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Increasing evidence foresees the secretome of neural stem cells (NSCs) to confer
superimposable beneficial properties as exogenous NSC transplants in experimental
treatments of traumas and diseases of the central nervous system (CNS). Naturally
produced secretome biologics include membrane-free signaling molecules and
extracellular membrane vesicles (EVs) capable of regulating broad functional responses.
The development of high-throughput screening pipelines for the identification and
validation of NSC secretome targets is still in early development. Encouraging results
from pre-clinical animal models of disease have highlighted secretome-based (acellular)
therapeutics as providing significant improvements in biochemical and behavioral
measurements. Most of these responses are being hypothesized to be the result
of modulating and promoting the restoration of key inflammatory and regenerative
programs in the CNS. Here, we will review the most recent findings regarding the
identification of NSC-secreted factors capable of modulating the immune response to
promote the regeneration of the CNS in animal models of CNS trauma and inflammatory
disease and discuss the increased interest to refine the pro-regenerative features of the
NSC secretome into a clinically available therapy in the emerging field of Regenerative
Neuroimmunology.

Keywords: stem cell secretome, neural stem cells, immune modulation, CNS injury, extracellular vesicles,
regenerative neuroimmunology, COVID-19 and cytokine storm syndrome

INTRODUCTION

The development of non-hematopoietic stem cell-based therapies for the treatment of diseases of
the central nervous system (CNS) has seen major recent advances, with many of these therapies
undergoing early-phase clinical testing of feasibility and safety for the treatment of a wide range
of neurodegenerative diseases (Trounson and McDonald, 2015; Pluchino et al., 2020). Advances
within the field of neural stem cell (NSC) biology, and building from early, positive outcomes
of transplantation studies in experimental animal disease models, has firmly placed NSCs at the
forefront for the development of clinically applicable exogenous stem cell therapies (L’Episcopo
et al., 2018; Sullivan et al., 2020; Willis et al., 2020).
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Evidence gathered thus far has identified a dual role for
transplanted NSCs in fostering regeneration within the damaged
and diseased CNS. On the one hand, transplanted NSCs can
generate graft-derived neurons and glial cells (Martino and
Pluchino, 2006; Martino et al., 2011; Boese et al., 2018), on the
other hand, the NSC secretome provides a vast array of signaling
molecules, including growth factors, cytokines, chemokines,
metabolites, and bioactive lipids (Drago et al., 2013; Hicks
et al., 2013; Shoemaker and Kornblum, 2016) that are known to
possess the capability to orchestrate multiple interactions with
the surrounding microenvironment, in particular promoting
changes in inflammation states (Peruzzotti-Jametti et al., 2018).
Thus, developing novel, high-throughput strategies to screen
NSC factors and identify targets with pro-regenerative properties
is a growing area of active investigation.

The biologics of the NSC secretome can be broadly divided
into membrane-free and membrane-enclosed secreted candidate
factors. The former denotes bioactive molecules secreted through
direct translocation across the plasma membrane, while the
latter indicates the packaging of factors into secretory membrane
vesicles consisting of liquid or cytoplasm enclosed by a lipid
bilayer. Here, vesicles can be generated by direct ‘‘shedding’’
from the plasma membrane or through a complex endosome-
derived process of vesicle trafficking and secretion (Abels and
Breakefield, 2016). Once released, intact vesicles are known as
extracellular vesicles (EVs). The field of EV biology has exploded
within the last decade, spurring an intense interest in the multi-
functional aspects of these membranous vesicles as mediators of
cell-to-cell communication.

Several roles have been ascribed to NSC-EVs in influencing
physiological and pathological conditions through the transfer
of micro RNAs (miRNAs; Morton et al., 2018), the transfer
of cytokine-receptor complexes to mediate immune signaling
(Cossetti et al., 2014), and even as fully functional independent
metabolic units (Iraci et al., 2017). Within this context, EVs are
just now being recognized as a critical component of the NSC
secretome with the potential to serve as a bona fide therapeutic
adjuvant in not only the regeneration of damaged and disease
CNS tissue (Vogel et al., 2018) but as potent modulators of the
immune response (Rong et al., 2019).

Despite rapid advancements in understanding the biological
heterogeneity of EVs, major technological limitations remain
(Carpintero-Fernandez et al., 2017; Ramirez et al., 2018;
Gandham et al., 2020). The biggest of which is their broad range
of sizes, ranging from as small as 50 nm (termed ‘‘exosomes’’)
to as large as 1µm (termed ‘‘microvesicles’’), which can exceed
the limit of detection of many common optical-based analytical
techniques, such as flow cytometry and fluorescence microscopy,
making the rapid identification of individual EVs practically
impossible (Margolis and Sadovsky, 2019). Further, a widely
accepted and defined protocol for EV isolation is currently
lacking, making cross-study comparisons challenging. This has
led to the development of a minimum set of standards to report
on EVs (Théry et al., 2018). Last, quantifying EVs is still highly
contentious despite the implementation of particle tracking
devices and commercially available kits for the determination
of absolute EV numbers. Given the technological limitations

inherent in EV biology, great strides have been made in
codifying and formalizing the nomenclature of EV subtypes
(Jeppesen et al., 2019; Witwer and Théry, 2019). Technological
advancements in optical resolution and particle tracking will
undoubtedly lead to a new and improved understanding of
their function, with direct benefit to the clinical applicability
of NSC-EVs.

In this review article, we will discuss the current methods
for analyzing the secretome, including target identification and
candidate validation of soluble vs. EV-associated factors. From
there, we will explore how soluble and EV-associated NSC factors
are capable of modulating the immune response to promote a
pro-regenerative environment within the damaged and diseased
CNS. Last, we will discuss the implication of these findings for
clinical work and the benefits of NSCs in a clinical capacity.

SECRETOME ANALYSIS AND TARGET
IDENTIFICATION

Target screening and identification methodologies of
NSC-secreted factors capable of modulating the immune
response and promoting recovery in experimental animal
models of CNS diseases include both unbiased and biased
approaches.

Current unbiased approaches include quantitative proteomics
on complex biological fluids, such as conditioned media (CM),
andNSC-EVs in vitro usingmass spectrometry-based technology
in addition to small RNA-sequencing. Unbiased, large-scale
proteomic and sequencing datasets generated through these
means create repositories of the NSC secretome. From here,
biased approaches are taken to generate screening libraries for
the identification of biologically relevant targets (Figure 1A).
However, one technical limitation that must be considered
when performing quantitative proteomics is the lower limit
of detection of analytes within the sample (Chevallet et al.,
2007). For example, if the target(s) of interest is not sufficiently
secreted or rapidly metabolized, it will fall below the threshold
of detection of the instrument and not be identified. As such,
a priori knowledge of the target(s) abundance is critical before
performing expensive and time-consuming mass-spectrometry
based profiling.

NSC-secreted factors influence and alter the phenotype
of immune cells in a paracrine manner, which can establish
a bidirectional feedback loop that can alter NSC behaviors
(Peruzzotti-Jametti et al., 2018). Therefore, the analysis
of secreted factors after these interactions is critical for
understanding the underlying mechanism of action. One
way this can be accomplished is through stable isotope labeling
with amino acids (SILAC), which is a mass spectrometry-based
technique that relies on non-radioactive isotopic labeling of cells
to detect and quantify secreted factors from complex samples.
Here, the pre-labeling of either NSCs or the immune cell of
choice with heavy isotopes will allow for the proteomic profiling
and identification of secreted factors (Hathout, 2007). In this
scenario, one could imagine different co-culture conditions
wherein the effects of the NSC secretome on target cells are
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FIGURE 1 | The workflow of NSC secretome analysis and candidate validation. (A) NSCs from various sources, rodent, human fetal and induced pluripotent stem
cell (iPSC)-derived, are cultured in vitro with or without inflammatory factors or in a co-culture with immune cells to stimulate secretion. conditioned media (CM) are
collected and unbiased analyses performed, including RNA and miRNA seq and mass spectrometry. EVs are also isolated and their contents are examined. After
analysis, a library of the NSC secretome is generated. (B) After the generation of an NSC secreted factor library, the candidates are tested using cells of interest
in vitro. Predetermined functional readouts, such as secretion of specific cytokines or upregulation of proteins are measured and secreted factors of interest
narrowed down depending on cell effects. Abbreviations: CM, conditioned media; EV, extracellular vesicles; mass spec, mass spectrometry; NSC, neural stem cell;
seq, sequencing.

profiled and proteomic datasets generated for downstream
biased approaches at target identification.

Secretome libraries can be prepared either from soluble
proteins or secreted EV components (i.e., proteins, RNA). In
the latter case, proteins and RNA should be first isolated from
EVs. Upon library construction, cell-based assays can be used
to perform secretome-based screening. The most physiologically
relevant cells should be used to obtain relevant results and to
achieve a successful research outcome. Cells should be amenable
to the assay, reliably represent the system, and express the
necessary factors and signaling intermediates (Figure 1B; An and
Tolliday, 2010).

In these assays, cells are usually incubated with the secretome
proteins from a previously annotated secretome library for a few
days in vitro to capture cell proliferation, differentiation, and
de novo expression of specific marker proteins. Each individual
factor in the secretome library is tested in technical replicates.
Ideally, positive and negative controls should be included on
each plate. These controls are used for the calculation of Z′-
factor which is normally used to characterize assay performance
(Ding et al., 2020). Different technologies can be used for
assay readout, including fluorescence, immunoassays, mass

spectrometry, qRT-PCR, flow cytometry, imaging, depending on
the question to be addressed. The most common method for
hit selection in screening is by considering z-score. Hits with a
z-score above the threshold are selected and should be further
validated. Z-score should not be confused with Z′-factor. Z′-
factor is a measure of assay quality, whereas z-score, which is
calculated for each factor on the plate, provides information on
the strength of each factor relative to the rest of the sample
distribution (Birmingham et al., 2009).

Quality control (QC) measures are crucial in screening
platforms to ensure the reliability of the generated data. The
utilization of QC measures proves to be beneficial since it
prevents the analysis of poor quality screening data that will lead
tomisleading results, captures technical issues thatmay arise, and
allows the comparison between assays (Ding et al., 2020).

Many measures have been proposed to evaluate assay quality.
These can be related to plate level controls and sample level
controls (Chen et al., 2016). Z′ factor is the most commonly
used measure of screening assay quality indicating the ‘‘assay
window’’, which refers to the space between positive and negative
control where screening factors should exhibit their activity.
Z′-factor is calculated for each plate by considering positive
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and negative controls. A clear distinction between positive and
negative control is an indicator of good assay quality. Thus, the
selection of effective controls is crucial. A value of Z′-factor close
to 1 indicates an ideal assay. An assay with a value between
0.5 > Z′ > 1 is generally considered as a good quality screening,
whereas Z′ factor <0.5 means that results are questionable (Bray
and Carpenter, 2004). A generalization of the Z′-factor, which
is referred to as V-factor, is used as a measure of quality in a
concentration-response (CR) assay (Bray and Carpenter, 2004).

Signal to background (S/B) and signal to noise (S/N) are
often used as measures of assay performance. Unfortunately,
these ratios do not consider assay variability risking to generate
misleading results and, thus they are not appropriate in the
evaluation of an assay (Zhang, 2008). Similar to Z′-factor,
signal window (SW) and assay variation ratio (AVR) take assay
variability into account (Zhang, 2008). Iversen et al. (2006)
support that Z′ factor is more accurate and precise than SW.
AVR is equivalent to Z′-factor (Zhang, 2008). The coefficient
of variation (CV) performs a measure of relative dispersion
of the data. Recently, strict standard mean difference (SSMD)
has been proposed for assessing data quality in screening assays
(Zhang, 2007, 2008). Similar to Z′-factor, SSMD characterizes the
performance of the controls on an individual plate (Chen et al.,
2016). However, the advantage of SSMD lies in probabilistic
interpretation and statistical estimation and inference
(Zhang, 2008).

Since the utility of individual QC measures is not sufficient
to assess the assay quality, it is common to report multiple QC
measures for a screening (Chen et al., 2016). For example, Z′-
factor can be used in conjunction with CV, S/B, or S/N to give a
more concise assessment of the assay variation and performance.

Once screening hits have been identified, they should be
carried forward to hit validation. Thus, each hit is evaluated
through multiple-point (e.g., between 7- and 10-point) CR
in duplicate or triplicate in the primary cell-based assay
(Wadsworth et al., 2019; Ding et al., 2020). IC/EC50 can be
used as parameters for assay validation. In case human primary
cells are used in assays, different donor cells need to be tested
since cell variability can be expected (Ding et al., 2020). Locci
et al. (2016) used cells from multiple donors to confirm activin
A as a regulator of human TFH cell differentiation. Upon a hit
confirmation, the list of confirmed factors is annotated in silico,
including literature searches, expression data, disease relevance,
and human target validation (Ding et al., 2020; Figure 1).

MODULATION OF CELLULAR RESPONSES

NSC-Secreted Factors and Immune
Response
Dampening down persistent neuroinflammation is a key
challenge in developing therapeutic approaches to many chronic
neurological pathologies. In this regard, NSCs have been shown
to secrete immunomodulatory factors that can alter the course
of disease progression (Volpe et al., 2019). Studies from a wide
range of neurological diseases have overwhelmingly concluded
that NSCs have anti-inflammatory and tissue-regenerative effects

on their environment (Ziv et al., 2006; Redmond et al., 2007;
Chen et al., 2014; Lee et al., 2015; Cheng et al., 2017; McGinley
et al., 2018; Mendes-Pinheiro et al., 2018; Peruzzotti-Jametti
et al., 2018; Zalfa et al., 2019), but few studies have managed to
pinpoint the exact molecules behind these effects.

A recent study from our group discovered that one of
the molecules behind the immunomodulatory effects of NSCs
is the eicosanoid prostaglandin E2 (PGE2; Peruzzotti-Jametti
et al., 2018). We found that in vitro treatment of NSCs by
either lipopolysaccharide (LPS) or the tricarboxylic acid cycle
(Kreb’s cycle) intermediate succinate enhanced PGE2 secretion.
Furthermore, PGE2 secretion was demonstrated as partially
responsible for the observed phenotypic switch in microglia
and macrophages from pro- to anti-inflammatory, which was
accompanied by the downregulation of the pro-inflammatory
cytokine Il1b in vitro. Ultimately, this work has highlighted
an immunomodulatory role of NSCs through the secretion of
bioactive molecules.

Cytokines are a broad category of membrane-impermeable
peptides with immunomodulatory properties that are actively
released by NSCs in vitro with implications for in vivo
immune modulation (Liu et al., 2013). In the Theiler’s murine
encephalomyelitis virus (TMEV) model of multiple sclerosis
(MS), the transplantation of human fetal (h)NSCs was found to
modulate the T cell-mediated immune response, as evidenced by
decreased interferon-gamma (IFNγ) and tumor necrosis factor-
alpha (TNFα) and increased interleukin-10 (IL-10) production
from T cells isolated from draining cervical lymph nodes, and
an increase in CD4+CD25+FOXP3+ regulatory T-cells (Chen
et al., 2014). Follow-up in vitro co-culture studies of activated
T cells and hNSCs identified reduced T-cell proliferation
concomitant with increased regulatory T cell induction that
was dependent on the secretion of transforming growth factor
(TGF)-β1 and TGF-β2 from hNSCs as the effect was blocked
by neutralizing antibodies against TGF-β1 and TGF-β2. From
these in vivo and in vitro findings, the authors concluded that
despite the temporary viability of the transplanted hNSCs in
their viral MS model, the hNSC secretome provided long-lasting
anti-inflammatory and regenerative effects. A follow-up study
from the same group demonstrated similar results are observed
from transplanted hNSCs derived from induced pluripotent
stem cells (iPSCs; Plaisted et al., 2016). Furthermore, a recent
study in a non-viral mouse model of MS, experimental
autoimmune encephalomyelitis (EAE), demonstrated thatmouse
embryonic NSC-secreted TGF-β2 inhibits the differentiation of
pro-inflammatory monocyte-derived dendritic cells in vivo and
in vitro (De Feo et al., 2017).

While specific mechanisms relating to cytokines and
eicosanoids have been described, the immunomodulatory effects
of miRNAs identified in NSC-CM are largely unexplored.
miRNAs, such as miR-124 and let-7, are readily detected in
NSC-CM and are thought to impart their non-cell-autonomous
effects based on their immunomodulatory properties in other
cell types (Ponomarev et al., 2011; Lv et al., 2018). However, few
studies have directly explored the immunomodulatory effects
of NSC-secreted miRNAs, which are predominately identified
in EVs (Morton et al., 2018; Bian et al., 2020). Overcoming the
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technical barriers to studying miRNAs, and the EVs in which
they are found will lead to a greater understanding of their
immunomodulatory mechanisms.

In conclusion, studies identifying the exact factors within the
NSC secretome that enable them to modulate the immune system
are limited. Currently, only three factors (PGE2, TGF-β1, and
TGF-β2) have been definitively identified. However, given the
vast array of factors secreted by NSCs and the many contexts
in which they can be applied, we have only yet scratched the
surface of the NSC secretome. Promising candidates include other
cytokines and bioactive lipids, additional miRNAs, as well as
extracellular metabolites (Peruzzotti-Jametti et al., 2018).

A more thorough characterization of the NSC secretome
is critical to better understand and, ultimately, harness the
therapeutic potential of NSCs. Future studies aiming at
uncovering immunomodulatory gene products would benefit
from the inclusion of whole-genome microarrays and cytokine
neutralization, an approach that has led to the identification of
many neuroprotective factors found within the NSC secretome
(Lee et al., 2017). Furthermore, parallel research utilizing the
mesenchymal stem cell (MSC) secretome has confirmed the
immunomodulatory properties of PGE2 and TGF-β (Salgado
et al., 2015).

Thus, complimentary secretome findings from other stem cell
sources will provide a powerful reference for the identification
of similar factors within the NSC secretome. Finally, the advent
of techniques such as SILAC will help identify NSC-secreted
proteins (Prokhorova et al., 2009) and/or lipids (Stuani et al.,
2018) in co-culture.

NSC-EVs and Immune Responses
The release of biological signals within phospholipid-bound
membranes could have originated as a method of eliminating
damaged cellular components, and subsequently, may have
provided a warning to local and distant cells acting as a
primitive immune system (van Niel et al., 2018; Margolis and
Sadovsky, 2019; Correa et al., 2020). EVs are now known to
be critical mediators of intercellular communication and even
act on the immune system and immune cells (Robbins and
Morelli, 2014; Isola and Chen, 2017). Their cargo consists
of antigens, cytokines, membrane proteins, microRNAs, and
long/short noncoding RNAs. The make-up of the cargo is largely
dependent on the cell of origin and can then be transferred to
recipient cells via binding and internalization. Merging of the EV
cytosol and the cell typically occurs through membrane fusion
and endocytosis or by uptake through various pathways that
involve the expression of specific proteins, including, but not
limited to, tetraspanins, integrins, and proteoglycans (Mulcahy
et al., 2014).

In the CNS, EVs are involved in cross-talk between
multiple cell types, including neurons, astrocytes, microglia,
oligodendrocytes, and infiltrating macrophages, where they
normally participate in maintaining homeostasis by acting as
signaling conduits, however they have also been identified as
mediators of disease (Pegtel et al., 2014). Based on studies using
NSC grafts in models of neurodegenerative conditions as well as
in vitro culture work, the release of NSC-EVs not only dampens

ongoing immune responses but activates regenerative programs
(Camussi et al., 2013). The exact mechanism mediating the
exchange of information between the secreted NSC-EVs and
the eventual reaction of the recipient cell is still unknown and
remains to be characterized. However, it is a rapidly developing
field with multiple studies highlighting the impact of NSC-EVs
on immune system function.

Microglia are influenced by endogenous NSC-EVs during
neonatal development. EVs released by NSCs within the
developing rodent subventricular zone (SVZ) contains an array
of miRNAs that are found to regulate microglial physiology
and morphology (Morton et al., 2018). Microglia uptake
of NSC-EVs led to morphological changes and an altered
transcriptional state represented by increased expression of
genes related to inflammatory processes and the secretion
of cytokines. Next-generation sequencing identified several
members of the let-7 family, a miRNA precursor, to be highly
enriched in NSC-EVs and responsible for phenotypic changes
in microglia. Interestingly, the interaction of NSC-EVs and
microglia generated a feedback loop, wherein the EV-treated
microglia inhibited NSC proliferation in vitro by upregulated
let-7-mediated cytokine release (Morton et al., 2018). This
study suggests that NSC-EVs influence microglia regulate NSC
proliferation during development through the modulation of
inflammation-related genes.

Not only do NSC-EVs play a role in development but further
research has identified the role of hypothalamic (ht) NSC-EVs in
controlling the process of aging (Zhang et al., 2017). htNSC-EVs
carry specific miRNAs that had been previously identified to
substantially decrease in the cerebrospinal fluid during aging
and linked to a decrease in overall physiological homeostasis.
Transplantation of young htNSCs into aged mice recovered
the optimal concentration of htNSC-EV-derived miRNAs and
led to lifespan extension (Zhang et al., 2017). Therefore, the
endocrine function of the hypothalamus involves the secretion of
htNSC-EVs containing miRNAs which have potently modulate
systemic aging. The exact function of the miRNAs is unknown,
as well as the target cells of the htNSC-EVs, but onemay speculate
that the EVs target the immune system. Crosstalk between
the hypothalamic neuroendocrine and immune system plays
an important role in the regulation of homeostasis, however,
an observed increase in inflammatory proteins from immune
cells during aging further enhances physiological aging (Fulop
et al., 2017). htNSC-EVs may target circulating inflammatory
macrophages and T cells and dampen their reactivity, which has
been observed in models of neuroinflammation.

In models of neuroinflammation, exogenous (injected)
NSC-EVs are typically anti-inflammatory. EVs from NSCs
derived from a human pluripotent stem cell line was found
to improve a middle cerebral artery occlusion (MCAO) model
of stroke in both mice and pigs when injected intravenously
during the acute phase (Bacigaluppi et al., 2009, 2016;
Bernstock et al., 2017, 2019; Webb et al., 2018a,b). NSC-EVs
promoted a phenotypic switch in blood-borne macrophages
from pro-inflammatory towards anti-inflammatory during the
post-stroke phase. NSC-EVs also led to increased numbers
of circulating regulatory T cells (Treg) which resulted in
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the downregulation of pro-inflammatory effector Th17 cells
(Webb et al., 2018b). Overall, these two studies found that
injected NSC-EVs provided neuroprotection in this model of
stroke as evidenced by decreased lesion volume and altered
inflammatory responses. One hypothesis is that NSC-EVs carry
anti-inflammatory cytokines, such as IL-4 and IL-10, capable of
promoting a phenotypic switch (Vogel et al., 2018). Another is
that EV bound TGF-β and CD73 could inhibit T cell proliferation
and activation (Anel et al., 2019). However, a direct main
mechanism of action of NSC-EVs has not been yet identified
(Hermann et al., 2014).

Within trauma-induced neuroinflammation, spinal cord
injury (SCI) recovery is improved after rodent NSC-EV injection
(Rong et al., 2019). NSC-EVs administered via the tail vein
following SCI led to a significant reduction in the injured
area along with a reduction in neuronal apoptosis, microglial
activation, and neuroinflammation, which was attributed to
the lower expression of pro-inflammatory cytokines TNF-α,
interleukin 1-β (IL-1β), interleukin 6 (IL-6) and a decrease in
activated microglia (Rong et al., 2019). Additionally, NSC-EVs
prevented neuronal apoptosis through the beneficial promotion
of neuronal autophagy when studied in a glutamate-induced
neurotoxicity model in vitro (Tang et al., 2014; Rong et al., 2019).
These beneficial effects were ablated following administration of
an autophagy inhibitor, which suggests that NSC-EVs promote
regeneration and a return to homeostasis through enhanced
autophagic clearance of damaged cells via direct signaling onto
neurons (Baixauli et al., 2014; Rong et al., 2019). Additional
research is warranted to fully understand the direct effect and
mechanisms of NSC-EVs on neurons. Further work in a rat
model of SCI identified NOD-like receptor protein-3 (NLRP3),
a key factor of inflammasome formation in the CNS, as a
target of intrathecally injected rodent NSC-EVs (Mohammed
et al., 2020). Inflammasomes are multiprotein intracellular
complexes that become activated upon injury, stress, or
infection and trigger pro-inflammatory cytokines to engage
the innate immune response (Schroder and Tschopp, 2010).
NSC-EV treatment of rats with experimental SCI suppressed the
formation of the NLRP3 inflammasome complex, which led to
reduced inflammation and enhanced recovery of motor function
(Mohammed et al., 2020).Whether the enhancedmotor function
resulted from NSC-EVs acting directly or indirectly on motor
neurons was not established. The cargo and defined mechanisms
by which NSC-EVs promote this reduction in inflammation
towards improved recovery in rodent models of SCI
remains elusive.

Further work investigating the effect of NSC-EVs
discovered their role in ameliorating inflammation in the
transgenic amyloid precursor protein (APP)/presenilin 1
(PS1) mouse model of Alzheimer’s disease (AD; Li et al.,
2020). Rodent NSC-EVs injected into the lateral ventricles
of 9-month-old APP/PS1 transgenic mice gave rise to a
significant improvement in overall cognitive behavior and
mitochondrial function in the cortex that was accompanied
by decreases in microglial activation. Most of these
changes were attributed to an increase of the nicotinamide
adenosine dinucleotide (NAD)-dependent deacetylase sirtuin

1 (SIRT1), a major regulator of metabolism, within the
cortex following NSC-EV treatment (Li et al., 2020). Here
SIRT1 is thought to contribute to the anti-inflammatory
behavior of microglia by inhibiting the epigenetic regulation
of pro-inflammatory cytokines, including IL-1β, and restoring
normal mitochondrial metabolism (Cho et al., 2015; Tang, 2016;
Peruzzotti-Jametti and Pluchino, 2018).

The common theme of NSC-EVs is their potent ability
to promote context-dependent anti-inflammatory responses.
However, the overall mechanisms are largely unknown, and of
those with identified mechanisms, only a handful have profiled
their cargo and target cells. One such study demonstrated that
the treatment of rodent NSCs with pro-inflammatory cytokines
stimulated the interferon-gamma (IFN-γ)-Stat1 signaling
pathway that resulted in the export of EVs with cargo that
mirrored the cellular contents (Cossetti et al., 2014). IFN-γ was
found bound to the interferon-gamma receptor 1 (IFNGR1) on
the surface of NSC-EVs, which then activated Stat1-dependent
signaling on target cells via the intracellular transfer of IFN-γ.
This work demonstrates how EVs signal to their target cells via
membrane interactions (Cossetti et al., 2014). Subsequent work
went on to show that NSC-EVs behave as independent metabolic
units carrying L-asparaginase activity, suggesting that NSCs
act as metabolic regulators of distant cells (Iraci et al., 2017).
By altering the metabolic aspects of the microenvironment,
NSC-EVs also may shape the phenotype of surrounding immune
cells (Drago et al., 2016).

Within the retina, NSC-EVs can protect photoreceptor cells
in a rat model of inherited retinal degeneration by microglial
internalization (Bian et al., 2020). Here, subretinal injection
of rodent NSC-EVs tagged with a CD63-red fluorescent
protein (RFP) were specifically internalized by retinal
microglia. Microglia with internalized NSC-EVs displayed
a ramified, homeostatic morphology compared to the rounded,
activated morphology of NSC-EV absent microglia. Analysis
of the NSC-EVs using small RNA-sequencing identified a
set of 17 miRNAs implicated in the targeting of TNF-α,
IL-1β, and cyclooxygenase-2 (COX2), all known activators
of microglia. in vitro modeling confirmed decreases in
these pro-inflammatory factors upon microglial NSC-EV
internalization. This work suggests that NSC-EVs can directly
target the immune system and release miRNAs capable of
suppressing activated microglia and restoring a neuroprotective
environment (Bian et al., 2020).

Understanding the kinetics of EV release, their cargo loading,
and functional effects on other cells is a highly complex task.
NSCs release a variety of EV subtypes that are dependent on
their current cell state, often in response to microenvironment
stressors such as cytokines/chemokines. They have also been
identified as homeostatic regulators that control developmental
and aging mechanisms (Vogel et al., 2018). Further, many
current studies have identified a beneficial role of NSC-EVs
in abrogating inflammation but have failed to identify the
mechanism by which this occurs. On the one hand, it could be
attributed to their miRNA, RNA, and protein cargo that target
and enter cells, in turn changing their phenotype. On the other
hand, EV signaling receptor mechanisms on the EV membrane
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and the membrane of the target cell may also lead to downstream
pathways inducing overall cellular changes.

Research towards understanding these important
mechanisms is warranted to identify how NSC-EVs could
be used to alter immune system responses in disease to
enhance recovery.

Approaches for Studying the
NSC-Secretome in Regenerative
Neuroimmunology
Determining how the NSC secretome alters immune cell function
can be further parsed by using in vitro-based approaches. Over
the past decade, we have seen advancements in the ease of
culturing both rodent and human NSCs as well as the ability
to perform genetic manipulation, which can provide proof-of-
concept evidence of secreted factors. Proteomics on CM from
NSCs can catalog what molecules and pathways the secretome
may target, but further elucidating how the secretome can
modulate immune cells requires additional investigation. For
example, NSCs can be used to model neurodegenerative diseases,
such as progressive multiple sclerosis (PMS). Proteomics on
human PMS NSCs in vitro unveiled high expression of
high mobility group box 1 (HMGB1), which can act as a
pro-inflammatory alarmin by binding to toll-like receptors
(TLRs) on microglia to perpetuate chronic inflammation
(Nicaise et al., 2019). Unfortunately, this methodology only
reveals cell-secreted factors in isolation from the inflammatory
environment, which may change what the NSCs secrete in
response when in contact with immune cells in the in vivo setting.

To further delve into mechanisms involving the crosstalk of
immune cells and NSCs, co-culture systems have been used.
Non-contact trans-well systems allow for secreted factors to
pass through and communicate with immune cells to provide
mechanistic evidence for this relationship. Using this trans-well
system, co-cultures of LPS pre-treated microglia with rodent
NSCs were found to modulate LPS-activated microglia by
suppressing inflammation. Using targeted ELISAs of the CM for
several immune factors identified the chemokine C-X-C Motif
Chemokine Ligand 12 (CXCL12)/stromal cell-derived factor
1 (SDF1)-α as significantly decreased upon NSC co-culture
(Gao et al., 2017). This suggests CXCL12 binds to its cognate
receptor CXCR4 on NSCs to modulate microglial activation
states, as RNA silencing of Cxcr4 expression in NSCs ablates the
anti-inflammatory effects on activated microglia in this system
(Gao et al., 2017).

Overall, in vitro approaches provide a more mechanistic
approach for studying interactions between the NSC secretome
and immune cells. It allows researchers to directly study
proteins, metabolites, and even EVs being secreted by NSCs
within defined contexts. Biased, such as ELISAs, and unbiased,
including proteomics, analyses can be used to profile secreted
factors within the co-culture system. Downstream genetic
deletion or receptor blocking can be performed to determine
the mechanism of action. However, major shortcomings
associated with in vitro work remain as it does not completely
replicate the unique in vivo environment accompanying NSC

transplants nor the dynamic interactions with other cell types,
such as astrocytes, oligodendrocytes, neurons, and immune
cells. Despite this, in vitro model systems provide valuable
information regarding the interactions of the NSC secretomewith
immune cells.

Targeting and diminishing chronic neuroinflammation
remains a key goal in many therapeutic approaches to
neuroregeneration. NSCs, and the NSC secretome, have
repeatedly demonstrated their anti-inflammatory effects across
multiple models of neurodegenerative disorders and several
mammalian species after transplantation in vivo. The most
common animal models of neurodegeneration that have been
targeted with NSCs are rodents but other prevalent in vivo
models include pigs (Webb et al., 2018a) and non-human
primates (Redmond et al., 2007; Rosenzweig et al., 2018). The
immunomodulatory capacity of NSCs has been harnessed
through a wide range of transplantation routes. More recently,
however, treatment with NSC-CM only retains many of the
therapeutic benefits of whole NSCs while bypassing many
of the risk factors associated with transplantation, namely
tumorigenicity, and immunogenicity (Mousavinejad et al.,
2016). Here, we will discuss select studies that have exemplified
the immunomodulatory effects of NSCs and NSC-CM in the
context of animal models of neurodegeneration.

NSCs have been extensively trialed in the quest to regenerate
axons after SCI. However, it has become increasingly clear that
the indefinite persistence of cytotoxic inflammation is key to
inhibiting regeneration after SCI injury. Thus, the promise of
NSCs in SCI has shifted from one of cell replacement to that of
microenvironment modulation.

Mouse fetal NSCs transplanted into the spinal cord of
murine models of contusion SCI at 7 days post-injury
were found to be viable and capable of migrating towards
the lesion core (Cheng et al., 2016). In this setting, the
anti-inflammatory effects of the NSC transplant were found
to reduce infiltrating myeloid cells, possibly through a similar
reduction in pro-inflammatory cytokine (Tnf, Il1b, Il-6, and Il-
12) expression. Moving in vitro, co-culture of BMDMs, and
NSCs before stimulation with IFN-γ significantly inhibited
the expression of IFN-γ-responsive pro-inflammatory cytokines
(Tnf, Il1b, Il-6, Il-10, and iNos) from BMDMs. Thus, they
concluded that NSCs play an anti-inflammatory role in SCI
by inhibiting the pro-inflammatory activation of macrophages,
similar to what is described in mice with EAE (Peruzzotti-Jametti
et al., 2018).

Given the clinical limitations in transplanting NSCs, such as
the limited long-term viability of the NSC graft, the same group
endeavored to investigate the anti-inflammatory effects of fetal
murine NSC-CM in the context of SCI (Cheng et al., 2017).
In this study, in vitro LPS-activated BMDMs were treated with
NSC-CM which reduced the expression of pro-inflammatory
cytokines (Il-6, Il-12, and induced nitric oxide synthase [iNos])
to near basal levels. Moving in vivo, NSC-CM administered
intraperitoneally following experimental murine SCI led to the
downregulation of Il-1b, Il-6, and iNos while upregulating Il-
12. Further, the systemic application of NSC-CM not only
improved functional outcomes and reduced the lesion volume
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but also decreased systemic inflammation through reduced
iNOS production. This suggests the overall effect of NSC-CM
is anti-inflammatory and pro-regenerative in this experimental
injury setting and, importantly, suggests the anti-inflammatory
effects of the NSC secretome are systemic.

Identifying a systemic benefit of the NSC secretome on
immune system activation is an alluring premise. In rats with
experimental sciatic nerve injury, which affects the peripheral
nervous system, IV injection of CM fromhuman embryo-derived
NSCs provided promising results (Chen et al., 2020). Here,
continual treatment with hNSC-CM in injured rats in vivo did
not alter the acute, Schwann cell-driven inflammation, rather
it abrogated the macrophage-driven inflammatory response
in the chronic stage through a reduction in the expression
of pro-inflammatory cytokines Tnf, Il6, and Il1b and the
accumulation of CD68+ macrophages. This finding supports
other lines of investigations into the effects of the NSC secretome
on macrophages in the CNS (Huang et al., 2014; Cheng
et al., 2017; Peruzzotti-Jametti et al., 2018). To determine
if the anti-inflammatory effects of hNSC-CM were specific
to macrophages, rat peritoneal macrophages treated with
hNSC-CM had decreased expression of both pro-inflammatory
cytokines (Tnf, Il6, and Il1b) and the pro-inflammatory enzyme
iNos, in LPS activated macrophages. Key to this effect was
the activation of the SIRT-1 signaling pathway as blocking the
activation of SIRT-1 in LPS treated macrophages allowed for
the activation of the downstream transcription factors NF-kB
and HIF-1α and induction of pro-inflammatory genes Tnf, Il6,
and Il1b and Nos2. Similar findings have been demonstrated
in the BV-2 microglial cell line (Ye et al., 2013). Although this
study failed to discover the mechanism through which the hNSC
secretome activates the Sirt-1 pathway, a plausible candidate is
TGF-β1, which demonstrates anti-inflammatory effects (Chen
et al., 2014), activates Sirt-1 (Cha et al., 2016), and is present in
the hNSC secretome.

Ischemic stroke is one of the three most prevalent causes of
death and disability that disproportionally targets the rapidly
increasing aged population (Zhang et al., 2019). Similar to other
neurodegenerative diseases, the hope of NSC transplants as a
therapeutic option in ischemic stroke is twofold: (i) to repopulate
the lesion site through cell differentiation and neurogenesis,
and tissue repair; and (ii) to modulate the pro-inflammatory
microenvironment.

Amajor impediment to the applicability of NSC in the context
of ischemic stroke is ensuring that the transplants correctly
migrate to the lesion to impart their beneficial regenerative and
immunomodulatory functions. In murine models of MCAO to
induce focal ischemia followed by reperfusion (MCAO/R), the
injection of fetal hNSCs into the ipsilesional hippocampus, a
region with endogenous migration cues, promoted the rapid
migration of the grafts to the lesion epicenter (Huang et al.,
2014). To investigate the immunomodulatory effects of the
hNSCs, they were delivered at the height of the pro-inflammatory
cytokine response (24 h post-injury). At 48-h post-injury, hNSCs
were observed migrating to the infarct which correlated with
reduced infarct volumes and improved behavioral outcomes.
They concluded that this rapid effect was caused by the

anti-inflammatory properties of the hNSCs, as they observed
a reduction in microglial activation and downregulation of the
transcripts of pro-inflammatory cytokines (Tnf, Il6, Il1b, Ccl2,
Ccl3) from brain homogenate.

Another challenge in the use of NSCs as a treatment
for ischemic stroke is the invasive nature of the delivery
route, namely intracerebral injection. An alternative route
for NSC delivery into the lesion site is through epidural
injection, which was demonstrated to be effective 1 week
after permanent MCAO (Lee et al., 2017). Despite poor
migration and viability of the human iPSC derived NSC
grafts, improved functional outcomes, reduced ED1+ myeloid
progenitor cells, and astrogliosis, increased angiogenesis, and
reduced lesion volume at 21 days post-injury was observed.
Thus, the observed improvements were postulated to be
due to the paracrine effects of the grafted NSCs leading
them to conduct in vitro whole-genome microarrays and
cytokine neutralization experiments to identify the NSC secreted
factors. Here, the focus of their subsequent experiments
focused on the neuroprotective ability of five factors (bone
morphogenetic protein 7, chemokine ligand 14, fibroblast
growth factor 8, fibroblast growth factor 9, and insulin-like
growth-factor-binding protein 2), but further investigation
of their NSC secretome data would likely have identified
candidates responsible for the anti-inflammatory mechanisms
and reduction in myeloid cell recruitment.

The numerous issues associated with cell therapy, including
invasive intracerebral injection and ensuring rapid NSC
migration to the lesion core, comprise significant hurdles for
NSC transplants as a therapeutic approach for ischemic stroke,
despite the beneficial clinical effects in experimental animal
models. To overcome these limitations, CM from fetal rat NSCs
was delivered via vein tail injections at three consecutive time
points (3, 24, 48 h post-injury) in rat models of MCAO/R
(Yang et al., 2018). Similar to findings in studies using NSC
transplants, the systemic application of NSC-CM reduced infarct
volume and improved behavioral outcomes and mitochondrial
ultrastructure, which was suggested to be partially due to a
reduction in inflammation, although they did not investigate this
line of thinking any further.

The leading cause of non-traumatic disability in young
adults is MS, an inflammatory demyelinating disease of the
CNS (Wallin et al., 2019). As in the previously discussed
neurodegenerative pathologies, the therapeutic potential
of NSCs in MS arises from: (i) their neuroprotective
and regenerative properties; and (ii) their endogenous
anti-inflammatory properties.

Given the persistent inflammation present in progressive MS,
and the clear immunomodulatory effects of NSCs, it is not
wholly unsurprising that NSCs have been extensively studied
within the context of this disease. In 2003, we demonstrated
that intracerebroventricular and intravenous delivery of adult
rodent NSCs ameliorated the behavior and pathophysiological
deficits observed in murine EAE models of MS (Pluchino
et al., 2003). Over a decade later, it was shown that this effect
holds for murine iPSC-derived NSCs and that intraventricular
transplants also decrease T-cell infiltration (Zhang et al.,
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2016). However, other studies did not observe this decrease
in T-cell infiltration in the EAE model, possibly due to
differences in the time point of transplantation, number and
concentration of transplanted NSCs, and type of EAE performed
(Peruzzotti-Jametti et al., 2018).

Unlike in other disease models, the study of NSC
transplantation in animal models of MS has delved into
their immunomodulatory effects. For example, the studies
discussed in the previous section were able to pinpoint the
immunomodulatory factors that played a role in either shifting
the inflammatory profiles of macrophages (De Feo et al., 2017;
Peruzzotti-Jametti et al., 2018) or T-cells (Chen et al., 2014;
Plaisted et al., 2016) and each of these studies was performed
in a model of MS. However, a potential gap in the MS-NSC
immunomodulatory literature is the evaluation of NSC-CM in
animal models of MS. Given the immunomodulatory effects
observed in other disease models, further investigation into this
approach, possibly in combination with NSC transplants, might
represent an even further enhanced therapeutic potential for
NSCs in the context of MS.

Beyond the neurodegenerative diseases described, NSCs
and NSC-CM have revealed similar anti-inflammatory effects
and improved functional outcomes in several other CNS
pathologies, including Parkinson’s disease (Redmond et al.,
2007; Mendes-Pinheiro et al., 2018), amyotrophic lateral
sclerosis (Zalfa et al., 2019), and AD (Lee et al., 2015;
McGinley et al., 2018). Thus, the application of NSCs or
the NSC secretome, harnessed via NSC-CM, has shown
promising results across a diverse array of in vivo models of
neurodegeneration. Common themes include cross-talk between
NSCs and endogenous immune cells, which generally results
in either a decrease in inflammatory immune cell infiltration
or a shift in their inflammatory profiles and the ability
of NSC-CM to elicit immunomodulatory effects. However,
many of these effects have yet to be carefully compared
within the same study. Unsurprisingly, the anti-inflammatory
effects observed from the application NSCs/NSC-CM involves
the downregulation of the targets of the NF-kB pathway,
suggesting the possibility of NF-kB antagonist(s) within the
NSC secretome. Overall, the immunological effects of NSCs
in neural regeneration is overwhelmingly anti-inflammatory.
Thus, given that persistent neuroinflammation contributes to
the chronic pathology of multiple CNS diseases, harnessing the
anti-inflammatory properties of the NSC secretome represents a
promising approach for therapeutic intervention.

IMPLICATIONS FOR CLINICAL WORK

The anti-inflammatory effects of stem cells (including NSCs)
may be of value in conditions in which the immune system
becomes hyperreactive as a consequence of initial activation. In
the event of tissue damage, whether caused by injury or infection,
the immune system produces and releases multiple inflammatory
cytokines (such as TNF-α, IL-1β, IL-8, and IL-6) to clear the
site of inflammation and recruit additional immune responses.
However, in some cases, this cytokine release can become
uncontrolled and lead to prolonged intensified inflammation-

causing leakage from capillaries, tissue oedema, and shock (Bird,
2018). This is known as cytokine storm and it has been previously
described as a consequence of both viral and bacterial infections
(e.g., influenza A and Francisella tularensis; D’Elia et al., 2013),
and more recently it has become a pathophysiological aspect
of incredible importance in the current coronavirus disease 19
(COVID-19) pandemic (Wiersinga et al., 2020).

Preliminary clinical data indicate that severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection is associated
with an intense cytokine storm in some patients. A multiplex
screen for 48 cytokines of COVID-19 patients has indeed shown
a marked increase of pro-inflammatory cytokines in patients
with clinically moderate and severe COVID-19, compared with
healthy controls (Yang et al., 2020). Continuously high levels
of these cytokines (especially CXCL10, CCL7, and IL-1 receptor
antagonist) are associated with increased viral load, loss of lung
function, lung injury, and a fatal outcome.

Several therapeutic strategies have been trialed to bring
the inflammatory response back under control in COVID-19
patients. The UK Randomised Evaluation of COVID-19
therapy (RECOVERY) trial, which is comparing a range of
possible treatments with usual care in patients hospitalized
with COVID-19, has shown clear benefits of dexamethasone
treatment (Horby et al., 2020). A preliminary report found
that intravenous dexamethasone reduces deaths by a third
in patients receiving invasive mechanical ventilation (29.3%
vs. 41.4%%, rate ratio, 0.64; 95% CI, 0.51–0.81), and by one
fifth in patients receiving oxygen without invasive mechanical
ventilation 23.3% vs. 26.2%; rate ratio, 0.82; 95% CI, 0.72–0.94),
but not among those who are receiving no respiratory support
at randomization (17.8% vs. 14.0%; rate ratio, 1.19; 95% CI,
0.91–1.55). The use of tocilizumab, a marketed IL-6 blocking
antibody, has also been shown to be beneficial in an Italian
retrospective, observational cohort study (Guaraldi et al., 2020).
Tocilizumab treatment is associated with a reduced risk of
invasive mechanical ventilation or death (adjusted hazard ratio
0.61, 95% CI 0.40–0.92; p = 0.020). Of note, 24 (13%) of
179 patients treated with tocilizumab were diagnosed with new
infections, vs. 14 (4%) of 365 patients treated with standard of
care alone (p < 0.0001).

Promising results were also obtained in the Netherlands,
where researchers of the COVID High-intensity
Immunosuppression in cytokine storm syndrome (CHIC)
study showed that a strategy involving a course of high-dose
methylprednisolone, followed by tocilizumab if needed (vs. a
strategy with supportive care only) in patients with COVID-19
led to a clinically relevant improvement of respiratory status, a
reduction of the hospital mortality, and the need for mechanical
ventilation (Ramiro et al., 2020).

These clinical trials suggest that the cytokine storm is indeed a
treatable complication of COVID-19 and at this point, high-dose
glucocorticoids and immunosuppressive treatments may be the
best option for patients.

Stem cell therapies and, more recently, their secreted
(EVs) are emerging as promising treatments, which could
also attenuate inflammation and regenerate the lung damage
caused by COVID-19 (Chrzanowski et al., 2020). There are
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FIGURE 2 | NSC secretome as a potential acellular therapeutic in the treatment of cytokine storm. Viral infection results in monocytes, dendritic cells, and
macrophage activation. The release of pro-inflammatory cytokines can then initiate an amplification cascade that results in cytotoxic T lymphocyte differentiation,
monocyte and neutrophil recruitment, and increased circulating inflammatory parameters. Subsequent enhanced systemic cytokine production contributes to the
pathophysiology of severe viral infections (such as SARS-CoV-2 and COVID-19) through a cytokine storm. Here, acellular therapeutic intervention using the stem cell
secretome might lead to modification of the immune response and a rapid dampening of pro-inflammatory activity through increased Treg development. Figure
adapted from Moore and June (Moore and June, 2020). Abbreviations: CRP, C-reactive protein; LDH, lactate dehydrogenase; Treg, regulatory T cell.

currently >15 clinical trials evaluating the therapeutic potential of
mesenchymal stem cells (MSCs) for the treatment of COVID-19,
the majority of which rely on intravenous administration. While
the outcomes from most of these trials have yet to be reported,
a proof of concept study with adipose-tissue (AT) MSCs (AT-
MSC) suggests that this treatment is safe and potentially useful
in severe cases of COVID-19 requiring mechanical ventilation
(Sánchez-Guijo et al., 2020). With a median follow-up of 16 days
after the first dose, clinical improvement was observed in 70%
of patients receiving allogenic AT-MSC, and treatment was
followed by a decrease in inflammatory parameters (C-reactive
protein, IL-6, ferritin, LDH, and d-dimer), particularly in those
patients with clinical improvement. The secretome of stem cells
can be also an effective treatment option for COVID-19 cytokine
storm. One clinical trial (NCT04276987) is currently testing
MSC-derived exosomes via inhalation route in patients with

severe pneumonia arising from COVID-19 infection. The main
advantages of this acellular approach are the lower risk of
mutagenicity and oncogenicity (as there is no cell graft) and
the stability of the medicinal product, which can be easily
transported and administered (Figure 2).

Besides its peripheral effects, the COVID-19 cytokine storm
may lead to the direct involvement of the nervous system
causing: (i) encephalopathies; (ii) inflammatory CNS syndromes;
(iii) ischemeic strokes; (iv) peripheral neurological disorders;
and (v) miscellaneous CNS disorders (Paterson et al., 2020).
COVID-19 infection is indeed associated with a wide spectrum
of neurological syndromes affecting the whole neuroaxis,
leading to a strikingly high incidence of acute disseminated
encephalomyelitis, which is not related to the severity of the
respiratory COVID-19 disease. While some of these cases
respond to immunotherapies (corticosteroids or intravenous
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immunoglobulin), their prognosis is still poor. Since, the
underlying mechanisms of this encephalopathy may result
from the combined effects of sepsis, hypoxia, and immune
hyperstimulation due to the cytokine storm (Mehta et al., 2020),
the use of stem cells and their secretome could prove to be
extremely useful in these cases.

In this sense, treatment with NSC-EVs could provide
an additional benefit, given its previously described
immunomodulatory effects and its CNS tissue specificity.
Further trials with allogeneic NSC secretome will be needed
to explore this possibility and its application in these
clinical settings.

CONCLUSION

There are still several questions that need to be addressed when
it comes to harnessing the NSC secretome for Regenerative
Neuroimmunology. First and foremost, most studies lack
mechanistic identification of the effect of secreted factors, along
with profiling EV contents. Future work is needed to delve
into and profile NSC factors that could be used in promoting
regeneration, and how exactly these factors are altering the
inflammatory environment. This involves study in performing
targeted proteomics and sequencing on NSC-derived factors,
in addition to the isolation and analysis of NSC-EVs, in
the context of various inflammatory conditions. Generating a
larger panel of NSC secreted factors will help in future large-
scale high-throughput assays which can assess the utility of
these factors on immune cells. Harnessing these factors will
allow for a more directed therapeutic, rather than relying on
the transplantation of NSCs, which faces concerns of tumor
formation and immune rejection. Further, the NSC secretome
may play larger roles in non-CNS specific conditions, such as

the targeting of cytokine storms, known to occur with COVID-
19. Overall, the continuation in basic research towards further
understanding the secretome of NSCs is warranted in the search
for new regenerative strategies.
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