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Abstract: Cancer, a disease of inappropriate cell proliferation, is strongly interconnected with the
cell cycle. All cancers consist of an abnormal accumulation of neoplastic cells, which are propagated
toward uncontrolled cell division and proliferation in response to mitogenic signals. Mitogenic
stimuli include genetic and epigenetic changes in cell cycle regulatory genes and other genes which
regulate the cell cycle. This suggests that multiple, distinct pathways of genetic alterations lead to
cancer development. Products of both oncogenes (including cyclin-dependent kinase (CDKs) and
cyclins) and tumor suppressor genes (including cyclin-dependent kinase inhibitors) regulate cell
cycle machinery and promote or suppress cell cycle progression, respectively. The identification of
cyclins and CDKs help to explain and understand the molecular mechanisms of cell cycle machinery.
During breast cancer tumorigenesis, cyclins A, B, C, D1, and E; cyclin-dependent kinase (CDKs);
and CDK-inhibitor proteins p16, p21, p27, and p53 are known to play significant roles in cell cycle
control and are tightly regulated in normal breast epithelial cells. Following mitogenic stimuli, these
components are deregulated, which promotes neoplastic transformation of breast epithelial cells.
Multiple studies implicate the roles of both types of components—oncogenic CDKs and cyclins, along
with tumor-suppressing cyclin-dependent inhibitors—in breast cancer initiation and progression.
Numerous clinical studies have confirmed that there is a prognostic significance for screening for
these described components, regarding patient outcomes and their responses to therapy. The aim of
this review article is to summarize the roles of oncogenic and tumor-suppressive components of the
cell cycle in breast cancer progression and prognosis.
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1. Introduction

Cancer, a disease of uncontrolled cell division, is known to exhibit a series of changes
in the activity of cell cycle regulators [1]. All cancer types arise from a single cell that
has transformed due to genetic or regulatory alterations, resulting in uncontrolled cell
division in response to mitogenic signals [2]. Mitogenic signals include genetic and epige-
netic aberrations in cell cycle regulatory genes. These mitogenic stimuli make oncogenic
changes, resulting in cell transformation [3]. The gain-of-function mutations cause the
activation of proto-oncogenes, which are normally present in the suppressed state in dif-
ferentiated cells under epigenetic control [4]. Oncogenic stimuli have the potential to
induce transformation of the differentiated cells, causing alterations in genetic material and
therefore stimulating the development of certain cancers [5–7]. Loss-of-function mutations
lead to a decreased expression of tumor suppressor genes, resulting in the diminishment
of tumor-protective functions [8–11]. The collective data obtained suggest that distinct
pathways of genetic alteration lead to cancer [11]. Products of both oncogenes and tumor
suppressor genes regulate cell cycle machinery [8,12]. There are different phases of the
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cell cycle, and progression through these phases requires many regulatory components,
which include oncogenic genes (CDKs (cyclin-dependent kinases) and cyclins) and tumor
suppressor genes (cyclin-dependent kinase inhibitors) [13]. The identification and sub-
sequent functional analysis of cyclins and CDKs enable us to understand the molecular
mechanism of cell-cycle machinery [14]. In the pathogenesis of breast cancer, cyclins A,
B, C, D1, and E; CDKs; and CDK-inhibitors, such as p21 (Waf1/Cip1), p27 (Kip1), p16
and 53, are known to play important roles in cell cycle control [15] (Figure 1). Each cell
cycle phase is tightly regulated in normal cells [15]. After exposure to mitogenic stimuli,
however, these regulatory components become deregulated, which predisposes the cellular
transformation of breast epithelial cells. Numerous studies implicate the roles of oncogenic
and tumor-suppressive components in various human cancer types, including the initiation
and development of breast cancer, more specifically [9,16,17]. In addition, several research
bodies have confirmed the prognostic significance of oncogenic and tumor suppressor
components in regard to therapy or clinical outcomes [18]. Significant information exists
on the regulation and roles of the cell cycle components in breast cancer cells, and previous
studies may be utilized for therapeutic purposes. Findings from experimental studies also
support that alterations in these components are clinically significant [19]. The aim of
this review article is to summarize the role of various oncogenic and tumor suppressor
components of the cell cycle that are involved in breast cancer progression and prognosis.
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Figure 1. The sequential order of cell cycle events. The cell cycle progresses through four sequential phases: G1-phase (cell
increases in size), S-phase (DNA synthesis), G2-phase (prepares to divide), and M-phase (cell division). The phases G1, S,
and G2 make up the interphase stage, and span between cell division. There are special proteins and checkpoint systems for
the proper progression of the cell cycle. First: G1 checkpoint (at G1/S transition) is the main irreversible decision point for
cell division, which assesses for adequate cell size, availability of nutrients, positive molecular signals, and DNA integrity.
Second: G2 checkpoint (at G2/M transition) ensures smooth cell division and assesses DNA integrity and successful DNA
replication before division. In the case of error, cellular progression will become paused at the G2 checkpoint for repair.
Third: the spindle checkpoint (metaphase to anaphase transition), ensures correct attachment of sister chromatids to the
spindle microtubules.

2. Overview of Cell Cycle

The cell cycle is composed of several phases (Figure 1), including a phase for the
preparation of DNA synthesis—G1 phase; a phase for DNA synthesis—S phase; a second
preparation phase—G2 phase; and mitosis—M phase. These phases are tightly controlled
under physiological conditions [20]. Quiescence (G0) is another phase of the cell cycle
found in some differentiated cells, in which the cell undergoes its own distinct biochemical
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or molecular changes [21]. Under certain pathological stimuli, differentiated cells can
leave the G0 phase and re-enter the cell cycle [21]. The transitions between these cell
cycles phases are controlled by the function of specific CDKs. This includes CDK1/CDK2,
which causes the transition from G2 to mitosis, and CDK2/CDK4/CDK6, which causes
the G1 to S phase transition [22]. During cellular division, another group of proteins
called cyclins form complexes with specific CDK molecules in their respective phases [22].
The G1 cell cycle phase transition is identified by the activity of CDK4/6-cyclin D and
CDK2-cyclin E complexes, S cell cycle phase transition by cyclin A-CDK1/2 complex, and
G2-mitosis phase transition by cyclin A-CDK and cyclin B-CDK1 complexes [23]. Many
genetic alterations can affect the functional activities of oncogenes or tumor suppressors,
including alterations in cyclin E, cyclin D1, and p27. These alterations have been shown to
induce a transition from the quiescent state into the active state in breast epithelial cells,
subsequently leading to breast epithelial cell transformation (Figure 2) [24].
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Figure 2. Illustration showing the change in the expression status of genes serving as tumor-
suppressive and oncogenic markers during tumorigenesis. These changes in expression impact
progression into advanced-staged cancer and overall breast cancer prognosis.

3. Oncogenic Components of Cell Cycle
3.1. Cyclin D

The proto-oncogene cyclin D is a crucial regulator for the transition from the G1 to
S phase during the cell cycle. It binds with CDK4 and CDK6 and forms an active cyclin
D-CDK4/6 complex, which then phosphorylates the retinoblastoma protein (Rb) to pro-
mote cell cycle progression [25,26]. Cyclin D may also modulate the activity of various
transcription factor proteins and histone deacetylase enzyme [27]. Having a half-life of
~24 min, cyclin D is degraded inside the cell mainly via the activity of 26S proteasome
in a ubiquitin-dependent and Skp2 F-box protein-dependent manner [28,29]. In addition,
D1-CDK4/6 complex can also impair the functions of mitochondria through the phosphory-
lation and repression of nuclear respiratory factor 1 (NRF1) and mitochondrial transcription
factor A (mtTFA). An earlier report established a molecular link between cyclin D1 and
control of mitochondrial function through the inhibition of nuclear respiratory factor 1 [30].
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Previously accumulated data underscore the role of cyclin D1 in the tumorigenesis of
mammary cancer [31,32]. Overexpression and gene amplification of cyclin D has also
been linked to a worsened prognosis and the development of resistance against endocrine
therapy in breast cancer (Tables 1 and 2) [33,34]. A study documented cyclin D1 gene over-
expression and copy number amplification in 20% and 50% of human breast cancer cases,
respectively [35–37]. Furthermore, an enhanced expression of cyclin D1 was also observed
in 67.5% of invasive ductal carcinoma cases, where it was strongly correlated with estrogen
receptor (ER) and progesterone receptor (PR) expression [38]. Similarly, a study analyzed
the immunohistochemical (IHC) positivity of cyclin D1 in invasive ductal and moder-
ately differentiated breast cancer cases, which was associated with significantly poorer
prognoses in these patients [39]. Additionally, research data based on in vitro and clinical
studies implicated an increased cyclin D1 gene expression and amplification in ~45–50% of
breast cancer cases [40]. In another in vitro study, genetic alterations in the cyclin D1 gene
and mRNA expression were found in the ER-negative MDA-MB-453 cell line (Table 3),
which may be related to malignant transformation [41]. Similarly, cyclin D1 protein ex-
pression was examined in infiltrating mammary carcinoma with ER/PR positivity [42].
An abnormal expression of cyclin D1 was displayed in 66% of mammary infiltrating duct
carcinomas, suggesting its role in breast tumor metastasis [43]. Zhang et al. [44] determined
that enhanced expression of the cyclin D gene was found in ~82% of human breast tumors,
and gene amplification was present in ~17% of cases.
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Table 1. Clinical relevance of oncogenic and tumor suppressive cell cycle components in breast cancer patients with different molecular subtypes.

Marker Expression Consequences Receptor Status Ref

Cyclin D

Overexpression
High risk of replace,
Local reoccurrence,

Metastasis
ER+/ER- [45]

Overexpression High tumor grade ER+/ER-/PR+/PR-/HER2+ [35]

Overexpression High proliferation ER+/ER-/PR+/PR-/TNBC [38]

Overexpression High proliferation ER+/ER-/PR+/PR- [39]

Overexpression High proliferation ER+/ER- [40]

Overexpression High proliferation ER+/ER-/PR+/PR- [42]

Overexpression Metastasis [43]

Gene amplification
Overexpression High proliferation [44]

Overexpression High proliferation ER+ [46]

Gene amplification High risk for recurrence ER+/ER- [47]

Overexpression, Gene amplification High proliferation ER+/ER-/PR+/PR- [48]

Overexpression

High proliferation,
Short overall survival,

Large tumor size,
Lymph node metastasis

ER+/ER-/PR+/PR- [49]

Overexpression, Gene amplification High proliferation ER+/ER-/Basal like [50]

Overexpression Reduce relapse-free survival ER+/PR+ [51]

Overexpression High proliferation ER+/PR+/ER-/PR-/HER2+ [52]

Overexpression High proliferation ER+/PR+/ER-/PR-/HER2+ [53]

Overexpression High proliferation ER+/ER- [54]

Overexpression High risk of recurrence ER+ER-/HER2+/HER2- [55]

Gene amplification High proliferation ER+/ER- [56]
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Table 1. Cont.

Marker Expression Consequences Receptor Status Ref

Gene amplification
Reduce patient survival time,

therapy
resistance

ER+ [57]

Overexpression Poor prognosis ER+/PR+/ER-/PR-/HER2+/Basal
like [58]

Overexpression Invasiveness, metastasis TNBC [59]

Overexpression High proliferation ER+ [60]

Reduce expression
High tumor grade,

Nodal positive status,
Invasion

ER+/PR+/ER-/PR-
/HER2+/HER2- [61]

Cyclin A

Overexpression, Gene amplification Poor prognosis [62]

Overexpression Relapse,
Shorter disease-free survival ER+/ER- [63]

Overexpression Worst prognosis ER+/ER- [64]

Overexpression Shorter relapse time ER+/ER- [65]

Overexpression Less survival rate,
High relapse rate ER+/PR+/ER-/PR- [66]

Overexpression Short distant metastasis-free survival ER+/PR+/ER-/PR- [67]

Overexpression Poor prognosis ER+/ER- [68]

Overexpression High tumor grade,
High proliferation index HER2+/HER2- [69]

Overexpression Poor survival ER+/ER- [70]

Overexpression Poor prognosis, Decrease survival rate ER+/PR+/ER-/PR-/HER2+ [71]

Cyclin B1

Overexpression Decrease survival ER+/PR+/ER-/PR-
/HER2+/HER2- [72]

Overexpression
Reduce overall survival,

Disease free survival,
Lymphatic invasion

ER+/PR+/ER-/PR-
/HER2+/HER2- [73]
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Table 1. Cont.

Marker Expression Consequences Receptor Status Ref

p21(WAF1/Cip1)

Overexpression
High tumor grade,

Large tumor size, Positive lymph node,
High Ki-67 expression

ER+/PR+/ER-/PR-
/HER2+/HER2- [74]

Overexpression Favorable prognosis ER+/PR+/ER-/PR- [75]

Overexpression Better survival ER+/PR+/ER-/PR-/HER2+ [76]

Overexpression Better survival ER+/PR+/ER-/PR-
/HER2+/HER2- [77]

Overexpression
Large tumor size,

High tumor grade,
Lymph node metastasis

ER+/PR+/ER-/PR-
/HER2+/HER2- [78]

p27 (Kip1)

Reduced expression High tumor grade, Lack of tumor
differentiation, Poor prognosis

ER+/PR+/ER-/PR-
/HER2+/HER2- [79]

Overexpression Better prognosis ER+/ER- [80]

Overexpression Favorable prognosis ER+/PR+/HER2+ [81]

Reduced expression Poor prognosis ER+/PR+/ER-/PR-
/HER2+/HER2- [82]

Overexpression Long disease-free survival, overall survival ER+/PR+/ER-/PR- [83]

Reduced
expression Poor prognosis ER+/PR+/ER-/PR- [84]

Reduced expression Large tumor size, high tumor grade, lymph
node metastasis ER+/ER- [85]

Overexpression Long relapse-free survival,
Overall survival ER+/PR+ [86]

Reduced expression Poor prognosis ER+/PR+ [87]

Reduced expression Increase proliferation ER+/PR+/ER-/PR-
/HER2+/HER2- [88]

Overexpression Favorable prognosis ER+/PR+/ER-/PR-
/HER2+/HER2- [89]
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Table 1. Cont.

Marker Expression Consequences Receptor Status Ref

Lower expression Worst overall survival,
Worst disease-free survival ER+/PR+/ER-/PR- [90]

Lower expression Worst overall survival ER+/PR+/ER-/PR- [91]

p16 (ink4a)

Overexpression High
proliferation index

ER+/PR+/ER-/PR-
/HER2+/HER2- [92]

Overexpression Favorable prognosis ER+/PR+/ER-/PR- [93]

Overexpression Favorable prognosis ER-/PR-/HER2- [94]

Overexpression Favorable prognosis ER+/PR+/ER-/PR- [95]

Overexpression Disease progression ER+/PR+/ER-/PR- [96]

Overexpression Lung and brain metastasis ER+/PR+/ER-/PR-
/HER2+/HER2- [97]

Reduced expression Metastasis ER+/PR+/ER-/PR-
/HER2+/HER2- [98]

p53 (wild type)

Overexpression Favorable prognosis
ER+/PR+/ER-/PR-

/HER2+/HER2- [99]

Overexpression Better disease-free survival ER+/PR+/ER-/PR- [100]

Overexpression Favorable prognosis
ER+/PR+/ER-/PR-

/HER2+/HER2-/Basal like [101]

Overexpression Favorable prognosis ER+/PR+/ER-/PR- [102]

Overexpression Worst prognosis ER-/PR-/HER2- [103]

Overexpression Worst prognosis ER+/PR+/ER-/PR-
/HER2+/HER2- [104]

Overexpression Worst prognosis
associated with ER expression ER+/PR+/ER-/PR- [105]

Overexpression Worst prognosis
associated with HER2+/TNBC subtypes

ER+/PR+/ER-/PR-
/HER2+/HER2- [106]
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Table 1. Cont.

Marker Expression Consequences Receptor Status Ref

Overexpression

Worst prognosis,
High tumor grade,

Lymph vascular invasion,
Lymphocyte infiltration

ER+/PR+/ER-/PR- [107]

Overexpression Better overall survival in TNBC ER-/PR-/HER2- [108]

Overexpression Correlated with HER2
overexpression, High tumor grade

ER+/PR+/ER-/PR-
/HER2+/HER2- [109]

Overexpression Worst overall survival,
Reoccurrence free survival ER+/PR+/ER-/PR- [110]

p53 (Mutant)

Overexpression Early relapse ER+/PR+/ER-/PR-
/HER2+/HER2- [111]

Overexpression Poor prognosis ER+/PR+/ER-/PR- [112]

Overexpression Less 5-years reoccurrence free survival ER+/PR+/ER-/PR- [113]

ER: estrogen receptor; PR: progesterone receptor; Her2+: human epidermal growth factor receptor-2 positive.
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Table 2. Clinical relevance of oncogenic and tumor suppressive cell cycle components in breast cancer cell lines with different molecular subtypes.

Marker Expression Consequences Model Histology Ref

Cyclin D

Gene amplification
mRNA Overexpression Proliferation MCF-7 ER+ [33]

Overexpression Malignant transformation MDA-MB-453 HER2+ [41]

Overexpression Increase proliferation T-47D,
MCF-7 ER+/HER2+ [34]

Overexpression Increase proliferation MCF-7 ER+ [114]

Overexpression Increase proliferation

MCF-7,
T-47D,

MDA-MB-468,
BT-549

ER+/ER-/PR-/HER2- [115]

Overexpression Increase proliferation

HBL-100,
MDA-MB-23l,

T-47D,
MCF-7,

MDA-MB-134,
HMEC-184

ER+/PR+/ER-/PR-/HER2-
/HER2+ [52]

Overexpression Increase proliferation MCF-7T, Tamoxifen-resistant [116]

Downregulation Cell death,
Growth arrest

MCF-7,
MDA-MB-231,
MDA-MB-435,

HCC-1937,
CAL-148

ER+/ER-/PR-/HER2- [117]

Overexpression Invasiveness, metastasis MDA-MB-231 ER-/PR-/HER2- [59]

Overexpression Increase proliferation MCF-7 ER+ [118]

Overexpression Increase proliferation MCF-7 ER+ [60]

Overexpression Increase proliferation MCF-7 ER+ [119]
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Table 2. Cont.

Marker Expression Consequences Model Histology Ref

Overexpression Increase proliferation

ZR75-1-2,
ZR-75-1,

MDAMB-157,
MDA-MB-231,
MDA-MB-436,

T-47D,
BT-20,

HBL-100,
Hs578T,
SK-BR3

ER+/ER-/PR+/PR-/HER2-
/HER2+ [120]

Cyclin E
Overexpression, Gene

amplification Increase proliferation BT-474,
BT-474R HER2+ [121]

Downregulation Suppression of cell cycle progression MCF-7 ER+ [122]

Cyclin B

Overexpression Associated with ER+ status

MCF-7,
MDA-MB-231,
MDA-MB-436,

Hs578 T

ER+/PR+/ER-/PR-/HER2-
/HER2+ [123,124]

Downregulation Apoptosis,
Anti-proliferation

MCF-7,
BT-474,

SK-BR-3,
MDA-MB-231

ER+/ER-/PR+/PR-/HER2-
/HER2+ [125]

p16(WAF1/Cip1) Reduced expression Therapy resistance

HCC-1428,
T-47D,
MCF-7,

MDA-MB-436,
BT-549,

MDA-MB-157,
MDA-MB-231,

MDA-MB-435S,
Hs578T,

HCC-1937,
BT-20,

SK-BR-3

ER+/PR+/ER-/PR_/HER2-
/HER2+ [126]
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Table 2. Cont.

Marker Expression Consequences Model Histology Ref

Overexpression Good survival

MCF-7,
BT-549,

MDA-MB-134,
MDA-MB-157,
MDA-MB-231,

MDA-MB-453, MDA-MB-468,
ZR-75-1,
BT-20,

SK-BR-3,
T-47D

ER+/PR+/ER-/PR-/HER2-
/HER2+ [76]

p21(WAF1/Cip1)

Overexpression High proliferation rate

ZR75-1,
ZR75-30,
MCF-7,

MDA-MB-453,
T-47D,
Cal51,

SK-BR-5,
SK-BR-7,
CAMA-1,

BT-20

ER+/PR+/ER-/PR-/HER2+ [127]

Reduced expression Trastuzumab resistance SK-BR-3 HER2+ [128]

Overexpression Cell cycle arrest MCF-7 ER+ [129]

Reduced
expression Acquired resistance to docetaxel MCF-7,

MDA-MB-231 ER+/ER-/PR-/HER2- [130]

Overexpression Associated with ER+ status

MCF-7,
MDA-MB-231,
MDA-MB-436,

Hs578T

ER+/PR+/ER-/PR-/HER2-
/HER2+ [123,124]
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Table 3. Characteristics of breast cancer cell lines with different molecular subtypes (adopted from Dai, X et al. 2017) [131].

Cell Line ER PR HER2/neu+ Subtype BRAC1 Mutation p53 Mutation Tumor

CAMA-1 + +/- - LA WT MU AC
HCC1428 + + - LA ND ND AC

MCF-7 + - - LA ND WT IDC
MDA-MB-134 + - - LA ND MU IDC

T-47D + + - LA WT MU IDC
ZR75-1 + +/- - LA WT WT IDC
BT-474 + + + LB WT MU IDC

ZR75-30 + - + LB WT WT IDC
MDA-MB-453 - - + Her2+ WT MU AC

SK-BR-3 - - + Her2+ WT MU AC
SK-BR-5 - - + Her2+ WT MU AC

BT-20 - - - TNBC WT MU IDC
BT-549 - - - TNBC WT MU IDC
CAL-51 - - - TNBC WT MU AC

CAL-148 - - - TNBC WT MU AC
HCC1937 - - - TNBC MU MU DC
Hs578T - - - TNBC WT MU IDC

MDA-MB-157 - - - TNBC WT MU MC
MDA-MB-231 - - - TNBC WT MU AC
MDA-MB-435 - - - TNBC WT MU AC
MDA-MB-436 - - - TNBC MU MU AC
MDA-MB-468 - - - TNBC WT MU AC

SK-BR-7 - - - TNBC WT WT AC

WT: wild type; ND: not decided; MU: BRCA1 mutation; AC: adenocarcinoma; DC: ductal carcinoma; IDC: invasive ductal carcinoma; LA: luminal A; LB: luminal B; HER2+: human epidermal growth factor
receptor 2-positive; TNBC: triple-negative breast cancer.
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A study using a mouse mammary tumor virus model of breast cancer identified
CCND1 gene amplification with positive IHC staining in 40% of breast cancer samples [132].
Further, the study identified ectopic overexpression of cyclin Dl and a reversed growth-
inhibitory outcome after anti-hormonal therapy in ER-positive breast cancer cases, which
provided a potential antitumor mechanism [46]. Kenny et al. [43] showed that ER-positive
breast cancer patients had cyclin D1 high expression, and at the same time, also displayed
more risk of relapse, metastasis, and early death [34]. Moreover, the data also showed
that CCND1 gene amplification alone is a strong predictor of anti-hormonal therapy
response in young-age breast cancer patients [47]. Moreover, data from another study
indicated amplification of the cyclin D1 gene and noted its correlation with ER-positive
invasive lobular breast carcinoma with lymph node metastasis, suggesting a sign of poorer
prognosis [48]. An additional study suggested overexpression of cyclin D1 gene in the
ER-positive MCF-7 breast tumor cell line, which was responsible for hyperproliferation
undergrowth factor-deprived conditions [114]. Another study identified overexpression
of cyclin D1 in ER-positive and ER-negative breast cancer samples; however, both shorter
overall survival and relapse-free survival were associated only with the ER-negative
subgroup [49].

Correlation of high cyclin D1-related elevation with Rb phosphorylation was also
observed in >100 high-grade breast carcinomas [115]. Furthermore, a separate study also
demonstrated a strong positive correlation between cyclin D gene amplification and higher
expression in basal-like and ER-positive breast cancer subtypes, and suggested that cyclin
D1 was an independent predictor for prognosis in ER-positive breast cancers [50]. The
ABCSG Trial 05 and 06 documented an increased expression of cyclin D1, which was
associated with the poorer clinical outcome and shorter overall survival of breast cancer
patients [51]. A separate investigation determined the cyclin D1 positivity in proliferative
disease without atypia, atypical ductal hyperplasia, low-grade ductal carcinoma in situ
(DCIS), high-grade DCIS, and invasive carcinoma. The results showed that cyclin D1 was
significantly higher in proliferative disease than normal breast epithelium, and even higher
in DCIS than proliferative disease [52]. Additionally, another research group demonstrated
an association between high cyclin D1 gene expression and high-grade tumor development,
increased Ki-67 expression, and poorer survival in the ER-positive breast cancer group [53].

The majority of invasive lobular carcinomas showed cyclin D1 overexpression at the
protein levels, suggesting its role in the progression of invasive lobular carcinoma [54].
Another study showed that ER-positive patients with moderate cyclin D1 expression had
benefited from anti-hormonal therapy (tamoxifen), whereas those with high cyclin D1
expression had not benefited from tamoxifen, suggesting its role as a predictive marker for
tamoxifen resistance [55]. Further results suggest that the silencing of cyclin D1 expression
may reduce the development and progression of tamoxifen-resistant tumors [116]. Cisplatin
drug targets cyclin D1, and treatment of ER-positive MCF-7 breast cancer cells with cisplatin
increased cell death or growth arrest by decreasing the cyclin D in MCF-7 cells [117].
Using techniques fluorescent in situ hybridization (FISH) and IHC, researchers observed
that CCND1 had increased amplification in high-grade infiltrating ductal carcinoma in
comparison to low-grade infiltrate ductal carcinoma [56]. Cyclin D1 overexpression has
been found to have a strong correlation with receptor status, suggesting that cyclin D1
expression could be a biomarker for good prognoses [57,58].

Additionally, expression of cyclin D2 was found to be very rare in breast cancer
cases, in comparison to normal human mammary epithelial cells [47,59]; its role in cancer
is yet to be elucidated [133]. Cyclin D3 has also been reported to be overexpressed in
breast cancer samples, but there are limited research data on its relationship to disease
outcomes [118,133,134]. Furthermore, experimental evidence has also shown elevated
cyclin D1 protein levels and deposition of cyclin D3 in breast cancer samples [60]. Another
study identified that 64 breast cancer cases out of 82 had cyclin D1 gene amplification,
and 36 out of 86 cases had cyclin D3 gene amplification [62]. Expression of cyclin D1 was
evaluated in different molecular breast cancer subtypes, and results showed a stronger
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intensity of positive cyclin D1 staining in the ER positive/PR positive subtype than in triple-
negative breast cancer (TNBC) cases, and negative cyclin D1 staining was seen in human
epidermal growth factor receptor 2-positive (HER2-positive) molecular subtypes. Further,
TNBC cases with a low amount of cyclin D1 expression had higher tumor grade, tumor
stage, and more positive lymph nodes with lymphovascular invasion, proposing that cyclin
D1 expression may be a key factor to consider for aid in breast cancer management [61].
Lundberg et al. [135] determined CCND1 amplification and its association with worst
15-year survival with ER+/LN−/HER2−(1.66; 1.14–2.41), luminal A (HR = 1.68; 95% CI,
1.15–2.46), and luminal B (1.37; 1.01–1.86) breast cancer subtypes [135]. Overexpressed
cyclin D1 induced Dicer expression in luminal A and basal-like breast cancer subtypes [136].
In another study, lower levels of cyclin D led to a decrease in MDA-MB-231 cells’ motility
which resulted due to the decrease in phosphorylation of filamin A protein [137]. These
studies found that cyclin D1 can also contribute to cellular proliferation and migration
through non-canonical functions.

3.2. Cyclin A

Cyclin A protein forms complexes with both CDK1 and CDK2, which functions in
both the S to G2 phase transition and the G2 to M phase transition of the cell cycle [51].
In the S phase, the cyclin-A-CDK complexes phosphorylate the components of the DNA
replication machinery, subsequently initiating replication [51]. While in the mitosis phase,
cyclin A/CDK2 coordinates centrosomal and nuclear mitotic events. However, it is thought
to contribute to the stability of other cyclin molecules [51]. The increased expression of
cyclin A gene has been found in different types of human tumors, including breast cancer,
which suggests that cyclin A may potentially serve as a prognosis marker for the disease
(Tables 1 and 2). Studies have shown that microinjection of cyclin A into Xenopus oocytes
and mammalian cells stimulates the breast tumor epithelial cells and induce the transition
into M phase of the cell cycle [46,58,119,138,139]. A great number of tumors have shown
a strong statistical correlation between cyclin A gene amplification and cyclin A protein
levels [62]. Findings suggested that assessment of cyclin A and/or E2-promoter binding
factor 1 (E2F1) expression levels associated with Ki-67 might be a useful tool for improved
prognostic evaluation in negative lymph node breast cancer patients [63]. Another study
showed that cyclin A is an independent prognostic factor and predictor of both breast
cancer recurrence and response to tamoxifen therapy [64]. Lastly, overexpressed cyclin A
was observed to be significantly correlated with breast cancer patients with earlier relapse,
higher risk, and shorter overall survival rate, when compared to the breast cancer patients
with better prognoses. Therefore, cyclin A may potentially be an accurate marker for tumor
proliferation and prognosis in breast cancer [65].

3.3. Cyclin E

Cyclin E protein, a regulatory subunit for CDK-2, is thought to be a rate-limiting factor
for the G1 to S phase cell cycle transition [140]. Cyclin E protein and its associated kinase
(CDK2) experience well-regulated activation in normal cells. In actively-dividing tumor
epithelial cells, however, the cyclin E and CDK complex remains activated throughout
the cell cycle [141]. The deregulation in the expression of the cyclin E gene was found
responsible for breast cancer tumorigenesis [46,60,114]. Previous data have demonstrated
that higher levels of cyclin E gene amplification have been found in breast cancer tissues
(Table 1) [62]. Another study observed an 8-fold amplification of the cyclin E gene and a
64-fold overexpression of its mRNA in human breast cancer cells, which provides evidence
for aberrant cyclin E expression during tumorigenesis [120]. Further, a multivariate analysis
correlated an elevated cyclin E level with poor patient outcome and showed that patients
with elevated levels of cyclin E had a greater hazard ratio, as compared to those with
low levels of cyclin E [142]. In addition, a relation between cyclin E gene expression
and an ER-positive status was also observed in patients with breast cancer. In additional
studies [89–91], cyclin E expression was greater in the ER-negative group and correlated
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with increased risks of death and relapse, suggesting that cyclin E may be responsible for
ER-independent tumor growth. Similarly, cyclin E overexpression in breast cancer cells was
associated with ER-negative tumors, HER2-positive tumors, and high-grade tumors with
increased proliferation indexes [68,69]. A cohort study performed on 34 HER2-positive
patients subjected to trastuzumab (Herceptin)-based therapy observed that the cyclin E
gene copy number or mRNA overexpression was associated with diminished therapeutic
benefits and lower rates of progression-free survival, as compared to non-overexpressing
cyclin E patients [121]. Moreover, cyclin E expression was associated with a poor prognosis
and closely related with cyclin D1 and p27Kip1 expression [70]. Similarly, high expression
of cyclin E measured by IHC was a significant factor of poor prognosis and associated with
a higher risk of death in the node-positive breast cancer group, as illustrated in a separate
multivariate analysis [71].

3.4. Cyclin B

Two types of mammalian cyclin B regulate the G2-to-mitosis phase progression in the
cell cycle, which do so by forming complexes with CDK1 kinase [143]. The available data
suggest that breast cancer patients experience cyclin B gene amplification and overexpres-
sion at both the mRNA level and protein level (Tables 1 and 2) [62]. Its increased expression
has been correlated with a large tumor size, a high tumor grade, lymph node involvement,
an ER-negative/PR-negative status, and a HER2-positive status [74]. Its overexpression
has also been linked with younger age at diagnosis and higher expression levels of cyclin A,
cyclin E, and Ki-67 [144]. Both univariate and multivariate analyses significantly identified
an increased breast cancer death rate correlated with cyclin B1 overexpression, suggesting
that it serves as a remarkable prognostic factor [72].

A meta-analysis investigated the significance between cyclin B protein and clinico-
pathological characteristics in breast cancer patients. Observations showed that overex-
pressed cyclin B was associated with poorer rates in disease-free survival (DFS), disease-
specific survival (DSS), and overall survival (OS), along with a positive association with
lymphatic invasion [73]. Androic et al. [100] observed apoptosis induction and growth
reduction in different breast cancer cell lines, namely MCF-7, MDA-MB-231, BT-474, and
SK-BR-3 (Table 3), in the absence of cyclin B. The suppression of cyclin B via small interfer-
ing RNA (siRNA) caused G2/M cell cycle phase arrest in breast cancer cell lines [73,125].
The HER2-positive invasive breast cancer samples used for the determination of cyclin
B1 expression showed a direct correlation between positive cyclin B1 staining and higher
tumor grade, large tumor size, positive lymph node counts, younger age, and higher Ki-67
expression. Thus, due to its relation with an aggressive phenotype, cyclin B1 might be
considered a strong independent prognostic factor in breast cancer [74].

3.5. CDK2

Cyclin-dependent kinase 2 binds and forms complexes with cyclin E or cyclin A
proteins and exclusively promotes the G1 to S and G2 to M phase transition within the
cell cycle [145,146]. It has been observed that fulvestrant inhibited cyclin E-CDK2 activity,
which in turn promoted the arrest of MCF-7 cells in quiescence (G0) [147]. Similarly, the
findings suggest that the suppression of the cell-cycle progression through the G1 cell cycle
phase by pentagalloylglucose (5GG) treatment in MCF-7 cells was mediated by blocking
cyclin E/CDK2 activity [122].

4. Tumor Suppressive Components of Cell Cycle
4.1. p16(INK4A/MTS-1/CDKN2A)

The tumor suppressor p16, also known as INK4A/MTS-1/CDKN2A, has widespread
importance in oncology due to its CDK-inhibitory function [148]. The frequently occurring
SNP (single nucleotides polymorphism) mutations and deletions of the p16 gene in breast
cancer cells suggest an important role in tumorigenesis [149]. The p16 protein molecule
binds to and inactivates the cyclin D-CDK4/6 complexes, leads to subsequent Rb protein
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inactivation, and consequently results in cell cycle arrest [149]. Archived breast tumors
of different histological subtypes provided evidence that aberrant p16 gene expression
is the most common abnormality in human breast cancer (Table 1) [150]. Furthermore,
an abnormal expression of p16 was found in ER-negative, pre-menopause breast cancer
patients, in comparison to ER-positive patients. The abnormal p16 expression these re-
searchers observed was closely associated with a high proliferative index [108]. An earlier
study suggests that abnormal p16 expression may act as a predictor of poor response
to hormonal therapy [92]. Another study found p16 protein-positive expression in the
luminal A subtype of breast cancer patients, and higher expression was associated with
breast cancer progression from DCIS to invasive ductal carcinoma (IDC) [96]. Abou-Bakr
et al. [110] investigated the p16 expression in basal-like breast carcinoma grade III with
histopathological findings in line with IDC. Results suggested that the p16 protein demon-
strated high IHC intensity in basal-like carcinoma, which subsequently was associated with
brain and lung metastasis [97]. A study by Arima et al. [126] found low p16 expression in
resistant TNBC carcinoma [126]. Both p16-positive and p16-negative cells in the stromal
cells of invasive lobular carcinoma reflected high nodal involvement, early recurrence, and
metastatic propensity. Additionally, restoration of p16 expression in stromal fibroblasts
suppressed cancer cell migration and invasion. Thus, these findings proposed positive
stromal p16 expression as a treatment strategy to prevent nodal or distant metastasis [98].

4.2. p21 (WAF1/CIP1/SDI1/MDA-6)

The CDK-inhibitor p21 (also known as WAF1/CIP1/SDI1/MDA-6) activates the CDK4
and proliferating cell nuclear antigen, which results in G1 phase arrest [151]. Both in vivo and
in vitro experimental models demonstrated that overexpression of p21WAF1/CIP1 resulted
in G1 cell cycle phase arrest and effectively suppressed tumor growth (Tables 1 and 2) [151].
Data on lymph node-negative breast cancer patients suggested that detection of p21 indi-
cates the presence of a parameter that may act as a tumor suppressor and benefit patient
survival [75]. Another study identified p21-positive tumor cell nuclei in more than 30%
of the breast carcinomas, which was remarkably associated with a low histological grade
and node-negative status [76]. The findings strongly suggested that p21WAF1/CIP1 gene
expression might be used as a key prognostic biomarker for breast cancer, allowing therapy
options to be adjusted more appropriately for individual cancer patients [77]. Breast can-
cer mastectomy used for measuring p21WAF1/CIP1 expression showed its upregulation
in larger tumors in patients who presented with higher tumor dedifferentiation grades,
more lymph node metastases, and shorter disease-free survival rates [78]. Moreover, an
in vitro study where ER-positive or ER-negative breast cancer cell lines were immunos-
tained for evaluation of p21 found a direct correlation between p21WAF1/CIP1 and ER
expression [123,124].

In addition, p21WAF1/CIP1 also plays multifaceted roles in breast cancer. For in-
stance, p21WAF1/CIP1 expression induced cell invasion and had correlation with OS
and distant metastasis-free survival in breast cancer patients mediated via controlling
TGFβ/Smad signaling [152]. A study measured high p21WAF1/CIP1 levels in the cyto-
plasm of metastatic breast cancer cells where it was associated with elevated p53 levels and
poor prognoses [153]. Multiple studies identified that phosphorylation of p21WAF1/CIP1
by AKT1 disrupted its binding with proliferating cell nuclear antigen (PCNA) and induced
its cytoplasmic accumulation. Accumulated p21WAF1/CIP1 regulates the ERBB2-mediated
proliferation of breast cancer cells and breast carcinogenesis [154,155]. Further, downregula-
tion of p21WAF1/CIP1 promoted EMT, enhanced the cell viability and migration potential
in response to long non-coding RNA plasmacytoma variant translocation 1 (PVT1) in
distinct MDA-MB-231, MDA-BA-468 breast cancer cell lines [156]. Similarly, another study
using breast cancer mouse models has shown that invasion is accompanied by an up-
regulation of p21WAF1/CIP1, indicating its oncogenic role [157]. The overexpression of
p21WAF1/CIP1 has also been found to be associated with a poor response to tamoxifen
treatment in MCF-7 cells [158]. Similarly, Akt-dependent phosphorylated p21WAF1/CIP1
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enhanced doxorubicin resistance in SUM159 TNBC cells [159]. Another study demon-
strated that p21WAF1/CIP1 inhibited apoptosis in breast cancer. The overexpression of
p21WAF1/CIP1 in breast cancer decreased cell sensitivity to infrared-induced apoptosis
through inhibition of CDKs [160].

4.3. p27 (Kip1)

Tumor suppressor p27, an important regulator for the G1 to S transition in the cell cycle,
is known to coordinate the activation of the cyclin E-CDK2 complex with the accumulation
of cyclin D-CDK4, which initiates the exit of cells from the cell cycle in response to anti-
mitogenic signals [161]. The downregulation of p27 gene expression is strongly correlated
with higher tumor grade and phenotypes with lower tumor differentiation (Table 1) [79].
Reduced levels of p27 protein is also an indicator of poor clinical outcomes in a majority of
lymph node-negative breast cancer patients [79].

Multiple sources of evidence suggest that p27 induced G1 cell cycle phase arrest,
mediated by transforming growth factor-β (TGF-β), rapamycin, and cyclic adenosine
monophosphate (cAMP) [48,60,114,127]. Previous studies also demonstrated that high
expression levels of p27 in human breast cancer cells inversely correlated with the degree
of malignancy in the human breast [127]. Moreover, a high expression of p27 was noticed
in breast cancer patients, which was significantly correlated with an ER-positive status
and inversely associated with shorter survival [80]. A univariate Kaplan–Meier analysis
indicated that the decreased expression of p27 was significantly correlated with a worse
clinical course [81]. A flow cytometry study using resistant breast tumor cells demonstrated
a higher S-phase fraction and increased CDK2 activity in low p27-expressed cells, which
was reversed after an exogenous addition of p27 [128].

Immunostaining of breast tumor indicated that downregulation of p27 correlated
with HER2 gene overexpression in primary breast carcinomas, which may be significant in
selecting patients for HER2-positive/neu antibody therapy in the future [82]. A separate
study found that tamoxifen treatment caused MCF-7 cell cycle arrest due to an upregulation
of p27 levels [129]. Another evaluation of p27 expression observed that it was a significant
predictor for 5-year breast cancer survival, and that reduced p27 expression correlated with
a high histologic grade, an advanced TNM stage (tumor size, lymph node status, metastatic
status), and negative hormone receptor status [83,84]. A reduced expression of p27 was
also observed in docetaxel-resistant breast cancer cells (MCF-7 and MDA-MB-231 cell
lines) [130]. Another univariate analysis showed a remarkable relationship between low
p27 expression and increased tumor grade, nuclear pleomorphism, and mitosis, along with
decreased tubule formation in ER-negative and ductal/no special type tumor status [85].

High p27 expression independently predicted superior relapse-free survival and over-
all survival, and subsequently suggested its use as an independent predictor in hormonal
therapy response [86]. An immunohistochemically retrospective investigation of 216 breast
carcinomas found that p27-negative patients had a poorer prognosis than those in other
categories, highlighting that the examination of p27 expression may identify breast car-
cinoma patients who would benefit from adjuvant therapy [87]. Further, in the lymph
node-negative population, decreased p27 immunoreactivity was associated with higher tu-
mor grade, more HER2-positive overexpression, greater lymph node positive populations,
lower expression of thymidylate synthase, higher Ki-67 expression, and poorer disease-free
survival [88]. In hormonal receptor- positive carcinoma, lower p27Kip1 was correlated
with decreased overall survival [hazard ratio (HR) = 1.42; 95% confidence intervals (CI)
= 1.05 to 1.94; disease-free survival HR = 1.27; and 95% CI = 0.99 to 1.63], as compared to
carcinoma with higher p27Kip1 expression treated with adjuvant therapy (doxorubicin
and cyclophosphamide) [90]. An inverse correlation was also observed between p27Kip1
expression and the degree of breast tumor malignancy [162]. Breast cancer patients in
Taiwan were evaluated for the expression of p27Kip1, and both univariate and multivariate
analyses showed that lower p27Kip1 expression correlated with OS in ER/PR positive



Pharmaceutics 2021, 13, 569 19 of 28

tumors. Therefore, p27Kip1 may be considered an independent prognosis marker for
breast cancer in Taiwan [91].

Another meta-analysis study showed a significant association between high p27
expression and OS, DFS, and RFS in lymph node-negative and lymph node-positive breast
cancer patients [163]. In addition, Austrian Breast and Colorectal Cancer Study Group Trial
06 enrolled early-stage breast cancer patients with an ER/PR hormonal-positive status
for evaluation of p27Kip1 expression and observed its impact on the clinicopathological
features of women receiving adjuvant tamoxifen for 5 years. Observations confirmed that
high p27Kip1 expression was significantly associated with longer disease-free survival
(0.22; 95% CI, 0.11–0.42; p < 0.001) and overall survival (0.39; 95% CI, 0.21–0.72; p = 0.002)
as compared to women with low p27 expression [164].

4.4. p53 (Wild Type)

Tumor suppressor p53 protein plays a key role in coordinating the response of cells to
several stress conditions, including oncogenic activation, hypoxia, and DNA damage [165].
In response to mitogenic stress, p53 activates apoptosis in normal cells. This same ac-
tivation of apoptosis by p53 has also been observed in anticancer therapy response. A
mutated version of p53 protein that does not respond appropriately during oncogenic stress
allows cell transformation, resulting in tumor initiation [165]. After immunohistochemical
evaluation of p53 expression in primary breast cancer specimens, it was assessed that
p53 overexpression was associated with an advanced-stage tumor, metastatic spread, and
lower concentrations of progesterone receptors (Table 1) [89]. An increased cytoplasmic
accumulation of p53 was observed in breast cancer patients as well. These patient sam-
ples demonstrated high proliferative activity with median Ki-67 fractions increased by
up to 75%, along with a 74% increase in median S-phase fraction compared to the control
group [93].

Utilizing invasive ductal carcinoma samples, Yang et al. (2013) [143] calculated DFS
and its correlation with p53 expression. The Cox regression and multivariate analysis
showed that p53 expression acted as a predictive factor of DFS [100]. Additionally, several
studies also associated positive p53 expression with worsened prognoses. For instance, a
Kaplan–Meier analysis of TNBC invasive ductal carcinoma samples showed that a positive
p53 expression was correlated with worse overall survival (79.6% vs. 89.6%, log-rank test
p = 0.025) and the patients had a 2.2 times higher mortality risk than that of p53-negative
patients (HR: 2.222; 95% CI: 1.147–4.308) [102]. Similarly, p53 overexpression tested by IHC
on modified radical mastectomy samples obtained from TNBC patients also showed lower
overall survival rates (p = 0.021, log-rank test) compared to the patient group with low p53
expression. Moreover, the multivariate analysis proposed p53 overexpression as having
the strongest prognostic significance in TNBC patients (<50 years) [103].

In a retrospective study of a large number of luminal/HER2-negative breast cancer
patients, the data demonstrated that a p53 expression of ≥50% (present in 9% patients)
was associated with shorter disease-free survival, in comparison to patients with p53
expression of <50%. Therefore, p53 overexpression was classified as a prognostic marker
for unfavorable characteristics [104]. Another study performed on ER-positive and ER-
negative invasive breast cancer determined an association of p53 overexpression with ER
status. Results showed that in ER-negative breast tumors, a higher p53 expression was
associated with DFS and OS than in ER-positive breast tumors [105].

Expression of the p53 gene was also evaluated in all breast cancer subtypes, i.e., lumi-
nal A, luminal B, HER2-positive, TNBC, and basal-like, and the findings suggested that
p53 had a higher expression within HER2-positive and TNBC subtypes than in luminal A
and luminal B subtypes. The overexpression of p53 in HER2-positive and TNBC subtypes
also had significance in early-onset, high-grade tumors, and an increased proliferative
index [106]. In invasive breast carcinoma grade II and III samples, positive p53 expression
was significantly related with increased tumor grade (p < 0.006), lymphovascular invasion
(p < 0.003), and lymphocytic infiltration (p < 0.004). These results indicate that p53 overex-
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pression is a marker for a poor prognosis and a compromised immune response in more
aggressive breast cancer types [107].

Better overall survival was observed in p53-overexpressed TNBC cases than in p53-
negative TNBC patients who underwent neoadjuvant chemotherapy [108]. Another study
concluded that p53 overexpression was inversely correlated with ER/PR expression and
positively correlated with HER2-positive overexpression in high-grade tumors with nodal
metastasis [109]. In a randomized stage II clinical trial on lymph node-positive patients
who received four cycles of cyclophosphamide and one dose of doxorubicin adjuvant
therapy, epithelial p53 expression was evaluated (using monoclonal antibodies DO7 and
1801). After univariate analysis, this study stated that positive p53 IHC was associated
with worse OS and RFS in lymph node-positive patients [110].

4.5. p53 (Mutant)

A study performed by Marchetti et al. [154] found an “Arg72Pro” p53 variant in 23% of
primary breast cancer patients. The patients positive for the Arg72Pro variant had relapsed
within 10 months of the median DFS, compared to those that showed a wild-type p53
status [111]. Lenora W.M. et al. [155] also found a higher nuclear expression of mutant p53
using PAb1801 monoclonal antibody in young breast cancer patients. Kaplan–Meier curves
and a log-rank test analysis correlated mutant p53 expression with a poor prognosis among
distinct ethnic populations. Similarly, TNBC patients with abnormal mRNA expression of
mutant p53 in a separate study were more likely to experience less 5-year reoccurrence-free
survival. Mutant p53, therefore, may be considered a potential prognostic marker in TNBC
patients [113].

5. Future Perspectives

Aside from great improvements in diagnostic tools and the increased availability of
multiple therapeutic options, breast cancer cure rates remain poor. In the GLOBOCAN-2018
report, 2.1 million new breast cancer cases (11% of all total cancer types) were diagnosed in
185 countries [166]. In India, 144,000 breast cancer cases with a 5-year prevalence of 396,000
and 70,000 deaths were reported in 2012 [166,167]. As per the GLOBOCAN-2018 report,
162,000 breast cancer cases (27.7% of all new cancers), a 5-year prevalence of 405,000 breast
cancer cases, and 87,000 deaths were observed in the Indian population [166]. Knowledge
of reliable biomarkers related to disease prognosis and therapy decisions can improve
cancer management. In this regard, the oncogenic and tumor suppressor components of
the cell cycle may serve as such markers. Data from the multiple studies provided above
support this notation.

Although these markers are detectable by expression-profiling experiments, the lack
of reproductivity of the described results from various studies delays their use in the
clinical setting. In addition to technique sensitivity issues, the non-reproducibility of
the results might be due to the variation in sample selection methods or variations in
study designs. Studies having a smaller number of patients, different-aged patients,
varying tumor grades, varying tumor sizes or metastatic potential, and different patient
ethnicities can also lead to non-reproducible results. Therefore, larger-scale validation
studies involving greater demographic, ethnic, and clinicopathological variabilities are
required in the future, before we can apply their suggestive use in patient management.
High throughput technologies, such as next-generation RNA sequencing [168–170] and
single-cell RNA sequencing [171,172], give results with high coverage and depth, and cover
potential sensitivity issues. The use of these technologies may help to identify reliable
biomarkers for cancer management. Thus, the data presented in the review article propose
the use of cell cycle components as biomarkers in breast cancer management.

6. Conclusions

Previous experimental studies have described several oncogenic and tumor-suppressive
genes involved in cell cycle regulation and progression among various subtypes of hu-



Pharmaceutics 2021, 13, 569 21 of 28

man breast cancer. It is well-established that multiple genetic alterations are required for
tumorigenesis, yet continued research regarding the specific and sequential mechanisms
involved—and how they affect clinical outcomes—may continue to guide new therapeutic
strategies for more effective cancer treatments. Current research supports the notion that
these regulatory cell cycle genes are useful prognostic biomarkers in breast cancer tumori-
genesis, and the clinical relevance of these suggestive biomarkers has been established by
several studies, as described above. The accurate measurement of cell cycle component ex-
pression and their correlation with clinical symptoms and prognoses may provide valuable
insight for the future of both breast cancer management and anti-cancer therapeutics.
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Abbreviations

5GG Pentagalloylglucose
ABCSG Austrian breast and colorectal cancer study group
AC Adenocarcinoma
c-AMP Cyclic adenosine monophosphate
CCND1 Cyclin D1
CDC2 kinase Cell division control 2 kinase
CDKs Cyclin-dependent kinases
CI Confidence interval
DC Ductal carcinoma
DCIS Ductal carcinoma in situ
DFS Disease-free survival
DSS Disease-specific survival
E2F1 E2 promoter factor 1
ER Estrogen receptor
FISH Fluorescent in situ hybridization
GLOBOCAN Global cancer observatory
HDAC3 Histone deacetylase 3
HER2+ Human epidermal growth factor receptor2+
HR Hazard ratio
IDC Invasive ductal carcinoma
IHC Immunohistochemistry
ILC Invasive lobular carcinoma
LA Luminal A
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MU Mutation
NBE Normal breast epithelium
ND Not decided
OS Overall survival
PD Proliferative disease
PR Progesterone receptor
Rb Retinoblastoma
RFS Recurrence free survival
siRNA Small interfering RNA
TGF-β Transforming growth factor-β
TNBC Triple negative breast cancer
WT Wild type
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