is a common, albeit a
non-specific marker of mitochondrial disease [42]. Lymphoblasts were grown in GUP media
(G = glucose raised to 4mg/ml from the standard RPMI level of 2mg/ml, U = uridine at 50 μg/
ml, P = pyruvate at 1mM) in phenol-red free RPMI (Invitrogen) and 5% heat-inactivated FBS
(Invitrogen). Phenol-red free media was used as phenol interferes with lactate measurements,
and serum was reduced to 5% to minimise interference from lactate present in serum. Briefly,
lymphoblasts were seeded at 1x106 cells/ml in GUP media, incubated for 48 hours then pelleted
prior to a media sample being removed for lactate measurements. Lactate was quantified using
a colourmetric assay (Sigma, MAK065) according to manufacturer’s protocols. Lactate was
measured in samples diluted 1:40 in lactate dilution buffer, and was compared to a lactate stan-
dard curve. A media-only sample served as a blank and was subtracted from all other values.

Statistical analysis
Each experiment was performed with at least 3 biological replicates per cell line and the average
of these used for data analysis. Data normality was assessed with D'Agostino-Pearson normal-
ity test. For normally distributed data (OXPHOS, NAD+ and NADH) a two-sided unpaired
Students test was performed and data was presented as mean values ± standard deviation (SD).
Non-normally distributed data (doubling time, ATP synthesis, NAD+/NADH and lactate) was
assessed by Mann-Whitney test and data was presented as median ± interquartile range (IQR).
The accepted level of significance in all cases was P<0.05. All statistical analyses were per-
formed with commercially available software (GraphPad Prism version 5.01 for Windows,
GraphPad Software, San Diego California USA)

Results

Metabolic profiling of POAG and LHON lymphoblasts
Lymphoblasts exposed to glucose-free galactose media are forced to generate ATP through
OXPHOS. This is a commonly used assay to screen for mitochondrial impairments [35].
Impaired population doubling time was observed in both POAG and LHON lymphoblasts
when they were forced to grow in galactose media. Population doubling time was significantly
higher in POAG lymphoblasts [median (IQR): 4.14 (2.90–5.39) days] compared to age-
matched controls [median (IQR): 2.82 (2.12–4.04) days; Mann-Whitney test, p = 0.040; Fig
1A] where POAG lymphoblasts grew 1.47 times slower than controls. Likewise, population
doubling time was significantly higher in LHON lymphoblasts [median (IQR): 10.51 (7.36–
26.35) days] than for age-matched controls [median (IQR): 4.47 (3.66–4.72) days; Mann-Whit-
ney test, p = 0.002; Fig 1B, Table 3] where LHON lymphoblasts grew 2.35 times slower than
controls. The impairment in lymphoblast population doubling time was therefore greater in
LHON lymphoblasts compared to POAG lymphoblasts.
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Impaired OXPHOS complex-I activity in POAG and LHON lymphoblasts
To investigate the basis of the proliferation impairment in galactose media, we analysed
OXPHOS enzymatic function in our POAG and LHON patient cohorts. Batches of lympho-
blast pellets were used to measure the specific activity of complexes-I and -IV, and enzyme

Fig 1. Impaired population doubling time in POAG and LHON lymphoblasts when forced to rely on OXPHOS.Control, POAG and LHON lymphoblasts
were grown either in glucose media or galactose media, which forces cells to rely on OXPHOS for proliferation and survival. Proliferation curves were used to
calculate population doubling time. A) POAG and B) LHON lymphoblasts had significantly longer population doubling time in galactose media when
compared to controls. Data is median (IQR), Mann-Whitney test, n = 20 cont1, n = 15 POAG, n = 6 cont2 and n = 6 LHON, * = p< 0.05, ** = p< 0.01. Glucose
media (RPMI-1640 media containing 2mg/ml glucose, 15% heat-inactivated serum, 2.05mM l-glutamine); Galactose media (glucose-free RPMI-1640
containing 5mM galactose, 4.5mM sodium pyruvate, 15% dialysed heat inactivated FBS, 2.05mM l-glutamine).

doi:10.1371/journal.pone.0140919.g001

Table 3. Summary of major findings.

Galactose proliferation OXPHOS enzymology ATP synthesis Redox status

Doubling time (dT) Complex-I: CS Complex-IV: CS Complex-I Complex-II NAD+ /NADH

Cont1 2.82 (2.12–4.04) 0.45 ± 0.09 0.42 ± 0.10 0.43 (0.37–0.55) 0.23 (0.19–0.32) 4.36 (4.21–5.29)

POAG 4.14 (2.90–5.39) 0.37 ± 0.12 0.43 ± 0.11 0.35 (0.30–0.37) 0.19 (0.16–0.22) 4.72 (4.36–5.06)

Difference 1.47 times slower 18% na 19% 17% na

p-value 0.040 # 0.032 * ns * 0.019 # 0.020 # ns #

Cont2 4.47 (3.66–4.72) 0.65 ± 0.06 0.30 ± 0.10 0.35 (0.30–0.56) 0.18 (0.13–0.30) 4.66 (4.28–5.64)

LHON 10.51 (7.36–26.35) 0.47 ± 0.11 0.23 ± 0.04 0.29 (0.23–0.31) 0.15 (0.10–0.23) 3.61 (2.95–3.86)

Difference 2.35 times slower 29% na 17% na 23%

p-value 0.002 # 0.005 * ns * 0.030 # ns # 0.004 #

Statistical analysis: #Mann-Whitney test, data is median (interquartile range; IQR)

* Students t-test, data is mean ± standard deviation (SD).

doi:10.1371/journal.pone.0140919.t003
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rates were ratioed to citrate synthase. Complex-I (rotenone sensitive) specific activity was sig-
nificantly decreased in POAG lymphoblasts [mean ± SD: 0.37 ± 0.12 nmol/min/mg protein]
versus age-matched controls [mean ± SD: 0.45 ± 0.09 nmol/min/mg protein; student’s t-test,
p = 0.032; Fig 2A] which represented an 18% decrease in specific activity. Complex-IV
activity remained unchanged in POAG lymphoblasts [mean ± SD: 0.43 ± 0.11 nmol/min/mg
protein] compared to age-matched controls [mean ± SD: 0.42 ± 0.10 nmol/min/mg protein;
student’s t-test, p = 0.769; Fig 2B]. When the same enzymes were measured in LHON
lymphoblasts we observed the expected complex-I impairment [43] in LHON lymphoblasts
[mean ± SD: 0.47 ± 0.11 nmol/min/mg protein] versus age-matched controls [mean ± SD:
0.65 ± 0.06 nmol/min/mg protein; students t-test, p = 0.005; Fig 2C] which represented a 29%
decrease in specific activity. This was in the absence of any change in complex-IV activity with
LHON [mean ± SD: 0.23 ± 0.04 nmol/min/mg protein] and age-matched controls having
similar activities [mean ± SD: 0.30 ± 0.10 nmol/min/mg protein; student’s t-test, p = 0.130; Fig
2D]. The degree of complex-I activity impairment was greater in LHON lymphoblasts (29%
decreased) than in POAG lymphoblasts (18% decreased).

Impaired complex-I ATP synthesis in POAG and LHON lymphoblasts
We previously identified a complex-I defect in POAG [24]. In this replication cohort we mea-
sured the rate of mitochondrial ATP synthesis in digitonin-permeabilised lymphoblasts pro-
vided with complex-I substrates (glutamate + malate) or complex-II substrate (succinate
+ rotenone) in the presence of ADP. We found a significant decrease in the complex-I ATP
synthesis rates in POAG lymphoblasts [median (IQR): 0.35 (0.30–0.37) pmol ATP/sec/106

cells] versus age-matched controls [median (IQR): 0.43 (0.37–0.55) pmol ATP/sec/106 cells;
Mann-Whitney test, p = 0.019; Fig 3A], which represented a 19% decrease in complex-I ATP
synthesis in POAG lymphoblasts. Similarly, there was a significant decrease in complex-II-
driven ATP synthesis in POAG lymphoblasts [median (IQR): 0.19 (0.16–0.22) pmol ATP/sec/
106 cells] versus age-matched controls [median (IQR): 0.23 (0.19–0.32) pmol ATP/sec/106

cells; Mann-Whitney test, p = 0.020; Fig 3B], which represented a 17% decrease in complex-II
ATP synthesis in POAG lymphoblasts. The rates of complex-I driven ATP synthesis were also
significantly decreased in LHON lymphoblasts [median (IQR): 0.29 (0.23–0.31) pmol ATP/
sec/106 cells] compared to age-matched controls [median (IQR): 0.35 (0.30–0.56) pmol ATP/
sec/106 cells; Mann-Whitney test, p = 0.030; Fig 3C], which represented a 17% decrease in
complex-I ATP synthesis in LHON lymphoblasts. However there was no decrease in complex-
II driven ATP synthesis in LHON lymphoblasts [median (IQR): 0.15 (0.10–0.23) pmol ATP/
sec/106 cells] compared to age-matched controls [median (IQR): 0.18 (0.13–0.30); Mann-
Whitney test, p = 0.662; Fig 3D]. We found an equal decrease in complex-I-driven ATP synthe-
sis in POAG and LHON lymphoblasts, and a decrease in complex-II ATP synthesis only in
POAG lymphoblasts.

Impaired NAD+ ratio in LHON
Complex-I converts NADH to NAD+ as part of electron transfer during ATP synthesis and lev-
els are tightly regulated within a cell (commonly referred to as the NAD+/NADH ratio) which
reflects the cellular redox state. When complex-I is severely impaired NADH accumulates and
the ratio of NAD+/NADH decreases, leading to a reduced state within the mitochondrial
matrix. When the cellular levels of NAD+ and NADH were measured in both POAG and
LHON lymphoblasts we saw no difference in total NAD+ levels (Fig 4A). Total NAD+ in
POAG lymphoblasts [mean ± SD: 246 ± 62 nM NAD+/mg protein] was no different to controls
[mean ± SD: 214 ± 56 nM NAD+/mg protein; student’s t-test, p = 0.65; Fig 4A], likewise there
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Fig 2. Impaired OXPHOS complex-I in POAG and LHON lymphoblasts. There was a significant decrease in complex-I specific activity in A) POAG and C)
LHON lymphoblasts when specific activities were ratioed to that of the Kreb’s cycle enzyme citrate synthase. There was no change in the specific activity of
Complex-IV for B) POAG or D) LHON lymphoblasts when ratioed to citrate synthase. Data is mean ± SD, students t-test, n = 20 cont1, n = 15 POAG, n = 6
cont2 and n = 6 LHON, * = p< 0.05, ** = p< 0.01.

doi:10.1371/journal.pone.0140919.g002
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was no difference in LHON [mean ± SD: 263 ± 32 nM NAD+/mg protein] and age-matched
controls [mean ± SD: 217 ± 72 nM NAD+/mg protein; student’s t-test, p = 0.14; Fig 4A].

Fig 3. Impaired ATP synthesis in POAG and LHON lymphoblasts. Digitonin-permeabilised lymphoblasts from POAG, LHON and control patients were
used to measure maximal ATP synthesis by mitochondrial respiration. There was a significant decrease in complex-I (glutamate + malate) driven ATP
synthesis in both A) POAG and C) LHON lymphoblasts. There was a significant decrease in complex-II (succinate + rotenone) driven ATP synthesis in B)
POAG lymphoblasts, but not in D) LHON lymphoblasts. Data is median (IQR), Mann-Whitney test, n = 20 cont1, n = 15 POAG, n = 6 cont2 and n = 6 LHON,
* = p< 0.05.

doi:10.1371/journal.pone.0140919.g003
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However total NADH was significantly higher in LHON lymphoblasts [mean ± SD: 79 ± 20
nM NADH/mg protein] versus age-matched controls [mean ± SD: 47 ± 16 nM NADH/mg
protein; student’s t-test, p = 0.01; Fig 4B]. This was in the absence of any changes in total
NADH levels in POAG [mean ± SD: 50 ± 17 nM NADH/mg protein] compared to age-
matched controls [mean ± SD: 46 ± 17 nM NADH/mg protein; student’s t-test, p = 0.53;
Fig 4B]. The higher total NADH in LHON lymphoblasts also corresponded to a significant

Fig 4. Decreased NAD+/NADH redox balance in LHON lymphoblasts. Lymphoblasts were grown in regular RPMI media for 48 hours prior to
lymphoblasts being harvested to measure NAD+ and NADH levels. There was no significant difference in A) NAD+ levels between any groups; however there
was a significant increase in B) NADH levels in LHON patients leading to C) a significant decrease in the NAD+/NADH ratio in LHON lymphoblasts. There
was no difference between any of these measured parameters in POAG lymphoblasts, and cellular protein content was similar between groups (data not
shown). For NAD+ and NADH data is mean ± SD, students t-test, and for NAD+/NADH data is median (IQR), Mann-Whitney test, n = 20 cont1, n = 15 POAG,
n = 6 cont2 and n = 6 LHON, * = p< 0.05, ** = p< 0.01.

doi:10.1371/journal.pone.0140919.g004
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decrease in the NAD+/NADH in LHON lymphoblasts [median (IQR): 3.61 (2.95–3.86)] com-
pared to age-matched controls [median (IQR): 4.66 (4.28–5.64); Mann-Whitney test,
p = 0.004; Fig 4C] which represented a 23% decrease. NAD+/NADH remained unchanged in
POAG lymphoblasts [median (IQR): 4.72 (4.36–5.06)] versus age-matched controls [median
(IQR): 4.36 (IQR 4.21–5.29; Mann-Whitney test, p = 0.68; Fig 4C]. This implies that LHON
lymphoblasts with a more severe mitochondrial defect (complex-I enzyme activity and growth
under galactose) have imbalanced redox levels in this cellular model. The POAG lymphoblast
mitochondrial defect is more modest than in LHON lymphoblasts and is not severe enough to
alter the redox status of the cells.

Lactate production
As an output for detecting severe mitochondrial impairments, lymphoblasts were cultured in
high glucose media for 48 hours and lactate levels were measured in the culture media. When
we measured lactate levels we did not detect any significant increases in lactate levels in either
LHON or POAG lymphoblasts (Fig 5). Lactate levels in POAG lymphoblasts [median (IQR):
6.6 (5.3–8.4) nmol lactate/106 cells] was at similar levels to age-matched controls [median
(IQR): 7.6 (5.7–9.7) nmol lactate/106 cells; Mann-Whitney test, p = .25; Fig 5]. Lactate levels in
LHON lymphoblasts [median (IQR): 8.3 (7.7–8.4) nmol lactate/106 cells] was at similar levels
to age-matched controls [median (IQR): 8.1 (7.2–9.4) nmol lactate/106 cells; Mann-Whitney
test, p = .63; Fig 5].

Discussion
These data demonstrate a complex-I defect in a cohort of advanced POAG and LHON patients.
This confirms our initial findings of impaired complex-I ATP synthesis in POAG [24] in a sec-
ond independent cohort of advanced POAG patients using the same lymphoblast model and
methods. We extend our initial findings of impaired complex-I ATP synthesis [24] to include

Fig 5. No changes in cellular lactate production in POAG or LHON lymphoblasts. Lymphoblasts were
incubated in high glucose media (RPMI supplemented with glucose increased to 4mg/ml from the standard
RPMI level of 2, uridine at 50 μg/ml, pyruvate at 1mM + 15% heat-inactivated FCS) for 48 hours prior to
lymphoblast media supernatant being harvested for lactate measurement. There was no significant
difference in extracellular lactate levels (reflective of cellular lactate production) between POAG lymphoblasts
and controls, or between LHON lymphoblasts and controls. Data is median (IQR), n = 20 cont1, n = 15
POAG, n = 6 cont2 and n = 6 LHON.

doi:10.1371/journal.pone.0140919.g005
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impaired complex-I specific activity and slower proliferation in galactose media of POAG
patient lymphoblasts. The degree of mitochondrial impairment in LHON patient lymphoblasts
was generally greater than that found in POAG lymphoblasts. Lascaratos et al (2015) found
that patients experiencing increased IOP but not suffering optic nerve damage (ocular hyper-
tension) had more efficient mitochondria than age-matched controls, implying mitochondrial
efficiency may predict the degree of optic nerve loss in glaucoma. We found the degree of mito-
chondrial impairment in advanced POAG was milder than LHON, which may be reflective of
slower rates of optic nerve loss in POAG patients compared to the rapid optic nerve loss in
LHON. Furthermore, enhancing mitochondrial function could preserve vision in ADOA [13]
and LHON patients [44], and mitochondria are potential targets for therapeutic development
[45].

The advanced POAG patients and controls were selected from the ANZRAG cohort, which
has been well-characterised genetically [26–31]. A sub-group of Caucasian advanced POAG
patients was selected by two ophthalmologists and clinical geneticists based on detailed clinical
parameters, and matched to non-POAG controls based on ethnicity, age and gender [27]. The
LHON patients all carried the 11778 G>Amutation as confirmed by Sanger sequencing, had
advanced vision loss and were age-and gender matched to non-mutation carrying controls.
Access to primary patient tissue (retina and optic nerve head) for glaucoma research is limited
to post-mortem biopsies, however diagnosis can be unclear, and tissue samples are small which
limits analysis. Modelling using peripheral tissues (e.g. transformed lymphocytes, muscle biop-
sies, fibroblasts) gives valuable insights into the underlying pathogenesis of mitochondrial dis-
orders [46,47] and the lymphoblast model has been used extensively [13,24,34,47–51]. We
speculate that the partial OXPHOS defects in some POAG patients contributes to energetic cri-
sis in RGCs when combined with other stressors such as age or increased IOP. Future POAG
modelling studies would benefit from more specific disease modelling from the very recent
advances allowing the generation of mature retinal-ganglion cells [52] by derivation of induced
pluripotent stem cells (iPSC) from primary patient fibroblasts [53].

POAG likely represents a common phenotype resulting from a number of underlying path-
ophysiologies, with well-recognised risk factors [54,55]. An increased inheritance of POAG
among first-degree relatives [56–58] has prompted many large genome-wide association stud-
ies (GWAS) which to date have only had moderate success in identifying genes associated with
rare cases of glaucoma. Analysis of POAG families with a Mendelian inheritance pattern has
identified mutations in multiple loci of Optineurin (OPTN) [59], Myocilin (MYOC) [60,61]
andWD repeat domain 36 (WDR36) [61] and copy number variation in Tank-binding kinase
1 (TBK1) [62]. Several GWAS studies have identified new susceptibility loci for POAG in ATP-
binding cassette, sub-family A (ABCA1), actin filament associated protein 1 (AFAP1), GDP-
mannose 4,6-dehydratase (GMDS) [63], phosphomannomutase 2 (PMM2) [64], fibronectin
type III domain containing 3B (FNDC3B), rs747782 [65], SIX homeobox 6 (SIX6) [66],
transmembrane and coiled-coil domains 1 (TMCO1) and CDKN2B antisense RNA 1
(CDKN2B-AS1) [29], and some of these genes are associated with mitochondrial function.
Impaired mitochondrial function may negatively impact on the ATP-dependent cholesterol
efflux by ABCA1 protein [67] and alter autophagy turnover efficiency of mitochondria by
Optineurin protein [68]. Mutations in Myocilin protein reduce endogenous ATP levels, cause
mitochondrial depolarisation [69] and alter a cell’s responsiveness to oxidative stress [70].
Although some of these susceptibility loci alter mitochondrial function, they still only explain a
small proportion of POAG cases. An increased maternal inheritance in POAG suggests an
involvement of mitochondrial genes [56,57,71–73]. Indeed, mitochondrial complex-I abnor-
malities have been reported for POAG [22,24] and we have confirmed this finding in a second,
distinct cohort. Recent evidence suggests that variants in mitochondrial complex-I genes in
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POAG [22,74,75] may underlie the complex-I failure. Future genetic analyses of mitochondrial
genes might expose a mitochondrial endophenotype of POAG and these studies would benefit
from a combined genetic, functional and metabolomic approach.

Although GWAS studies have identified significant genes involved in glaucoma pathogene-
sis, the stringent statistical requirements imposed only reveal variants with the largest effects
[76]. Genes or variants that individually might not reach significance, but in aggregate could be
associated with a disease are often missed in GWAS. Pathway analysis of single-allele GWAS
data by hypothesis-independent pathway analysis from the NEIGHBOUR and GLAUGEN
datasets [77] revealed that genes in the butathione pathway, responsible for acetyl CoA metab-
olism, were significantly associated with POAG [78]. The current study identified that in addi-
tion to complex-I defects [24] a complex-II ATP synthesis defect was also present. Acetyl CoA
is an essential Krebs cycle molecule responsible for supplying both NADH to complex-I and
succinate to complex II, and any impairments in acetyl-CoA metabolism would in turn limit
both complex-I and -II OXPHOS-driven ATP synthesis. Impairments in Acetyl CoA metabo-
lism [78] likely add to the complexity of POAG pathogenesis, in that mitochondrial defects in
addition to complex-I [24] are worth further investigating in POAG. In addition, only
advanced POAG patients were studied in this cohort, and both a complex-I and–II ATP syn-
thesis impairment was identified. Our first cohort examined a spectrum of mild- to severely
affected POAG patients and we demonstrated a complex-I ATP synthesis defect [24]. Together
this further adds to the hypothesis that the degree of mitochondrial impairment predicts
POAG severity [24,25].

In summary POAG lymphoblasts demonstrated impaired complex-I specific activity and
complex-I and–II ATP synthesis. When compared to LHON, the defects were less marked
in POAG. The mitochondrial defect was further revealed when both POAG and LHON lym-
phoblasts were forced to rely on OXPHOS in galactose media where impaired lymphoblast
proliferation was observed. These findings of mitochondrial impairments in POAG patients
replicate our previous results from an independent cohort [24]. In all aspects the functional
defects in LHON were more severe than that of POAG lymphoblasts, suggesting that a sub-
group of POAG has a mitochondrial aetiology. If verified in further studies this could redirect
therapeutic development and management of this common disease of ageing.
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