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Abstract

Time-dependent data collected in studies of Alzheimer’s disease usually has missing and

irregularly sampled data points. For this reason time series methods which assume regular

sampling cannot be applied directly to the data without a pre-processing step. In this paper

we use a random forest to learn the relationship between pairs of data points at different

time separations. The input vector is a summary of the time series history and it includes

both demographic and non-time varying variables such as genetic data. To test the method

we use data from the TADPOLE grand challenge, an initiative which aims to predict the evo-

lution of subjects at risk of Alzheimer’s disease using demographic, physical and cognitive

input data. The task is to predict diagnosis, ADAS-13 score and normalised ventricles vol-

ume. While the competition proceeds, forecasting methods may be compared using a lead-

erboard dataset selected from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and

with standard metrics for measuring accuracy. For diagnosis, we find an mAUC of 0.82, and

a classification accuracy of 0.73 compared with a benchmark SVM predictor which gives

mAUC = 0.62 and BCA = 0.52. The results show that the method is effective and compara-

ble with other methods.

Introduction

Alzheimer’s disease (AD) is an irreversible brain disorder which progressively affects cognition

and behaviour, and results in an impairment in the ability to perform daily activities. It is the

most common form of dementia in older people affecting about 6% of the population aged

over 65, and it increases in incidence with age. The initial stage of AD is characterised by mem-

ory loss, and this is the usual presenting symptom. Memory loss is one constituent of mild cog-

nitive impairment (MCI) which can be an early sign of Alzheimer’s disease. MCI is diagnosed

by complaints of subjective memory loss (preferably corroborated by a close associate or part-

ner of the individual), impairment of memory function, unimpaired general cognition and
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behaviour but with no evidence of dementia [1]. MCI does not always progress to dementia or

to a diagnosis of Alzheimer’s disease, but those with amnestic mild MCI, the type of MCI char-

acterised by memory impairment, are more likely to develop dementia than those without this

diagnosis. In cases where an individual does develop Alzheimer’s disease, the phase of MCI

ends with a marked decline in cognitive function lasting two to five years in which semantic

memory (the recall of facts and general knowledge) and implicit memory (the long-term, non-

conscious memory evidenced by priming effects) also becomes degraded.

Clinical diagnosis of dementia relies on information from a close associate or partner of

the individual, and on cognitive and physical examinations. Once dementia is diagnosed it is

usually subclassified into Alzheimer’s disease, vascular dementia or Lewy Body dementia [2,

3], these three classes making up the majority of cases. Risk factors for Alzheimer’s disease

are multifarious, including sociodemographic (in particular age), genetic (notably ApoE

status), and medical history (such as a diagnosis of depression). The cause of Alzheimer’s

disease is not fully understood, but plaques containing amyloid β–peptide (Aβ) in brain

tissue and neurofibrillary tangles containing tau protein are the primary histological

features [4].

Predicting Alzheimer’s disease

The disease leads to an progressive, irreversible loss of brain function, so prospective drug

therapies need to be tested for efficacy as early in the process as possible. As a result there is a

demand for the timely prediction of diagnosis for testing therapies which might inhibit or pre-

vent tissue damage. There has been much research effort put into the prediction of an AD

diagnosis among those who are diagnosed with MCI, in particular using imaging to detect

early signs of the disease pathology: a meta analysis of 32 structural MRI or amyloid PET imag-

ing studies that reported conversion to AD in patients with MCI is given by Seo et al. [5]. This

analysis concluded that amyloid PET is a better predictor of progression to AD than MRI atro-

phy measures (effect size 1.32 vs 0.77), but that MRI on entorhinal cortex atrophy (effect size

1.26) is comparable in prediction value to that of amyloid PET. Another comparison of bio-

marker predictivity found that the highest predictive accuracy was achieved by combinations

of amyloidosis and neurodegeneration biomarkers [6]. The individual biomarker with the best

performance was [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) which

measures temporoparietal hypometabolism.

The application of machine learning to predicting Alzheimer’s disease from neuroimaging

data is an active area of research. A review by Weiner et al. [7] lists 49 papers which use the

ADNI data, with a summary of input data, feature selection and prediction methods. Of these

methods the majority used MRI data, sometimes supplemented with other neuroimaging data

(usually PET) and with other modes such as cognitive, demographic and genetic data. Most

studies used the support vector machine (SVM) as the learning method, three papers used

random forests [8–10], and the remaining studies used score-based or other classification

approaches. The tasks attempted were usually to distinguish diagnostic categories NL

(healthy), MCI, and AD to forecast conversion, usually from MCI to AD. For example, Moradi

et al. [11] used features from MRI images, age and cognitive measures to predict MCI to AD

conversion from one to three years before diagnosis was made. They used an SVM classifier to

distinguish patients who remained as MCI over at least 3 years (sMCI) from those whose diag-

nosis was MCI at baseline and who converted to AD within 3 years (pMCI). Using MRI fea-

tures they achieved a 10-fold cross-validated AUC score of 0.77 in discriminating pMCI from

sMCI patients; their aggregate biomarker based on MRI data together with baseline cognitive

measurements and age gave an AUC score of 0.90.
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A review of the use of random forests classifying of neuroimaging data in Alzheimer’s dis-

ease is given by Sarica et al. [12]. They examined 12 studies, 10 of which used ADNI data, and

the majority used features derived from MRI imaging data. Across the studies they found an

accuracy of about 90% for classification of AD vs. HC (healthy controls) and around 82% for

the classification of MCI vs. HC and stable MCI vs. progressive MCI. Three studies which

reported a multiclass classification of AD vs. MCI vs. HC had results ranging from 53% to

96%. Similar results for multiclass classification are reported by Dimitriadis et al. who also

include a review of machine learning techniques applied to neuroimaging data [13]. Other

reviews of diagnostic classification using neuroimaging data are provided by Rathore et al.
[14], Arbabshirani et al. [15] and Falahati et al. [16] with the latter two focusing on studies

which use MRI images to derive features.

The TADPOLE grand challenge

One of the challenges of classification in Alzheimer’s disease is the wide range of both data and

forecasting tasks, making comparisons across studies difficult or impossible. In this paper we

assess the performance of our approach using data from the TADPOLE grand challenge, and

we evaluate the results against methods provided by the competition organisers. In the past

few years there have been a number of challenges which allow comparison between methods

using a common data set and standardised evaluation metrics. The CADDementia challenge

[17] compares algorithms for the classification of AD, MCI and controls based on structural

MRI data. The top rank in this competition is held by Sørensen et al. [18] who looked beyond

the usual volumetric biomarkers and used cortical thickness measurements, hippocampal

shape and texture, and other measures in addition to volume measurements. Using linear dis-

criminant analysis they achieved an accuracy of 63% on test data. The Kaggle Neuroimaging

challenge https://www.kaggle.com/c/mci-prediction [19] is based on the Kaggle machine

learning platform and uses data from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI), one of the most commonly used data sets for studies of Alzheimer’s disease [7]. The

challenge involved a four-fold classification into AD, MCI, MCI converters to AD and controls

with pre-processed sets of T1-weighted MRI images as input. The best performing entry to the

Kaggle Neuroimaging Challenge used an ensemble of random forest models to achieve an

accuracy of 61.9% in a blind external validation dataset [13].

The TADPOLE grand challenge https://tadpole.grand-challenge.org/ is currently taking

place with evaluation to be completed by January 2019. The task is a three-fold classification

into AD, MCI and control groups, and the prediction of ADAS-13 score and normalised brain

volume [20]. The TADPOLE challenge aims to predict the onset of Alzheimer’s disease using

different modes of measurement, including demographic, physical and cognitive data. In com-

mon with many other studies [7] the data set is derived from ADNI which is comprised of

four phases: ADNI-1 (2004), ADNI-GO (2009), ADNI-2 (2011), and ADNI-3 (2016). ADNI-1

registered 200 healthy elderly, 400 participants with MCI, and 200 participants with AD, and

the subsequent phases continued to add participants. The main TADPOLE competition

involves predicting future data collected as part of the ADNI-3 phase. The organisers also pro-

vide a leaderboard dataset separate from the main competition which allows prediction meth-

ods from different teams to be evaluated. The results presented in this paper are derived from

the leaderboard dataset using a time horizon varying from 1 to 84 months with a test set of 110

participants and 417 prediction points. Since TADPOLE data is based on ADNI, the data used

in the preparation of this article were obtained from the (ADNI) database (adni.loni.usc.edu).

ADNI is led by Principal Investigator Michael W. Weiner, MD. Up-to-date information can

be found at www.adni-info.org.
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Subjects and methods

Leaderboard data

The participants in ADNI have each generated a time series of measurements as monitoring

has progressed. The TADPOLE leaderboard dataset consists of three labelled sets of these time

series, LB1, LB2 and LB4. The ‘training’ set LB1 has complete time series from 1627 partici-

pants. The ‘history’ set LB2 and the leaderboard test set LB4 use time series from a separate

group of 110 participants. LB2 has the first part of each time series, from ADNI-1, and LB4 has

the remainder from ADNI GO/ADNI-2. Participants in LB2 were not diagnosed with AD at

the last ADNI-1 time point. The task is to predict the diagnosis, ADAS-13 score and the nor-

malised ventricles volume for the set LB4 using set LB1 and the participant histories recorded

in LB2. The results are evaluated by comparison with LB4 data using a variety of metrics which

are described below. No information from LB4 may be used for model training, but demo-

graphic and other details about the participants who contributed to LB4 are available from

LB2, and past time varying data such as imaging and cognitive measurements are also available

from LB2. A histogram of time series lengths for LB1 and LB2 is shown in Fig 1.

Features for prediction are selected from demographic, cognitive and physical data vari-

ables. The physical data comprises, among other measurements, MRI data (volumes, cortical

thickness, surface area), PET (FDG, AV45 and AV1451), DTI (regional means of standard

indices) and levels of markers from cerebral spinal fluid (CSF).

Fig 1. Histograms of time series lengths. Upper: training set LB1 whose time series may cover ADNI, ADNI-GO and

ADNI-2. Lower: Set LB2 which is formed only from time series from ADNI-1.

https://doi.org/10.1371/journal.pone.0211558.g001
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Evaluation set

For the purposes of training we create an evaluation set whose time series are similar to those

in the leaderboard history set LB2. The evaluation set is selected from LB1 by choosing partici-

pants matching those in LB2 and whose ADNI-1 time series length is similar. The post-ADNI-

1 phases of this matched evaluation set should be similar to that of the test set LB4 and can be

used to assess prediction accuracy during training. To create the evaluation set we examine

each participant time series in LB2 and find those participants in LB1 who have a matching

gender, ApoE4 status and age (to within 5 years) and whose diagnosis matches at the start and

end of the ADNI-1 phase. If more than one matching participant is found we select the one

with the closest match for the time series length in the ADNI-1 phase. The demographic char-

acteristics and ApoE4 status of the participants from set LB2 and the matched evaluation set

are shown in Table 1.

To select features and set algorithm parameters we minimize the cross-validation error

using a training set. The training set comprises all the time series from LB1 (including points

from all three ADNI phases, ADNI-1 ADNI-GO and ADNI-2) and the ADNI-1 points from

the evaluation set. The time points from the evaluation set after the ADNI-1 phase are not

included in the training set.

Forecasting method

The purpose of a forecasting method is to predict a participant’s condition at points in the

future using demographic, cognitive and physical data variables from time points in the partic-

ipant’s history. A common approach in time series prediction is to use weighted combinations

of past data points to predict the next data point. Time series models in general encode a map-

ping from an input space to the output, where time is not one of the input dimensions. How-

ever, many time series in the training data are short and the sampling periods are irregular so

much of the information in the training data lies in the mapping from the time delay between

measurements to the output rather than in the sequence of input values. Irregular sampling

and missing data can be managed by interpolation or by using appropriate methods such as

Gaussian process regression [21], but these approaches entail making assumptions about the

distributions. Another approach is to use an input space formed of demographic variables λ,

last diagnosis g(t−Δt) and time since last measurement Δt, and map vectors from this space to

the output variable gt. Assuming additive error, the model is,

gt ¼ f ðl; gðt� DtÞ ;DtÞ þ �t ð1Þ

As noted above, most studies on classifying neuroimage data for Alzheimer’s disease use

Table 1. Demographic characteristics and ApoE4 status for participants from the set LB2 compared with a

matched evaluation set selected from LB1. The rows are the sample size n, age as minimum, mean and maximum,

gender and ApoE4 status.

LB2 Evaluation set
n: 110 92

Age: 59.9 (75.1) 87.9 57.8 (75.3) 84.8

Male: 60.9% 60.9%

Female: 39.1% 39.1%

APOE4 0: 70.0% 68.5%

APOE4 1: 27.3% 29.4%

APOE4 2: 2.7% 2.2%

https://doi.org/10.1371/journal.pone.0211558.t001
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SVMs, although random forests are also represented [7]. Random forests work well with a

mixture of quantitative and categorical features and unlike SVMs they handle multiple output

classes natively. They are easy to train and they provide a variable importance measure. These

considerations have informed our choice of a random forest for this study.

A random forest is formed from an ensemble of decision trees where each tree partitions

the input space into a set of rectangles to minimize the loss function [22]. The training process

for an individual tree iterates over all the variables and selects the variable and split point that

gives the best partition for the training data. The best partition is that that which gives the min-

imum total impurity in the two subsets that are formed. The process is repeated until a stop-

ping criterion (such as a minimum number of points in the rectangle) is met. Fig 2 illustrates

the partition algorithm in the case of two input variables.

To reduce the variance of the final estimate the random forest algorithm randomly selects

sqrt(n) of the n features at every split point [23]. The overall estimate for regression is the aver-

age over the ensemble of estimators, and for classification it is the majority class. The algorithm

parameters are the number of trees in the ensemble and the minimum number of data points

on a leaf. These values are found by minimizing the out-of-bag (OOB) prediction error for

each parameter value, where the OOB prediction is found by classifying observations using

trees grown without using those observations. More detail about the algorithm and the theory

of random forests is given in Hastie et al. [22].

Reference methods

For comparison with our random forest model we show results for a linear mixed effects

model and a benchmark support vector machine (SVM), both provided by the competition

Fig 2. Partition of a 2D input space using two features, X1 and X2. Feature X2 is first used to bisect the square, then

each rectangle is bisected using feature X1. The different marker styles denote unique classes.

https://doi.org/10.1371/journal.pone.0211558.g002
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organisers. The linear mixed effects model uses two fixed parameters (intercept and slope),

one random effect (intercept) and one covariate for the slope, APOE. The SVM uses two fea-

tures: ADAS13 and Ventricles divided by ICV_bl. For diagnosis it uses a linear support

vector machine classifier with diagnosis at the next follow-up as the label. For ADAS13 and

Ventricles prediction it uses linear support vector regression with the value at the next follow-

up as the label.

Metrics

Forecasts for each diagnosis are made as probabilities for each of the classes, NL, MCI and AD.

We report the multiclass area under the receiver operating curve (mAUC) and the balanced

classification accuracy (BCA). The mAUC is based on Hand and Till’s extension of AUC to

multiple classes [24] which takes the average AUC over all the pairs of classes, where each pair

of AUCs Âðci; cjÞ; Âðcj; ciÞ is itself averaged. The balanced classification accuracy (BCA) is the

mean of the true positive rate and true negative rate. Forecasts for the quantitative outputs

ADAS-13 and VENTS-ICV are evaluated using the mean absolute error (MAE). These mea-

sures are used by the TADPOLE competition, and the organisers have shared the codes for

their computation. We reimplemented the codes and verified the results by comparison with

the competition leaderboard.

Results and discussion

We trained the random forest only on time series with at least 4 points, this minimum having

been determined during training. The optimum value for the number of trees was 60, and for

the minimum number of data points in a leaf it was 5. The average cross-validation accuracy

for the evaluation set for diagnosis was AUC = 0.82 (SD 0.09). For ADAS-13 prediction the

error was MAE = 5.56 (0.58) and for VENTS-ICV, MAE = 0.0021 (0.001).

Features

The variables selected during training are shown in Table 2. These were chosen by starting

from a prior set of variables RID, TIME_DELAY, DX, AGE, GENDER, MMSE and add-

ing variables to increase the prediction accuracy. The set of features was optimised for diagno-

sis as the output variable with two variables added for predicting ADAS-13: the input ADAS13
and its slope ΔADAS13. By contrast, the feature set for the VENTS output was TIME_DELAY,

VENTRICLES and ΔVENTRICLES, and for ICV it was TIME_DELAY, ICV and ΔICV. The

output VENTS-ICV is the ratio of these two predictions.

The relative importance of these features is shown in Fig 3. Importance is measured by the

increase in prediction error when the values of the variable are permuted across the out-of-bag

observations. This measure is computed for every tree, then averaged over the ensemble and

divided by the standard deviation. For predicting diagnosis, the initial diagnosis DX, partici-

pant identifier RID and the time delay TIME_DELAY are the three most important. This find-

ing shows that the method is working as expected: the best predictor of future diagnosis for an

individual will be the last diagnosis, especially for short time horizons, and time will be the

greatest determinant of change in that diagnosis. The participant identifier carries more diag-

nostic information specific to an individual in addition to the last diagnosis. For predicting the

quantitative output ADAS-13, TIME_DELAY is again highly predictive, while the diagnosis

DX is not. Otherwise the profile of the two outputs is similar with AGE, RID, MIDTEMP and

ΔHIPPOCAMPUS important in both cases. For predicting both the quantitative outputs

VENTS and ICV, from which the target VENTS-ICV is found, the most important predictor is

Random forest prediction of Alzheimer’s disease using pairwise selection from time series data
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the variable itself, with ΔTIME_DELAY and the slope being used to adjust this last value

prediction.

Test set results

The confusion matrix for diagnosis prediction is shown in Table 3. The matrix summarises a

total of 417 test points for 110 participants in the test set LB4. For predicting NL diagnoses, the

accuracy is 99%, for MCI, 59% and for AD, 29% giving an overall accuracy of 72%. The classi-

fier identifies NL diagnoses accurately but misclassifies about a third of MCI diagnoses as NL,

and more than half of AD diagnoses as MCI. This appears to be a poor performance in identi-

fying MCI and AD diagnoses. However in order to score on the accuracy measure the time of

transition from one diagnostic state to another (NL to MCI etc.) has to be estimated within

some margin of error over a period of up to 7 years.

Table 4 shows the test set metric values for diagnosis, ADAS-13 and VENTS-ICV predic-

tion. For diagnosis prediction the random forest has mean accuracy measures of mAUC =

0.80 and BCA = 0.74, outperforming both the linear mixed effects model and SVM references.

For ADAS-13 prediction the error for the random forest model is MAE = 5.24, compared with

the mixed effects model of MAE = 5.87 and the benchmark SVM of MAE = 8.13. For VENT-

S-ICV prediction the mean test set error for the random forest model is MAE = 0.0026, com-

pared with the mixed effects model of MAE = 0.0034 and the SVM of MAE = 0.0098.

In the section on Predicting Alzheimer’s disease we saw that the reviews by Sarica et al. [12]

and Dimitriadis et al. [13] found accuracies ranging from 53% to 96% for multiclass classifica-

tion of diagnosis. By comparison we found an accuracy of 74% for predicting diagnosis, as

shown in Table 4. However, although our study uses data that is derived from ADNI, both the

data and forecasting task are different from previous studies. In our case, the test data has been

selected specifically for the TADPOLE competition leaderboard, and the task is to predict

Table 2. The set of variables from which features are selected for prediction. The variable MMSE is binary and found by thresholding the raw value at 26. The output

VENTS-ICV is the ratio of VENTS and ICV which are predicted using separate models. VENTS is predicted using VENTRICLES, ΔVENTRICLES and TIME_DELAY.

ICV is predicted using ICV, ΔICV and TIME_DELAY.

Variable Meaning Diag ADAS-13 VENTS-ICV

DX Diagnosis (NL or MCI or AD) ✓ ✓

AGE Age ✓ ✓

GENDER Gender ✓ ✓

APOE ApoE4 status ✓ ✓

MMSE MMSE Mini-mental state examination ✓ ✓

CDRSB CDRSB ✓ ✓

FAQ Functional activities questionnaire ✓ ✓

RID Participant identifier ✓ ✓

MIDTEMP Middle temporal gyrus ✓ ✓

TIME_DELAY Number of months delay ✓ ✓ ✓

ADAS13 Alzheimer’s Disease Assessment Scale ✓

ICV Intracranial volume ✓

VENTRICLES Ventricles volume ✓

ΔMMSE MMSE slope ✓ ✓

ΔADAS13 Alzheimer’s Disease Assessment Scale slope ✓

ΔHIPPOCAMPUS Hippocampus volume slope ✓ ✓

ΔVENTRICLES Ventricles volume slope ✓ ✓ ✓

ΔICV Intracranial volume slope ✓

https://doi.org/10.1371/journal.pone.0211558.t002
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Fig 3. Variable importance for diagnosis, ADAS-13, ventricles and intracranial volume prediction.

https://doi.org/10.1371/journal.pone.0211558.g003
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diagnosis over a forecast horizon which can vary between one month and 7 years: other studies

generally predict a transition over a fixed period. For a meaningful comparison methods have

to be compared with others from the same competition, as shown in the leaderboard table

reproduced in Table 5. The leaderboard shows entries in rank order where the rank is deter-

mined by the lowest sum of individual ranks for mAUC, ADAS-13 MAE and VENTS-ICV

MAE. Two additional metrics are computed for the leader board: the weighted error score

(WES) and the coverage probability accuracy (CPA). The weighted error score is the absolute

error weighted by the inverse of the confidence interval range. The coverage probability accu-

racy is defined as, CPA = |j − 0.5|, where j is the proportion of measurements falling within the

50% confidence interval. The original table can be found at https://tadpole.grand-challenge.

org/leaderboard from which it can be seen that only 6 of 17 teams (with repeated submissions)

appear to outperform the method described in this paper.

Discussion

We have shown how a machine learning method can learn the relationship between pairs of

data points at different time separations for the prediction of Alzheimer’s disease. The advan-

tage of this scheme is that it can easily be applied to data with irregularly sampled or missing

data points. It outperforms linear mixed effects and SVM methods. A limitation of the

approach is the direct comparison with just two methods both with a small number of predic-

tors. However the comparison against other methods in the leaderboard demonstrates the

effectiveness of the pairwise prediction method, and shows that it performs well against a

range of other approaches. The results also show that random forests are an effective choice

for this kind of classification challenge. They take both quantitative and qualitative input vari-

ables, they are easy to train and they perform well over a wide range of applications.

A possible application for predicting diagnosis is the application to clinical trials. In select-

ing participants for clinical trials, a positive PET scan is commonly used as part of the inclusion

criteria. However PET imaging is expensive, so when a positive scan is one of the trial inclu-

sion criteria it is desirable to avoid screening failures. One possibility is to preselect candidates

using machine learning before applying the trial criteria. The variables and methods found

from the TADPOLE competition could be used to inform a clinical trials simulation. Even rel-

atively modest values for sensitivity and specificity for predicting a diagnosis of Alzheimer’s

Table 3. Confusion matrix for predicting 417 diagnosis points of the 110 participants in test set LB4, where the forecast horizon is up to 7 years. The labels are as fol-

lows, NL: healthy, MCI: mild cognitive impairment, AD: Alzheimer’s disease. The overall accuracy is 0.72.

Predicted diagnosis
NL MCI AD Total Accuracy

Actual diagnosis NL 193 2 0 195 0.99

MCI 54 88 8 150 0.59

AD 6 45 21 72 0.29

https://doi.org/10.1371/journal.pone.0211558.t003

Table 4. Test set results for the random forest, mixed effect and SVM estimators. The values are the mean over ten splits of the test data with the standard deviation in

brackets.

Method Diagnosis ADAS-13 VENTS-ICV

mAUC BCA MAE MAE

Random forest 0.80 (0.06) 0.74 (0.05) 5.24 (1.39) 0.0026 (0.00130)

Mixed effects 0.77 (0.07) 0.68 (0.07) 5.87 (1.26) 0.0034 (0.00098)

SVM 0.62 (0.07) 0.51 (0.04) 8.13 (1.02) 0.0098 (0.00078)

https://doi.org/10.1371/journal.pone.0211558.t004
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Table 5. Competition leaderboard table at 4 May 2018 where each row represents an entry from a competition team listed in rank order. The first highlighted row

shows the results for our random forest estimator, the middle highlighted entry shows the results for a linear mixed effects model and the bottom highlighted entry for a

support vector machine model. There are three target outcomes for prediction: 1) Diagnosis, 2) the ADAS-13 score, and 3) VENTS-ICV which is the ventricles volume

divided by intracranial volume. The overall rank is determined by the lowest sum of ranks from mAUC, ADAS-13 MAE and VENTS-ICV MAE.

Diagnosis ADAS-13 VENTS-ICV

mAUC BCA MAE WES CPA MAE WES CPA

0.91 0.83 3.62 3.62 0.11 0.0020 0.0018 0.13

0.93 0.85 3.72 3.10 0.02 0.0020 0.0016 0.15

0.93 0.85 3.72 3.10 0.02 0.0020 0.0016 0.15

0.91 0.83 3.67 3.67 0.12 0.0024 0.0022 0.08

0.91 0.74 3.73 3.70 0.01 0.0028 0.0023 0.32

0.89 0.78 4.16 4.16 0.39 0.0023 0.0023 0.47

0.89 0.82 3.76 3.76 0.12 0.0034 0.0029 0.15

0.89 0.82 3.80 3.80 0.11 0.0034 0.0029 0.14

0.87 0.78 4.12 4.08 0.03 0.0027 0.0027 0.01

0.87 0.69 4.41 4.41 0.30 0.0026 0.0026 0.46

0.84 0.74 4.54 4.17 0.49 0.0025 0.0021 0.49

0.89 0.81 3.81 3.81 0.11 0.0057 0.0041 0.01

0.88 0.80 3.87 3.87 0.11 0.0049 0.0038 0.05

0.91 0.74 3.73 3.70 0.01 0.0092 0.0092 0.01

0.80 0.74 4.51 4.49 0.40 0.0027 0.0027 0.25

Random forest 0.82 0.73 5.19 4.57 0.07 0.0023 0.0019 0.11

0.76 0.67 4.34 4.30 0.08 0.0022 0.0021 0.08

0.88 0.80 5.00 4.78 0.03 0.0030 0.0030 0.05

0.88 0.80 3.92 3.92 0.10 0.0060 0.0043 0.01

0.86 0.70 4.56 3.69 0.14 0.0034 0.0032 0.43

0.81 0.73 5.13 5.14 0.01 0.0027 0.0028 0.20

0.81 0.73 4.09 4.09 0.09 0.0045 0.0038 0.01

0.80 0.74 4.51 4.49 0.40 0.0038 0.0038 0.42

0.80 0.68 4.14 4.14 0.29 0.0040 0.0040 0.38

0.80 0.66 4.81 4.81 0.21 0.0038 0.0038 0.10

0.80 0.74 4.60 4.60 0.35 0.0041 0.0041 0.12

0.88 0.69 4.98 4.98 0.34 0.0066 0.0066 0.27

0.78 0.71 4.60 4.60 0.35 0.0041 0.0041 0.12

0.79 0.69 6.68 5.54 0.05 0.0028 0.0023 0.32

0.81 0.72 4.70 4.70 0.09 0.0070 0.0070 0.03

0.77 0.65 4.83 4.83 0.20 0.0038 0.0038 0.07

0.87 0.70 4.91 4.79 0.36 0.0073 0.0073 0.46

Mixed effects 0.77 0.68 5.85 5.85 0.38 0.0032 0.0032 0.34

0.71 0.63 6.37 6.71 0.39 0.0026 0.0026 0.32

0.71 0.63 6.37 6.74 0.25 0.0026 0.0026 0.27

0.79 0.66 4.69 4.69 0.09 0.0093 0.0093 0.01

0.76 0.69 5.00 4.98 0.35 0.0042 0.0042 0.38

0.72 0.62 5.70 5.70 0.41 0.0036 0.0036 0.43

0.73 0.59 9.63 9.63 0.45 0.0029 0.0029 0.48

0.80 0.68 6.00 6.00 0.11 0.0075 0.0075 0.17

0.71 0.58 9.70 9.70 0.40 0.0029 0.0029 0.26

0.74 0.68 5.70 4.60 0.21 0.0070 0.0042 0.35

0.74 0.68 5.70 4.60 0.21 0.0070 0.0042 0.35

0.77 0.65 6.73 6.73 0.13 0.0094 0.0094 0.02

0.78 0.68 7.39 7.39 0.12 0.0095 0.0095 0.04

0.78 0.66 8.43 5.09 0.48 0.0096 0.0095 0.50

. . .

SVM 0.62 0.52 8.11 8.11 0.50 0.0098 0.0098 0.50

https://doi.org/10.1371/journal.pone.0211558.t005
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disease might have major resource savings for trials. Further work remains to determine pre-

diction variables within the constraints of available variables and the period of monitoring.

In this paper we have described a prediction method that makes no assumptions about the

dynamics of input time series, and it is applicable to irregularly sampled data of any length.

The results are better than the competition benchmark and they validate the method as effec-

tive. We look forward to the final results of the TADPOLE competition which will provide a

definitive comparison of the different prediction methods and features.
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