
NOREC4DNA: using near‑optimal rateless 
erasure codes for DNA storage
Peter Michael Schwarz*   and Bernd Freisleben 

Background
Due to its very high storage density of theoretically 455 exabytes per gram (using 2 bits 
per nucleotide)  [1] and its extraordinary longevity, deoxyribonucleic acid (DNA) is a 
promising medium for long-term and high-density storage of important data. However, 
since DNA as a biological medium is susceptible to a variety of mutations and read/write 
errors, and the cost for synthesizing and sequencing DNA is still a decisive factor, it is 
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essential to use adequate coding schemes to correct errors and avoid unstable or error-
prone DNA sequences when digital data is stored in DNA.

Several coding schemes were proposed to correct read/write errors and avoid error-
prone DNA sequences. For example, Church et al. [1] as well as Goldman et al. [2] used 
different overlapping strategies to map digital data into DNA strands and support error 
correction. In these coding schemes, the bits 0 and 1 are mapped to two DNA bases 
each and thus error-prone combinations like long repeats of one base (called homopoly-
mers) are avoided. Heckel et al.  [3] proposed an index-based coding scheme, mapping 
data annotated with the corresponding index, without further modification of these data 
packets. Furthermore, near-optimal rateless erasure code (NOREC), also called fountain 
codes, are particularly interesting coding methods for DNA storage. For example, Erlich 
and Zielinski used the Luby transform (LT) code to achieve high-capacity and low-error 
DNA storage [4]. In their work, they leveraged the special property of fountain codes to 
be able to generate theoretically infinitely many different packets for a given input to find 
packets that satisfy the restrictions defined for their DNA storage approach. Since LT 
is the most basic NOREC, there is a large untapped potential for improvement in using 
NORECs for DNA storage.

Ping et al. [5] developed Chamaeleo, a framework that provides multiple DNA storage 
codes. While Ping et  al. focus on a variety of conventional (non-fountain) codes pre-
sented in the literature, they also include the LT implementation used by Erlich and Zie-
linski. In contrast to our work, Chamaeleo does not include means to change, adapt, and 
integrate modified or new error rules. Furthermore, the missing framework-wide error 
simulation does not permit an extensive comparison of the usability of the implemented 
methods for real DNA storage.

In this paper, we present NOREC4DNA, a software framework to use, test, compare, 
and improve coding schemes for DNA storage. While NOREC4DNA focuses on foun-
tain codes, regular coding schemes can be compared as well. Besides multiple extensi-
ble restriction rules, we implemented the three most common fountain codes, namely 
LT [6], Online [7], and Raptor [8]. The contributions of this paper are as follows:

•	 We present a novel framework based on NORECs, called NOREC4DNA, to flexibly 
generate sequences for DNA storage that satisfy user-defined restrictions.

•	 NOREC4DNA allows detailed comparisons of various coding schemes for storing 
data in DNA.

•	 We show that NORECs belong to the most suitable codes for DNA storage; Raptor 
codes yield the best results across all tested metrics.

The paper is organized as follows.  “Near-optimal rateless erasure codes” section gives 
an overview of the fountain codes and technologies used in NOREC4DNA. “Implemen-
tation” section presents the design and implementation of NOREC4DNA. We present 
experimental results generated using NOREC4DNA in “Results” section. Finally, “Con-
clusion” section concludes the paper and outlines areas of future work.
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Near‑optimal rateless erasure codes

NORECs can be used to generate theoretically infinitely many coding symbols (in practice, 
some limitations apply). Furthermore, only a small number of (1+ ǫ) ∗ n encoded symbols 
have to be correctly received to fully reconstruct the original information. Since it does not 
matter which (and in which order) symbols are received as long as a sufficient number of 
symbols is received - just like a bucket under a fountain that does not care about which 
drops of water it collects—these codes are also known as fountain codes.

Typically, fountain codes are applied as follows. First, a distribution function is used to 
determine a degree for each data packet. These packets are filled with random chunks using 
XOR according to their degree and then transmitted to the recipient over an erasure chan-
nel. After receiving a sufficient subset of the transmitted packets, the receiver computes 
the original data using the received packets and an indication of the chunks contained in 
them. To reconstruct the encoded data, the receiver either has to know the list of chunks 
mixed into a given packet (e.g., as part of the transmission) or has to know the distribution 
function as well as the seed used to initialize the random number generator used during 
encoding.

Luby transform codes

The LT code [6] proposed by Luby is considered to be the most fundamental and pioneer-
ing fountain code. LT divides the original file into n equally long ‘chunks’ that are then com-
bined into packets using the XOR operator, as shown in Fig. 1.

The encoding process can be summarized as follows:

•	 Choose the degree d from the probability distribution function p(.).
•	 Select d evenly random distributed different chunks.
•	 Generate the resulting packet ti by combining all selected chunks using the XOR opera-

tor.
•	 Add reconstruction information (selected chunk number or seed) to the packet.

Luby presents two distribution functions for his LT coding schemes [6]. The first distribu-
tion function, called ‘IdealSoliton’ distribution, was proven by Luby to be mathematically 
ideal. It operates on integers from 1 to N, with N as the only parameter of the function. It is 
defined as follows:

Fig. 1  Encoding using LT
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As shown in Fig.  2a, this function has a single mode and then flattens down to the 
specified value N. Since only the parameter N can be selected, the position of the mode 
ρ(2) = 0.5 as well as its value cannot be changed.

According to Luby, this function is quite fragile and thus not suitable for practical 
applications. Therefore, he proposed a robust form of this distribution function, called 
‘RobustSoliton’ distribution, which uses a set of elements τ (i) to extend the IdealSoliton 
distribution (see Eq.  (2)), adding a spike to the mode at degree 1. In addition to the 
parameter N already defined in the IdealSoliton distribution, two additional parameters 
K and δ are introduced. While K with K < N  defines the integer position of the addi-
tional peak, δ describes the expected (real-valued) error probability.

Finally, as shown in Eq.  (3), the values for τ (i) are added to ρ(i) and normalized 
afterwards.

Figure 2b shows the influence of the individual parameters on the two distribution func-
tions. While the choice of N determines the maximum degree, the parameter K deter-
mines the position of the additional peak. With increasing δ , the probabilities shift 
towards degree 2. Therefore, from the second peak and from all other degrees i > 2 , 
small values of probability decrease to the mode at degree 2.

(1)
ρ(1) =

1

N
,

ρ(k) =
1

k(k − 1)
(k = 2, 3, . . . ,N ).

(2)

τ (i) =
1

iK
, (i = 1, 2, . . . ,K − 1),

τ (i) =
ln(R/δ)

K
, (i = K ),

τ (i) = 0, (i = K + 1, . . . ,N ).

with R = N/K

(3)µ(i) =
ρ(i)+ τ (i)

∑N
j=1(ρ(j)+ τ (j))

Fig. 2  Soliton distributions
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The decoding of the packets generated during the encoding can take place without 
prior sorting. For decoding, packets are first collected and combined (as far as possible) 
in such a way that the degree of these packets is reduced in each case. An illustration of 
decoding a file with three chunks is shown in Fig. 3. As shown in Fig. 4, the decoder can 
still reconstruct the information if packet 2 gets lost.

Thanks to the special construction of fountain codes based on the XOR operator, 
it is possible to represent the decoding of all NOREC methods in the form of a linear 

Fig. 3  Decoding a file divided into three chunks

Fig. 4  Decoding with packet loss

Fig. 5  Decoding matrix after m received packets
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equation system Ax = b , as shown in Fig. 5. This ensures that ambiguities during the 
decoding process, as shown in the previous example, can be avoided and thus the 
packets can be optimally reduced to the original message.

In A, all 1’s of a line i describe which chunks in the packet i were combined by the 
XOR operation. An example is shown in Eq. (4).

Online codes

Online Codes proposed by Maymounkov  [7] improve LT codes. Online codes address 
the main problem with LT codes, which is that LT codes cannot guarantee that after 
(1+ ǫ) ∗ n generated packets, all n parts of the original message were encoded in a suf-
ficient manner. This problem is a manifestation of the coupon collector’s problem [9]. If 
a chunk of the original message has been encoded less frequently (e.g., only once or even 
zero times), these parts are much more vulnerable during decoding, since a loss of the 
packets containing these chunks cannot be compensated. Since fountain codes pseudo-
randomly combine several chunks to packets, it can also happen that the lack of a single 
packet prevents numerous chunks from being reconstructed. To prevent this problem 
from occurring, Online codes follow a two-staged approach. First, auxiliary blocks are 
created in the so-called outer-encoding. Then, together with the message chunks, they 
are finally encoded into packets during the inner-encoding step. In particular, during the 
outer-encoding process, M = ⌈0.55 · q · ǫ · F⌉ auxiliary packets are created. Then, each 
chunk is randomly mixed into q different AUX packets using XOR [7]. Like the chunks 
of the file, the resulting M AUX packets are considered as regular inputs in the inner-
encoding step. In this phase, a packet is generated by randomly selecting a degree n from 
the distribution function. As a result, selected from the union of the set of chunks and 
AUX blocks, n unique and equally distributed elements are mixed into this packet. This 
step is repeated infinitely or until a predefined condition occurs. Such a condition could 
be, e.g., reaching a certain number of created packets or successfully decoding with a 
decoder running simultaneously.

The process of decoding encoded content in Online codes is similar to the one 
described for LT codes. However, the decoding phases must be carried out in the reverse 
order of the encoding process.

If the mapping of the chunks originally used per AUX packet are already available at 
the beginning of the decoding (e.g., after the first packet), the decoder can reduce the 
AUX packets and perform a mapping with the correct chunks during the actual trans-
mission. A reduction of the example shown in Fig. 6 is illustrated in Fig. 7.

Raptor codes

Raptor codes developed by Shokrollahi  [8] are the first fountain codes with (theoreti-
cally) linear encoding and decoding time. As the name Raptor codes (for rapid tornado) 
suggests, they are based on tornado codes, which can correct erasures with a fixed error 
rate. These codes require a constant number of blocks more than the Reed–Solomon 

(4)
A[i] =

(

0 1 0 0 1 1
)

⇔

b[i] = ⊻
|A[i]|
j=0 A[i, j] · Chunk[j] = Chunk[1] ⊻ Chunk[4] ⊻ Chunk[5]
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codes [10], but are much faster in encoding and decoding. Meanwhile, there are several 
variants of the original method, e.g., R10 [11] or the RaptorQ code [12]. Depending on 
the procedure, purpose and area of use, various patents may apply [13, 14].

Similar to the previously mentioned Online codes, the Raptor encoding is based on 
a two-step process consisting of an outer- and an inner-encoding. While the inner-
encoding (just like the inner-decoding) consists of an LT code, the outer-encoding of 
the Raptor code consists of one or a series of erasure codes with a fixed rate. A possible 
procedure of this outer-encoding phase is the encoding using a Gray sequence followed 
by an low density parity check (LDPC) code. Alternatively, a Hamming code or any other 
erasure code with a fixed rate can be used or combined. This approach combines the 
advantages of fixed rate coding with codes of the NOREC class.

In contrast to the fountain codes described so far, the Raptor encoding has a (theoreti-
cal) fixed upper limit of the number of possible chunks. This upper limit also limits the 
maximum degree of a packet. For this reason, Raptor codes use a fixed (parameter free) 
distribution function shown in Eq. (5). This function uses a random number of the given 
range [1, 220 = 1048576] to determine the degree of each packet.

Fig. 6  Online decoding of a file divided into three chunks with 5 generated packets and q = 1

Fig. 7  Reduction of the AUX packets
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Data is encoded in two steps. First, the original data is used to create additional infor-
mation for reconstruction using codes with a fixed rate. Second, the information gener-
ated is encoded into many packets using the LT coding technique. Although in practice 
various erasure codes exist for the first step, the Gray code combined with a subsequent 
LDPC code is mainly encountered. This can be explained by the simplicity of the Gray 
code and the properties of LDPC. With this combination (and especially since LDPC 
codes operate at the Shannon capacity), it is possible to successfully reconstruct a mes-
sage with a very small overhead of packets (for 1000 chunks, approximately 1-2 addi-
tional packets are created using the non systematic approach) with a nearly 100% chance. 
The number of intermediate blocks to be generated in the first step of the Raptor code is 
calculated by the formulas shown in Eq. (6) and depends on the number of chunks.

While f(k) is only an auxiliary function for g(k), the function g(k) calculates the number 
of intermediate blocks to be created using the Gray code. The function h(k) computes the 
number of intermediate blocks to be generated by LDPC. The sum l = k + g(k)+ h(k) 
indicates the total quantity of intermediate blocks after the first step. These k + g(k) 
blocks are then used as inputs to generate the h(k) LDPC encoded blocks. This ensures 
that all chunks and previously generated blocks in intermediate steps are captured dur-
ing LDPC encoding. If the first phase of the implemented Raptor encoding consists of 
more than two fixed-rate codes, the number of intermediate blocks to be generated 
must be determined for each of these codes and then, according to the desired order, the 
chunks together with the preceding intermediate blocks serve as input for the following 
code.

The h(k)+ g(k) intermediate blocks generated in the first step are then encoded into 
packets using the LT code. The standard procedure is to select the degree of the packets 
with the predefined distribution function. In contrast to the fountain codes used so far, 
the final choice of chunks for a packet to use is not distributed equally, but depends on a 

(5)f (x) =



































1 for x < 10241
2 for x < 491582
3 for x < 712794
4 for x < 831695
10 for x < 948446
11 for x < 1032189
40 else

(6)

f (k) =x ∈ N with x · (x − 1) ≥ 2 · k and

∃!j < x with j · (j − 1) ≥ 2k

g(k) =x ∈ N with x is prime and

x ≥ ⌈0.01 · k + f (k)⌉ and
∃!j with j is prime and

j < x and j ≥ ⌈0.01 · k + f (k)⌉

h(k) =x ∈ N with

(

x
⌈ x2⌉

)

≥ f (k)+ g(k) and

∃!j with j < x and

(

j

⌈ j
2⌉

)

≥ f (k)+ g(k)
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particular algorithm. Thus, the function may vary depending on the version of the Rap-
tor code.

Figure 8 shows the result of a run of this rateless encoding. The first packet consists 
of d = 4, a = 5, b = 1 of the first chunk ( b = 1 ), the fifth chunk ( b = 1+ a%11 = 5 ), 
the fourth chunk ( b = ((1+ a)%11+ a%11)+ a%11 = 4 ) and the second chunk 
( b = (((((1+ a)%11+ a%11)+ a%11)+ a%11)+ a%11)+ a%11 = 2).

This procedure limits the size of allowed input chunks (and thus also the final size 
of the individual packets) to 220 − x , where x is the number of intermediate blocks to 
be generated in the first step. To avoid this limitation, in RFC 5053 [11] the authors of 
the Raptor encoding suggest generating ‘sub-blocks’ in addition to chunks (referred to 
as ‘source blocks’). These are evaluated in the algorithm as a separate run. To enable 
decoding, only the current chunk number and the number of sub-chunks used must be 
known. This allows us to encode each chunk separately, offering a selection of almost 
any number of subdivisions.

The reconstruction of the packets encoded by Raptor codes is quite similar to the 
Online decoding. The mapping of each intermediate block must be generated exactly 
in the same way as during encoding. The decoder has to know the number of chunks, 
the fixed rate codes, and their order. While the number and sequence of most imple-
mentation steps is standardized and can therefore be treated as given, a sender must 
transmit the number of original chunks (or sub-blocks). If the corresponding informa-
tion is known, the decoding of the Raptor code can also be reduced to a linear equation 
system and solved using either the Gaussian elimination method [15, 16] or belief propa-
gation [17, 18].

Common errors in DNA storage systems

To leverage the rateless property of the described codes, NOREC4DNA includes a vari-
ety of rules defining error probabilities of DNA sequences.

Mutations Depending on the synthesis or storage method, the individual DNA strands 
are subject to different mutations and mutation probabilities depending on their char-
acteristics. Although all four bases are susceptible to simple mutations, there are differ-
ences in the effect, recoverability, and frequency of these mutations. One of the most 

Fig. 8  Generation of a Raptor packet with d = 4, a = 5, and b = 1
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common mutations is the formation of uracil from cytosine, which, like thymine, would 
complement adenine and thus would produce a different sequence if sequenced later. A 
similar defect exists in the oxidation of guanine and the associated formation of 8-oxo-
guanine. This can bind to both cytosine and adenine and can therefore possibly lead to 
an error. In addition to a one-by-one mutation, insertions and deletions might lead to 
further modifications of a DNA sequence.

Homopolymers Polymers that contain longer repetitions of the same base are 
referred to as homopolymers. These fragments are highly unstable during synthe-
sis, polymerase chain reaction (PCR), and subsequent sequencing. On the one hand, 
due to how next-generation sequencing systems detect the presence of a nucleotide, 
homopolymers are difficult to correctly sequence [19]. On the other hand, a so-called 
‘slippage’ of the enzyme in the region of the homopolymer might occur during PCR 
(and thus during synthesis and sequencing). Longer homopolymers greatly increase 
the probability of such an error and thus should be avoided.

GC Content The GC content of a DNA strand as shown in Eq. (7) indicates the pro-
portion (i.e., frequency) of the bases guanine and cytosine with respect to the length 
of the full strand:

Since the base pairs A and T always form two hydrogen bonds, whereas the pairs G 
and C always form three hydrogen bonds, and GC pairs tend to be thermodynamically 
more stable due to a stack interaction, statistically more frequent errors such as abor-
tions and mutations occur in sequences with low GC content [20, 21]. This effect can be 
observed in nature, where thermophilic organisms have a significantly higher GC con-
tent than comparable species. In nature, depending on the organism, the GC content 
varies between approximately 20% and almost 80%. To design a stable, synthesizable 
and sequenceable DNA storage, a balanced GC content of 40–60% is advantageous. This 
applies to both the overall sequence and the GC content per window.

Micro-satellites Also known as ‘short tandem repeats’, two to six base pairs long 
sequences that are frequently repeated in a DNA sequence are called micro-satellites. 
Although micro-satellites occur approximately one million times in human DNA, 
they are still considered unstable due to problems during the sequencing and repro-
duction process. The most common forms of these error sources are di- and trinu-
cleotide repeats.

Belonging to the class of micro-satellites, dinucleotide repeats consist of a long rep-
etition of two base pairs. The reason for a mutation is the high chance of ‘slippage’ 
during a PCR process. This causes the newly synthesized strand to form a loop, which 
is not cut out during the repair attempt but leads to an extension of the strand. Since 
these locations are not recognized by proof-reading (as correction), they often lead 
to unrecoverable errors. The more frequently a sequence repeats itself, the higher 
the probability that during PCR a formation of loops occurs, which then changes the 
DNA.

(7)
GC Content =

|G| + |C|
|G| + |C| + |A| + |T |

· 100%, where | ⋆ | is the frequency of

base ⋆ in a given sequence.
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Similar to the dinucleotide repeats, this type of error is also based on a repetition of 
nucleotide sequences. However, as the name implies, repetitions of three nucleotides 
are considered.

Implementation
NOREC4DNA is written in Python 3 using multiprocessing and a fast C implementa-
tion of the most important functions. Additionally, some methods are implemented 
as CUDA kernels and thus can optionally be executed on GPUs. NOREC4DNA is 
based on an object-oriented approach, i.e., it flexibly supports extensions regarding 
new methods, coding schemes, metrics, and mutation rules.

Workflow

The steps to store information in DNA are as follows. First, a number of packets is gen-
erated from a chosen (binary) erasure code. A binary-quaternary converter generates a 
quaternary representation using the bases A, C, G, and T for each packet. The resulting 
DNA sequences are then synthesized and stored using any suitable method. At a later 
point in time, these DNA strands are sequenced, translated using the quaternary-binary 
converter and passed to the decoder as individual packets. The decoder then recon-
structs the original file using (1+ ǫ) ∗ n packets. Figure 9 shows the described workflow. 
It should be noted that the number of DNA strands and thus the number of binary pack-
ets received may be smaller than the originally encoded number of DNA strands. We 
describe the components of the workflow in more detail below.

Encoder

The encoder divides files into a freely selectable number of chunks (or packets with a 
selected chunk size) and allows to create an unlimited number of packets. It is possible 
to either create individual packets or generate a fixed number of packets at once. Fur-
thermore, we added an interface to the decoder implementations. This way, it is possible 

Fig. 9  Workflow for storing/retrieving data in/from DNA
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to generate packets until the selected decoder signals that decoding is possible. The use 
of a static overhead in combination with a decoder is also possible.

To store additional information about a given file, the encoder allows an optional 
header chunk to be added during encoding. This artificial chunk can store information 
such as the file name and the correct length of the padded last chunk.

As an additional feature, a direct enumeration of the contained chunks can be stored 
per packet. This allows the encoder to operate in an unequal error protection mode [22, 
23]. Since the determination of prioritized packets makes a simple reconstruction of the 
encoded chunks using a seed impossible, an explicit enumeration of the chunk numbers 
used per packet is required here. This allows a user to specify a list of chunks to decode 
with high priority while initializing the encoder. These packets can either be encoded 
into individual packets with degree 1 or have a higher chance to be mixed into packets 
with a smaller degree (e.g., ≤ 4).

Besides directly using the encoder, NOREC4DNA includes multiple scripts to cre-
ate packets based on full parallel execution. This includes the generation of all possible 
packets by iterating over all possible seeds in a given seed range. This supports finding 
the best overall packets for a given input.

Currently, NOREC4DNA provides implementations of the following NORECs: LT, 
Online, and Raptor. The implemented distribution functions are: RobustSoliton, Ideal-
Soliton, as well as the default implementations for Online and Raptor together with a 
custom ‘adaptable distribution’ that allows a programmatic modification of the distribu-
tion function.

Packet structure

Since the mentioned prioritized packets require an explicit specification of the chunks 
used, but the LT implementation without prioritization achieves a higher efficiency by 
specifying the seed, different storage structures are defined for both versions.

While the packet structure shown in Table  1 may be used as a default setting, the 
length of each field can be modified. This can be useful if the total number of chunks or 
the maximum seed fits into a smaller number of bytes (or needs more space). Addition-
ally, static information, such as the total number of chunks the file has been split into, 
can be omitted during packet creation. While the latter greatly decreases the total and 
per-packet overhead, this information has to be transmitted out-of-band for a successful 
decoding. If this information gets lost, the decoding has to test all possible combinations 
(e.g., all possible number of splits).

Table 1  Structure of the different LT packets

(a) Without explicit specification of chunks

#Chunks Id (Seed) Data Checksum

I (4 byte) I ... L (4 byte)

(b) With explicit specification of the chunks

#Chunks Degree Used chunks Data Checksum

I (4 byte) I |Packets| · H (2 byte) ... L (4 byte)
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The explicit specification of the degree is necessary if the distribution function used 
and its parameters are not known during decoding. Alternatively, information about the 
distribution and its configuration could be stored instead.

The function used to generate data for the ‘checksum’ field in Table 1 can be replaced 
by a (lambda) function. NOREC4DNA includes the following pre-defined codes: ‘noc-
ode’, ‘crc8’, ‘crc32’ as well as ‘Reed–Solomon’ with a freely configurable repair symbol 
size.

While ‘nocode’ works as an identity function and supplies no integrity check for a 
packet and therefore decreases the overhead, ‘crc8’ and ‘crc32’ introduce overhead, but 
also provide corresponding integrity checks. Although using a simple checksum might 
be sufficient to emulate an erasure channel over the DNA medium and thus ensures that 
only intact packets are decoded, this approach would increase the number of invalid 
packets even if a single base mutates. Erlich and Zielinski  [4] have shown that using a 
Reed–Solomon code to check integrity and repair errors increases the number of cor-
rect packets even if small mutations occur. Since the error probability in a DNA storage 
system depends on various factors, the number of repair symbols can be chosen freely.

Bin‑quat converter

There are several approaches for encoding binary data using four bases. One variant is 
the simple conversion and direct storage of the binary data in a quaternary form, i.e., 
a mapping system as shown in Table 2. The concrete assignment of the bit pairs to the 
individual bases can be chosen freely.

In addition to these obvious approaches, other concepts were studied in the literature. 
For example, Church et al. [1] stored one bit per base pair, similar to the mapping shown 
in Table 3. Although this yields a lower information density, it achieves more robustness 
with regard to mutations and read errors as well as homopolymers. Other methods, such 
as the approach presented by Limbachiya et al.  [24], use only two or three of the four 
possible bases per block in order to avoid error-prone sequences.

While these mappings can be easily integrated into our framework, NOREC4DNA 
uses the direct mapping approach shown in Table 2. This is due to the ideal information 

Table 2  Mapping of two bits into quaternary form or DNA base

Bitpair Quaternary representation Base

00 0 A

01 1 C

10 2 G

11 3 T

Table 3  Mapping: One bit can be encoded into two different DNA bases

Bit Base

0 A or C

1 G or T
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density and the fact that the described fountain codes are used to prevent error-prone 
sequences. This transformation has been widely used in related work (e.g., [4, 25, 26]).

Biological rules

To leverage the benefits of NORECs, we introduce a metric ‘error probability’ per 
packet. This metric represents the probability that a given packet is readable after a full 
cycle of storing to and reading from DNA. For a flexible and still accurate assessment of 
these error probabilities, we implemented multiple rule sets. As a reference rule set, the 
rules as defined by Erlich and Zielinski  [4] were implemented. While these rules only 
focus on homopolymers and the GC content, the remaining implementations add vari-
ous other rules that can be configured and enabled as required. For example, we offer a 
fast and reliable C-extension of the most important rules to accelerate the encoding, and 
a parser-based approach to allow users to easily modify rules without deeper knowledge 
of Python programming.

Due to the reduction of errors to deletions in the erasure channel, a simulation of 
mutations over one or more generations (as in [27]) is not necessary. Therefore, it is suf-
ficient to multiply the probability of a mutation of a packet with the number of genera-
tions to obtain the probability whether it should be discarded or not.

The following errors were considered and implemented as possible reasons for muta-
tion: homopolymers, unique X-mers, di- and trinucleotide runs, length based errors, A, 
C, G and T mutation probabilities, (windowed) GC content, illegal symbols, random 
mutations as well as options for the reverse and reverse complement. Care has been 
taken to ensure that the errors of synthesis, storage, and sequencing are considered. 
The used rules for homopolymers, di- and trinucleotides were adapted from the litera-
ture [28, 29]. The mutation and error probabilities for the individual bases (e.g., base ‘C’ 
becomes ‘T’) are mainly chosen based on the work of Grass et al. [29]. Statements about 
the general random occurrence of errors were compiled from several publications [30, 
31].

Equation (8) shows one of the default functions for GC rules. While this distribution 
for mutation probabilities was roughly adopted from related work [21, 28, 30], these dis-
tributions can be replaced during construction of the rule system. This equation returns 
0 for all values between 40 and 60 and 1 for all values between 0 and 30 as well as 70 and 
100. For the values between 30 and 40 and 60 to 70 this will return a near linear value 
between 0 and 1.

MESA implementation

The highest customizability is obtained by using the MESA  [32] API. Since MESA as 
a web tool for the automated assessment of synthetic DNA fragments and simula-
tion of DNA synthesis, storage, sequencing, and PCR errors does not only allow user-
defined configurations but also offers a REST-API, MESA allows a fine-grained and 

(8)
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−
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7200
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errgc = max(min(f , 1), 0)
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correct assessment of error probabilities per packet. The downside of this approach is 
the decreased speed introduced through the API.

Error prediction accuracy

Since the mutation probabilities of the individual error sources in different scientific 
studies vary considerably, the implemented default rules have been overestimated in 
such a way that they create a close upper bound for the actual probability of mutation 
with the same distribution.

The complexity of finding a universal and accurate error prediction is further increased 
by the fact that there are various synthesis, amplification, and sequencing methods, all of 
which are susceptible to different errors and therefore have different mutation and error 
probabilities. Furthermore, the error probability depends on the duration and the condi-
tions of the information that is stored in DNA. Implemented in this way, long-term stor-
age can be simulated by increasing the probability of errors.

The application of all rules in the default rule set to randomly generated DNA 
sequences results in an average error probability of about 23% for sequences of length 
50 nt (std: 33%, var: 11%, 25-percentile: 0%, 75-percentile: 21%) and about 50% for 164 nt 
(std: 44%, var: 19%, 25%-percentile: 21%, 75%-percentile: 80%), whereas various articles 
suggest an error probability of 1-15% (depending on the synthesis, storage, sequencing 
methods used and most of all, the length of the sequence). However, since we adopted 
the ratio or distribution of mutations from published data, this overestimation can be 
adjusted by scaling the error probabilities as required. Additionally, packet-level error 
correction ensures that small mutations will be repaired and thus will not affect the 
decoding.

Error avoidance during coding

To allow a fast and reliable assessment of the created packets, this metric can be cal-
culated during encoding. All encoders allow the creation of packets based of a strict 
or weak upper bound. While a strict upper bound simply limits the maximum calcu-
lated error probability a generated packet might have, the weak upper bound allows 
even higher error rates. The weak upper bound might be useful if the given rules are too 
strict, resulting in all packets to be close to or above the set limit. In detail, this function 
calculates the error probability and then (equally distributed) draws a number between 
0 and 1. If the drawn number is equal or higher than the estimated error probability, the 
packet is considered valid and will be used, otherwise the packet is discarded. While this 
approach might yield less optimal packets, this mode will work even when all created 
packets have high error probability.

Preprocessing sequenced data

Prior clustering performed in a DNA sequencing pipeline improves the results, since 
it helps to detect low coverage strands and thus sequences with a higher chance of 
misreads or mutations. Since NOREC4DNA reads FASTA files line by line, sorting 
the clustered sequences by how often the sequences have been sequenced will allow 
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NOREC4DNA to work more reliably. While most modern sequencing pipelines perform 
these steps accordingly, we use the Snakemake-based pipeline ‘Natrix’ [33].

Decoder

Two base classes are provided as implementations of the decoder interface. Apart from 
the previously mentioned reduction to a Gaussian-solvable linear equation system, we 
implemented a belief propagation decoder.

Gaussian decoder

We implemented a version of Gauss elimination with partial pivoting to achieve a system 
that is as uniform, fast, and flexible as possible. Since all implemented NORECs work in 
GF(2)-space and therefore only use the XOR operation, we adjusted and thus accelerated 
Gaussian elimination. To further increase the decoding speed, we implemented the algo-
rithm in C using Python C-extensions. All developed decoders allow choosing whether 
decoding should take place after each incoming packet or only after the reception of the 
last packet using a separate command.

Belief propagation decoder

While not particularly needed for a non time-crucial task like the decoding of a file 
stored in DNA, NOREC4DNA includes a belief propagation decoder which might fur-
ther reduce the decoding time. The algorithm propagates each incoming packet to the 
already processed packets to both reduce the degree of the new packet and all existing 
ones. This approach can then transitively propagate changes of reduced packets. The 
advantage over the Gaussian variant is that the speed of decoding is improved by the 
temporal distribution of the computations and the possible partial parallelization of 
this approach.

Fig. 10  A simulation run
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Pseudo decoder

To speed up the use of decoders during encoding, we developed an additional con-
structor for each decoder, which, taking into account some premises, significantly 
accelerates this decoding. The idea is to work only on the set of chunks used per 
packet and ignore the payload of the packets. This is possible because during encod-
ing it is only necessary to determine whether a valid reduction to the identity matrix 
exists.

For the Gaussian decoder this means that the right side b of the equation Ax = b 
does not have to be solved. It is sufficient to check whether the matrix A can be 
converted into the identity matrix (or the first n lines of a m× n matrix). The belief 
propagation decoder can reduce the individual packets to Python sets containing 
the numbers of the chunks used. This makes it possible to map the individual packet 
reductions using efficient set operators.

Results
NOREC4DNA provides several simulators to compare different codes under various 
aspects. An illustration of a simulation run is shown in Fig. 10. The freely modifiable 
and extensible elements that can influence the results of a simulation are highlighted 
in yellow. The different coding methods have a uniform set of functions in form of a 
well-defined interface so that they can be exchanged without changing the system.

Uniformly distributed random error

To show that DNA storage introduces severe restrictions to the possible sequences, 
we use our default rule set as defined in the class ‘FastDNARules’ to calculate the 
error prediction of uniformly distributed randomly generated sequences. Figure  11 
shows the cumulative density function (CDF) and the probability density function 
(PDF) of the error prediction for 500.000 uniformly random DNA sequences with a 
length of 120 bp. The PDF has a peak at an error value of 1.0, i.e., the majority of all 
sequences have a high error prediction (and thus violate at least one rule). The CDF 

Fig. 11  CDF (orange) and PDF (blue) of the error value for 500.000 uniformly random DNA sequences with a 
length of 120 bp
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shows that almost no sequence has an error value of less than 0.5. Thus, most ran-
dom sequences produce a high error rate for a DNA storage system. This indicates 
the benefits of NORECs, since they can generate only sequences that yield a low error 
rate. The rule set can be used to specify user-defined rules and is thus not limited to 
a maximum of 100%. While each rule on its own may define an exclusion criteria on 
its own, applying multiple rules on a given sequence will yield an accumulated error 
value that in some cases will exceed 1.0 (100%). While all sequences with an error 
value greater than 1.0 violate at least one rule, a higher error prediction indicates that 
multiple rules were violated for the given sequence. The rule system can (optionally) 
return an error value per rule to provide more detailed insights.

Impact of the rules on the packet structure

To test the effects of different encodings (together with additional preselection of pack-
ets) on the generated DNA sequences, we encoded an image (the logo of the department 
as a .jpg file) into packets of the same length of 465 nt using different codes and selected 
random samples from these created packets.

In the first run, the packets were created without replacing those with a high error 
value. In addition, to facilitate a comparison with the implemented NORECs, we ana-
lyzed the distribution of the bases for a randomly selected packet of the same length 
generated by a Reed–Solomon algorithm. Using a sliding window of 32 bases, Fig.  12 
shows the relative frequency of the four bases in the generated sequence (0%: start of 
the sequence; 100%: end of the sequence). Here, the distribution of the individual bases 
of a Reed–Solomon packet is extremely unfavorable for DNA storage. Compared to the 
other bases, the relative frequency of base A is well above the majority of the sequence 
and thus indicates an unfavorable GC content as well as a high chance of homopolymers. 
This is due to the fact that Reed–Solomon is a systematic code, which in our case means 
that the encoded file has an unfavorable distribution regarding the selected rules. It has 
to be mentioned that the image as the chosen input file has longer sequences of the same 
symbols, which results in a corresponding distribution in the generated DNA strand.

This also shows that an implementation of the Raptor code in the form of a system-
atic code would not have a positive impact on the created packets. In previous DNA 

Fig. 12  Distribution of bases in a Reed–Solomon packet
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storage approaches (e.g., [2, 31]), this problem is combatted by intermediary codes with 
appropriate substitutions (using Huffman coding, scrambling, or others). However, these 
mitigations require more computing effort and usually reduce the storage density by 
inserting additional symbols or lack generalization.

Figure  13 shows the distribution of the individual bases in a randomly selected LT 
packet with Robust Soliton distribution. While the distribution of packets without prese-
lection (13a, b) shows strong fluctuations for the individual bases, the randomly selected 
packet generation with preselection (13c, d) shows significant improvements. The dis-
tribution of the bases shows that the selected packet has a nearly optimal distribution 
of 25% per base (Fig. 13d). Only for the start and end of the DNA sequence there are 
major differences in the frequency of the individual bases. However, this can be attrib-
uted to the random seed and the error detection/correction attached at the beginning 
and the end of the sequence. The desired 25% are motivated by the ideal distribution of 
the nucleotides in each window. By having an equal distribution of 25%, the sequence is 
less likely to contain homopolymers and will also have a balanced GC content of around 
50%.

For the Online encoding, this analysis delivers similar results. The δ parameter was 
chosen such that the packets have the same size as the LT and Raptor encoding. While 
the improvement between the two variants (Fig. 14a, c) is not apparent at first glance, 

Fig. 13  Distribution of bases in LT packets (Robust Soliton)
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the boxplots (Fig. 14b, d) of the distribution of the four bases show that the version with 
preselection has a much smaller variance.

For the Raptor encoding shown in Fig.  15, preselection apparently has the slightest 
impact. This is due to the fact that Raptor already achieves good results with the non-
optimized packets. Thus, apart from the beginning of the DNA sequence, the occur-
rence of all bases is between 13% and 36%. However, except for base A, after preselection 
all bases average at the optimum of 25% (Fig. 15d).

The very low C content, which can be clearly recognized at the beginning of all exam-
ined packets, can be explained by the fact that the header is stored here. Since the header 
contains the parameters ‘Number of Chunks’ and ‘Seed’, and the number of chunks is the 
same for all packets, the same value is stored at this location. To mitigate the formation 
of homopolymers for the number of chunks field, we can apply a mask or reduce the 
size of the field. Another solution could be to make a different choice for the number 
of chunks or not to write them into the header but to transmit them out of band. Using 
a more work-intensive decoding, this information could even be omitted completely. 
Alternatively, this field could be encoded using regular codes for DNA storage. This 
would reduce the information density by a small percentage but would guarantee that all 
inputs satisfy the DNA storage requirements.

Fig. 14  Distribution of bases in online packets (quality = 5)
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We want to emphasize that the selected packets in our evaluations, without loss of 
generality, were drawn at random. Graphs for other packets of this experiment can be 
found in the Github repository or generated using the scripts provided.

Estimated error probabilities of the codes

To further analyze the ability to create sequences with low error probabilities, we cre-
ated all possible sequences for a given file with a fixed sequence size. As an input we 
used a text file containing the German fairytale ‘Sleeping Beauty’ to create 163 nt long 
sequences. With a 2 byte seed (and a 2 byte Reed–Solomon code at the end of each 
sequence), we created 65,536 sequences using each code and analyzed these sequences 
with the default rule set.

Figure 16a shows the distribution of the error probabilities of all 16,538 sequences 
that have an error probability of less than 40%. With a mean value (black ‘X’) of nearly 
20% error probability and a tight lower and upper quartile of 17% and 23%, respec-
tively, we see that LT performs worst. For LT, the cumulative kernel density estimate 
(red) shows that not even 33% of the packets have an error probability of less than 
20%. Figure 16b shows that the Online code generates only 13,590 sequences in the 
specified range, but does not only have a slightly lower mean error probability (and 
lower quartile) of 19% (and 2%) but also yields nearly 40% sequences with an error 
probability below 20%.

Fig. 15  Distribution of bases in Raptor packets
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The distribution of the sequences generated using the Raptor code, as shown in 
Fig. 16c, shows a further improvement. While the basic distribution is similar to the 
sequences created using the Online code, there are major differences: (a) the number 

Fig. 16  Distribution of the error probability of created sequences
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of sequences with an error probability of less than 40% is 16,097 and thus higher than 
for the Online code, and (b) there are more sequences with a low error probability 
(and especially 0%). In more detail, the mean value is 18%, and the lower and upper 
quartiles are 1% and 22%, respectively. By looking at the cumulative kernel density 
estimate, we can see that 45% of the sequences in this range have an error probability 
below 20%.

While the given file was split into 163 (196 for Online, due to the larger header) 
chunks and thus (1+ ǫ) ∗ 163 ( (1+ ǫ) ∗ 196 for Online) sequences would be sufficient 
to decode the reconstructed the file, a large number of sequences with a low error 
probability is crucial for larger files with an equal or smaller sequence length. Since 
the seed is usually stored in a 2 byte field, we are limited to 65,535 different packets. If 
the code generally produces many low error sequences, we can use the 2 byte field for 
larger files than for a code that produces more high error sequences. While we could 
and might have to increase the size of the seed field to 4 (or even 8) bytes, this will 
introduce an overhead and thus will decrease the storage density (and will increase 
the cost). Since LT and Online (to some extent) are more susceptible to the coupon 
collector’s problem, these codes will generally require a larger ǫ than Raptor.

Susceptibility to the coupon collector’s problem

The coupon collector’s problem indicates the complexity of finding all pieces required to 
own a complete set of pieces (i.e., decoded source symbols). Using it, we can analyze how 
well the codes perform regarding the (average) overhead required to successfully decode 
the original data. For the LT code, Luby states that an average of k + O(

√
k ln2(k/δ)) 

encoded symbols are required to decode a file that was split into k chunks with a prob-
ability of 1− δ [6]. Online [7] as well as Raptor [8] achieve a theoretical linear complexity 
and thus require a flat (1+ ǫ) ∗ k (with ǫ → 0 when k → ∞ ) sequences to reconstruct 
the input file. This is due to the precoding applied in both codes.

Figure 17 shows the number of times each chunk of the input files is present in a cre-
ated packet. Although we analyzed 500 packets for an encoding with only 196 chunks, 

Fig. 17  Number of packets containing each chunk (based on 500 packets each)
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for LT almost no chunk is included into more than 25 packets. This means that there 
is (a) a higher chance of a chunk missing due to errors and mutations (a chunk might 
have a high error rate and propagate this error probability to created packets including 
this chunk), and (b) a higher susceptibility to the coupon collector’s problem. Since each 
packet includes only a few chunks, the probability of a chunk not being included into 
any packet already read increases. In contrast, Online and Raptor with a minimum of 
50 and a maximum of over 110 occurrences per chunk (75 and 175 for Online) are less 
likely to suffer from these problems. It should be noted that due to the larger header 
used for Online and the decision to use the same chunk size instead of the same number 
of chunks (for the comparisons described earlier), the input file for the Online code was 
split into 196 chunks and thus cannot be compared directly. The Online code calculates 
the number of auxiliary blocks based on the number of chunks and thus has a higher 
average number of packets containing each chunk than Raptor.

Figure 17 illustrates why the Online and Raptor codes yield better results regarding the 
impact of the rules on the packet structure, as already described in “Impact of the rules on 
the packet structure” section. Since both codes combine more chunks to create packets, 

Fig. 18  Time required to create 65,536 packets and sorting them according to the error predictions for 
different configurations

Table 4  Configurations as shown in Fig. 18

All files can be accessed in the source repository

Config 1 Config 2 Config 3 Config 4

1 kb Lorem—4 RS 1 kb Lorem—6 RS 4.9 kb fairytale—4 RS 4.9 kb fairytale—6 RS

Config 5 Config 6 Config 7 Config 8

34 kb LICENSE—4 RS 34 kb LICENSE—6 RS 72kb logo—4 RS 72 kb logo—6 RS

Config 9 Config 10

100 kb Lorem—4 RS 100 kb Lorem—6 RS
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they are more likely to combine different symbols using XOR and thus create an equal dis-
tribution of all nucleotides. Logically, this effect only occurs if the input file is not perfectly 
random (otherwise, the LT code would also yield packets with a nearly perfect 25% distri-
bution for each base).

Encoding speed

In this section, we evaluate the encoding speed of NOREC4DNA. To reduce the encoding 
speed, we applied various techniques including multi-threading and Python’s C-exten-
sions. All following experiments were performed using a server with 2x Intel(R) Xeon(R) 
CPU E5-2698 v4 @ 2.20GHz (40 Cores, 80 Threads) and a total of 252 GB RAM.

Since the entire process of storing data in DNA is still expensive and error-prone, it is 
well advised to generate all possible sequences for a given input file using the whole seed 
range. By sorting these sequences according to the estimated error values, we can guar-
antee that we synthesize the best possible sequences.

In a first experiment, we used the “find_minium_packets” script with the RU10 
encoder to create packets. Each file was split into chunks of 34 bytes each, and a header 
chunk was added. Additionally, for all packets, a Reed–Solomon (RS) code of 4 (6) bytes 
was added to detect and repair inner packet errors. This resulted in sequences of length 
160 nt (168 nt for the experiments with a 6 bytes Reed–Solomon code). After we created 
and tested all packets, we merged the results and sorted them according to their error 
values. For our error prediction, the default rules defined in the framework were used. 
Each experiment was repeated 50 times.

As shown in Fig. 18 (and Table 4), the time needed for small files (Configurations 
1 - 4) does not increase significantly. Both the 1 kb “Lorem Ipsum” text file and the 4.9 
kb “Sleeping Beauty” fairytale file take nearly the same time to encode and only differ 
when the number of Reed–Solomon symbols increases. This is due to the increased 
size of the sequences and thus more effort for error calculation.

For the AGPL-LICENSE file (Configurations 5–6; 34 kb) and the image “logo.jpg” 
(Configurations 7–8; 72 kb), we obtained a higher encoding time for an increased 
file size and a higher number of Reed–Solomon symbols. For the 100 kb version of 
“Lorem Ipsum” (Configurations 9–10, 100 kb), there is nearly no difference between 
the 6 bytes Reed–Solomon version of the “logo.jpg” and the 4 bytes Reed–Solomon 
version (Configuration 8 vs. Configuration 9). However, the average encoding time for 
the version with 6 bytes of Reed–Solomon per packet (Configuration 10) increases to 
about 22 seconds. By comparing the 1 kb Lorem Ipsum file with the 100 kb version 
(Configuration 1 and Configuration 9), we see that with an increase from an aver-
age of 4.5 s for the 1 kb file and 17.5 seconds for the 100 kb file, the time required for 
encoding does not significantly increase with the input file size. We additionally con-
ducted this experiment with a 1 Mb file containing random ASCII characters using 4 
Reed–Solomon symbols per packet. It took an average of 127 s to finish.

To investigate the encoding speed further, we profiled the multi-threaded encoding 
process. This showed that across all files tested, approximately 76% of the computation 
time is used for sorting and merging the created packets. Thus, optimizations of sort-
ing and merging could greatly reduce the encoding time. To reduce the speed impact of 



Page 26 of 28Schwarz and Freisleben ﻿BMC Bioinformatics          (2021) 22:406 

sorting and merging, a user should define the required packets and the maximum toler-
ated error before calculating all possible packets.

A further possibility to improve the encoding speed is to use cloud services to take advan-
tage of the highly parallel nature of the encoding scheme (given the same input, the encod-
ing could easily be performed using multiple computers in a parallel or distributed manner.)

Thus, there are several options for improving the encoding speed. However, taking the 
price and required time for synthesis and sequencing into account, the current speed is 
already sufficient for real-world usage. Even for larger files, NOREC4DNA can generate 
sequences in a timely fashion in the order of seconds or minutes.

Conclusion
We presented NOREC4DNA, a software framework to use, test, compare, and improve 
NORECs for DNA storage systems. We showed that such fountain coding schemes can 
effectively be used to satisfy the restrictions associated with the DNA medium. Addi-
tionally, these codes can adapt to the possible variable lengths of DNA strands and 
have nearly zero overhead. Therefore, using NORECs in DNA storage systems helps to 
achieve the goal of building a robust and high capacity long term storage.

Although our experimental comparisons only approximate storing data in synthe-
sized DNA, the obtained results are very promising. Our evaluations showed that espe-
cially Raptor codes that have not yet been used for DNA storage systems yield excellent 
results. In addition, Online codes are quite useful for DNA storage systems. Both codes 
show better results than LT codes that were already used for storing data in DNA by 
Erlich and Zielinski [4]. Since these authors have obtained good results with LT codes for 
DNA storage, it is likely that Raptor and Online codes will achieve significant improve-
ments over LT codes for such storage systems.

There are several areas for future work. For example, we plan to improve the distribu-
tion functions for the used NORECs to tailor them to the DNA specific error channel. 
Furthermore, we will investigate how enforced rules can be used to improve the error 
correcting abilities of codes during DNA sequencing. Finally, we intend to create novel 
NORECs that are optimized for the special restrictions and limitations of DNA storage.

Availability and requirements

Project name: NOREC4DNA
Project home page: https://​github.​com/​umr-​ds/​NOREC​4DNA
Operating system(s): Platform independent
Programming language: Python 3.6 or above, C
Other requirements: Python3, Python3-dev or Docker
License: AGPL v3.0
Any restrictions to use by non-academics: N/A

https://github.com/umr-ds/NOREC4DNA
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DNA: Deoxyribonucleic acid; NOREC: Near-optimal rateless erasure code; LT: Luby transform; LDPC: Low density parity 
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