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The norepinephrine transporter (NET) is a Naþ/Cl� coupled neurotransmitter transporter responsible for reuptake
of released norepinephrine (NE) into nerve terminals in the brain, a key therapeutic used in the treatment of
psychiatric disorders. A quantitative structural activity relationship (QSAR) study was performed on 50 com-
pounds of NET inhibitors to investigate their inhibitory potencies against norepinephrine transporter as novel
drugs for anti-psychotic disorders. The compounds were optimized by employing Density functional theory (DFT)
with basis set of B3LYP/6-31G*. The genetic function Algorithm (GFA) approach was used to generate a highly
predictive and statistically significant model with good correlation coefficient R2

Train ¼ 0.952 Cross validated
coefficient Q2

cv ¼ 0.870 and adjusted squared correlation coefficient R2
adj ¼ 0.898. The predictability and ac-

curacy of the developed model was evaluated through external validation using test set compound, Y-randomi-
zation and applicability domain techniques. The results of Molecular docking analysis by using two
neurotransmitter transporters PDB ID 2A65 (resolution ¼ 1.65 Å) and PDB ID 4M48 (resolution ¼ 2.955 Å)
showed that two of the ligands (compound 12 and 44) having higher binding affinity were observed to inhibit the
targets by forming hydrogen bonds and hydrophobic interactions with amino acids of the two receptors
respectively. The results of these studies would provide important new insight into the molecular basis and
structural requirements to design more potent and more specific therapeutic anti-psychotic drugs/agents.
1. Introduction

Psychotic disorder is a clinical syndrome of mental disorders in which
some loss of contactwith reality has occurred and it is generally applied to
persons whose mental functioning is sufficiently impaired to interfere
with their capacity to meet the ordinary demand of life [1]. Psychotic
disorders are common to all countries and cause immense human
suffering, social exclusion, disability, poor quality of life, staggering eco-
nomic and social costs. It is estimated that one in every four people have a
mental disorder [1]. The combined costs ofmental disorder, including loss
of productivity, loss of earningdue to illness and social costs, are estimated
to total at least USD 113 billion annually [2]. The major depressive dis-
orders (MDDs) had been estimated as the second largest global burden
among all diseases by 2030 which makes the discovery of novel and effi-
cacious anti-psychotic drugs very urgent [3]. Persons with psychotic dis-
order are at risk for complications andderivatives effects of psychosis such
as suicide attempts, substance abuse, homelessness, victimization by
others and committing act of violence [4].
po).
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Norepinephrine (NE) is a neurotransmitter, a crucial neurochemical
messenger employed in central noradrenergic and peripheral sympa-
thetic synapses [5] responsible for reuptake of released norepinephrine
(NE) into nerve terminals in the brain. Dysregulation of this neuro-
transmitter is associated with many debilitating Psychotic disorders and
mental illnesses [6]. Inhibition of the norepinephrine transporter by NET
inhibitors has emerged as important drug targets with a multitude of
therapeutic potentials for the treatment of psychiatric disorders and
mental diseases [7].

Quantitative structure-activity relationship (QSAR) analysis is a use-
ful technique to find correlations between biological activities and mo-
lecular descriptors of different classes of compound [8]. QSAR plays a
significant role in novel drug discovery, and it finds application in pre-
dicting the activity of novel compounds by mathematical expression
which figure out the relationships between a chemical structure to their
biological activity and a QSAR models give information that is very
useful for drug design and medicinal chemistry.

In recent time, computer assisted drug design base on QSAR has been
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of great important to develop novel medications for the treatment of
different ailments [9].

The aim of this study is to build up a QSAR model to explore the
inhibitory potency of some NET inhibitors and to likewise elucidate the
interactions between the inhibitor compounds, and the receptor site.

2. Materials and methods

2.1. Dataset collection and geometry optimization

A dataset of fifty (50) compounds of norepinephrine transporter
(NET) inhibitors were sourced from CHEMBL Database.

Optimization is the process of finding the equilibrium or concept
energy geometry of molecules. Chemdraw software ultra-version 12.0
was used to draw the chemical structures of the compounds and subse-
quently imported into Spartan 14 software [10] to optimize the molec-
ular geometry at the Density Functional Theory (DFT) using the B3LYP at
6-31G* basis set [11] to generate quantum chemical and molecular
descriptors.

2.2. Division of dataset

The dataset of the studied compounds was partitioned into a training
set and a test set by using Kennard stone algorithm [12] “Dataset Division
GUI 1.2” software. The training set was used to develop the QSAR model,
while the test set was employed to validate the developed model.

2.3. Model building

A statistical analysis by genetic function approximation (GFA) tech-
niques in the Material studio software 8.0 version was used to build the
QSAR models. GFA has a distinctive attribute to generate a population of
model equations rather than a singular model as most other statistical
methods do. It also selects the basic function genetically, generate better
models than those made using stepwise regression techniques. The range
of variations in this population gives added information on the quality of
fit and importance of the descriptors [13]. The Friedman's Lack of Fit
(LOF) was employed to evaluate the quality of themodel as a method that
measures fitness of a model. LOF is estimated by this mathematical
expression;

LOF¼ SEE

ð1� ðC þ d � pÞ=MÞ2 (1)

Where c is the number of basic functions, d is the smoothing parameter,
M is the number of samples in the training set, SSE is the sum of square
error and p is the sum number of descriptors contained in the model.

2.4. Molecular descriptors calculation

Molecular descriptors are arithmetical values that describe properties
of molecules obtained from a well-defined algorithm or experimental
procedure. The OD, ID, 2D and 3D molecular descriptors were calculated
using paDel-Descriptor software 2.20 version [14] in addition to quan-
tum chemical descriptors generated by the Spartan 14 software.

2.5. Data pre-treatment

Data pre-treatment for the generated molecular descriptors after
normalization was done by using “Data pretreatment GUI 1.2” software
that uses V-WSP algorithm [15] to remove noise and redundant data.
This helps to overcome productivity and generalization failure of the
model due to constant value and highly correlated descriptors in forming
QSAR models.
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2.6. Data normalization and descriptors transformation

Molecular descriptors values were normalized by employing
" normalized data 1.0 version software " to give each variable the same
opportunity and make the relationship between descriptors considerably
less demanding. The molecular descriptors of the training set were
transformed through normalization [16] using the mathematical equa-
tion below;

xn ¼ X � Xmax

Xmax � Xmin
(2)

Where Xn is the normalized descriptor, Xmax is the maximum value in a
descriptor column and Xmin is the minimum value in the column of the
training dataset.

2.7. Assessing quality assurance of the model

Statistical parameters of the model were reviewed and evaluated to
ascertained its fitting ability, reliability, predictive ability, stability and
robustness of the model generated. The quality assurance of a developed
model is guaranteed if the following parameters are satisfied; R2 > 0.6,
R2

pred>0.5, Q2 > 0.6, P (95%) <0.05, high value of F-test, low values of
R2

random and Q2
random.

2.8. Validation of the model

Leave-one-out cross validation technique was employed to determine
the predictive power of the model. This was evaluated by using this
mathematical expression;

Q2
cv ¼ 1�

" P�
Ypred � Yexp

�2P�
Yexp � Ytraining

�2
#

(3)

Where Ypred, Yexp and Y training symbolized the experimental, the pre-
dicted and mean values of experimental activity of training set
compounds.

Also, the square of the correlation coefficient for the test set (R2
test)

was evaluate for the predictive capacity of the developed model as part of
the external validation technique. The closer the value of R2

test value to
1.0 the better the model. The R2

test is evaluated by using this mathe-
matical equation;

R2
test ¼ 1�

P�
Ypredtest � Ytest

�2P�
Ypredtest � Ytraining

�2 (4)

Where Ypred and Ytest are the predicted and experimental activity values
of the test set compounds. Y training is the mean (average) activity value of
the training set.

2.9. Y – randomization test

Y – randomization is an important external validation technique to
ascertained that a developed QSARmodel is strong and reliable and is not
inferred by luck. Y-randomization test is performed on the training
dataset. The low values of R2 and Q2 is an indication that the model is
very robust and highly reliable, and the CR2

P value of the model must be
greater than 0.5 to pass the Y-randomization test. The CR2

P value is
calculated by using this this mathematical formular;

cR2
p ¼R � �

R2 � ðRrÞ2
�2

(5)

Where
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CR2
P ¼ coefficient of determination for Y-Randomization

R ¼ Coefficient of correlation for Y-Randomization
Rr ¼ Average “R” of random models.
2.9.1. Degree of contribution of selected descriptors
The level of contribution of each descriptor in the model is deter-

mined by calculating its standardized regression coefficients bj using this
mathematical equation;

bj ¼ sjbj
SY

¼ J ¼ 1;……::d (6)

bj is the regression coefficient of descriptor j. Sj and Sy are the standard
deviations for each descriptor and activity respectively.

The descriptor of higher absolute standardized coefficient implies a
greater importance to the rest of molecular descriptors.

2.9.2. Multi-co-linearity evaluation
Multi-co-linearity estimation among descriptors selected by GFA

analysis is evaluated using variance inflation factor (VIF) by the mathe-
matical expression below;

VIFi ¼ 1
1� R2

ij

(7)

Where R2
ij is the correlation coefficient of the multiple regression between

the descriptor i and the rest j descriptors in the developed model [17].

2.9.3. Assessment of the applicability domain of the model
Evaluation of the applicability domain of a model is a significant step

to confirm that the developed model is capable to make a reliable pre-
diction within the chemical space for which it was developed [16]. To
describe the applicability domain of the QSAR model, the leverage
approach was employed.

Leverage of a given dataset hi, is defined by this mathematical
expression;

Hi ¼ xiðXTXÞ�1XT
i (8)

Where xi the descriptor row is vector of the considered compound i, hi is
the n x k descriptor matrix of the training set compound used to generate
the model.

The warning leverage (h*) is the limit of normal values of x outliers
and is expressed mathematically as;

h* ¼ 3ðpþ 1Þ
n

(9)

Where n ¼ number of training compounds and P is the number of pre-
dictor variables (descriptors) in the model.

If the leverages hi < h* for the test compounds, it considered to be
reliably predicted by the developed model.

The relevance area of the model in terms of chemical space is visu-
alized by the plot of standardized residuals againt leverage values (Wil-
liams plot).
2.10. Molecular docking simulation

The molecular interactions studies were carried out on Dell computer
system, with processor properties of Intel ® Core i5-6100U CPU Dua
l@2.30GHz, 12 GB (RAM) between the ligands and two neurotransmitter
¼ 2:788ðALogPÞþ 3:382ðAATS7iÞþ 3:782ðATSC3pÞþ 2:234ðIC2Þ� 5:147ðG
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transporters (targets); the Crystal structure of LEUTAA, a bacterial homolog
of Naþ/Cl–dependent neurotransmitter transporters and X-ray structure of
dopamine transporter elucidates antidepressant mechanism as to elucidate
which of the NET inhibitors will have the best binding affinity against any
of these two receptors, because the current structural findings of human
monoamine neurotransmitters transporters (MATs) is based on X-ray
crystal structures of bacterial and invertebrate homologs [18].

2.10.1. Making of ligand and target
All the compounds were optimized using Spartan software initially

saved as SDF files and were appropriately later saved as Protein Data
Bank (PDB) files. Subsequently, Crystal structure of LEUTAA, a bacterial
homolog of Naþ/Cl–dependent neurotransmitter transporters and X-ray
structure of dopamine transporter elucidates antidepressant mechanism
(targets) were downloaded from Protein Data Bank website with PDB
codes 2A65 and 4M48 respectively. Fig. 1 below displays the Prepared
structure of the receptors.

2.10.2. Docking process
The docking of the prepared ligands with the receptors 2A65 and

4M48 were conducted using the AutoDock Vina version 4.0 of Pyrex
software. Hence, Discovery Studio software was used in visualizing the
molecular interactions of the stable complex.

3. Results and discussion

QSAR study was explored to investigate the structure–activity rela-
tionship of 50 compounds with distinguishing organic fragments acting
as norepinephrine transporter (NET) inhibitors. The nature of models in a
QSAR study is expressed by its fitting the data points through regression
and making predictions of isolated dataset.

3.1. QSAR on pKi of norepinephrine transporter (NET) inhibitors

A data set of 50 compounds was divided into a training set of 36
compounds used in developing the model and a test set of 14 compounds
was used to evaluate the predictive ability of the QSAR model for the
inhibition of norepinephrine transporter. The predicted and experi-
mental activities alongside with their residual values were presented in
Supplementary Table S1. The low residual values resulted from the
experimental and predicted activities is a good indication that the
developed model has good predictability.

The descriptive statistics parameters for the training set and test set
activities value were reported in Table 1. By comparing the value of
statistical parameters of the dataset activities in the Table; Mean
(Training set ¼ 6.940; Test set ¼ 7.394), Variance (Training set ¼ 1.227;
Test set ¼ 1.223), Standard deviation (Training set ¼ 1.108; Test set ¼
1.106), Range (Training set ¼ 4.439; Test set ¼ 4.436) and Median
(Training set ¼ 7.054; Test set ¼ 7.497), the values for the training set
were approximately equal to that of test set. This shows that the test set is
interpolative within the training set, and the similarity in the activity
distribution of training set and test set. This is a good quality assurance
that Kennard Stone's algorithm used in this research generates a test set
that is a true reflection of the training set.

The genetic algorithm-multiple linear regression (GA-MLR) exami-
nation prompted the choice of 6 descriptors, which were eventually used
to amassed a linear regression model for calculating pKi of norepineph-
rine transporter inhibitors within the chemical space of the model. The
model with statistical significance was selected and represented by Eq.
(10) below:
GI10Þþ 3:728ðRDF75uÞ þ 0:989 (10)

mailto:Dual@2.30GHz
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Fig. 1. Prepared structures of the targets.

Table 1
Descriptive statistical analysis of NET inhibitor compounds.

Descriptive values Training dataset Test dataset

Dataset Number 36 14
Standard Error 0.185 0.296
Median 7.054 7.497
Standard Deviation 1.108 1.106
Sample Variance 1.227 1.223
Kurtosis -0.632 2.677
Skewness 0.229 -1.264
Range 4.439 4.436
Minimum 5.084 4.500
Maximum 9.523 8.936
Mean 6.940 7.394

Table 2
Names of the model descriptors and their respective degree of contribution.

Descriptor Descriptor Name Type Degree of
contribution

percentage of
contribution

ALogP Ghose-Crippen LogKow 2D 0.513 13.3
AATS7i Average Broto-Moreau

autocorrelation - lag 7/
weighted by first
ionization potential

2D 0.500 13.0

ATSC3p Centered Broto-Moreau
autocorrelation - lag 3/
weighted by
polarizabilities

2D 0.631 16.4

IC2 Information content
index (neighborhood
symmetry of 2-order)

2D 0.383 10.0

GGI10 Topological charge index
of order 10

2D -1.061 27.6

RDF75u Radial distribution
function - 075/
unweighted

3D 0.756 19.7

Table 3
Accepted QSAR model validation tools [21].

Validation
Tools

Interpretation Acceptable
Value

Developed
model Value

Remarks

R2 Co-efficient of
determination

�0.6 0.911 pass

P(95%) Confidence interval at
95% confidence level

<0.05 2.446 pass

Q2cv Cross-Validation Co-
efficient

>0.5 0.870 pass

R2-Q2cv Difference between R2

and Q
�0.3 0.04 pass

N Ext testset Minimum number of
external and test sets

�5 14 pass

R2
Testset Co-efficient of

determination of
external and test set

�0.5 0.5850 pass

cR2
p Coefficient of

determination for Y-
randomization

>0.5 0.840 pass

R2
adj Adjusted R-squared >0.6 0.893 Pass

VIF Variance Inflation
Factor

<10 1.4–4.4 Pass

t-test t-Statistice value >2 5–9 Pass
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Ntrain ¼ 36, R2
train ¼ 0.9156, R2

adjusted ¼ 0.8982, Q2
LOO ¼ 0.8755,

Outliers > 3.0 ¼ 0 Ntest ¼ 14, R2
test ¼ 0.5832

N is the total number of the datasets, R2 is the squared correlation
coefficient, Q2

LOO is the squared cross-validation coefficients for leave
one out. In the model, the number of ratio of training set data to the ratio
number of descriptors present in the model was 6 and in agreement with
Topliss ratio [19]. This implies that the developed model obeyed the
QSAR semi-empirical rule of thumb [20]. The name and the symbol of
the descriptors, the standardized regression coefficients (degree of
contribution) and percentage contribution of the descriptors were re-
ported in Table 2. The combined presence of 2D and 3D descriptors in the
developed model is an evidence that these types of descriptors are able to
characterize good antipsychotic activity of the compounds. The sign,
magnitude and percentage contribution of each descriptor is not only to
give critical information on the direction of influence of the descriptor
but also pinpoint the strength of contribution to the activity of the
compound.

The model generated was subjected to internal and external valida-
tions. The outcome of internal and external validations of the model is in
conformity to Occam's razor rule. The generally acceptable QSAR Model
Validation Tools and the validated parameters of the model were pre-
sented in Table 3. The values of validation parameters of the model were
in agreement with generally acceptable QSAR Model Validation Tools
reported in Table 3. This confirmed the reliability, stability and robust-
ness of the developed model.

The Pearson's correlation matrix and other statistical tools employed
for validation of the model were reported in Table 4. The low value in
correlation coefficients between each pair of descriptors (<7.0) is a clear
4



Table 4
Pearson's correlation matrix and model quality assurance.

ALogP AATS7i ATSC3p IC2 GGI10 RDF75u VIF t-statistics p value

ALogP 1 1.5021 7.5604 2.47E08
AATS7i -0.3321 1 1.4789 7.4649 3.16E-08
ATSC3p -0.2592 -0.2991 1 1.4376 9.4970 2.1E-10
IC2 -0.2742 0.0487 0.0765 1 1.4177 5.8502 2.4E-06
GGI10 -0.2382 0.0921 -0.1711 0.5005 1 4.5022 -9.5663 1.79E-10
RDF75u -0.2940 0.2215 -0.1337 0.4759 0.6377 1 4.3800 6.7912 1.87E-07
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indication that there was no significant multi-collinearity among the
descriptors in the developed model. The Variance Inflation Factor (VIF)
values reported in the Table 4 were less than 10 and the t-statistics values
were greater than 2 for all the descriptors. This is a quality assurance that
the developed model was statistically significant, and the descriptors
contributed appreciably to the model at 95% level [21] and they were
orthogonal.

The model generated was used to predict the test set data, and the
results were reported in Supplementary Table S1. The predicted pKi
values for the training and test sets were plotted against the experimental
pKi values as shown in Fig. 2, Similarly, the plot of the standardized
residuals values for both the training and test sets against the leverage
values of the descriptors in the model were shown in Fig. 3. As can be
seen from Supplementary Table S1, Figs. 2 and 3, the calculated values
for the pKi were in excellent agreement with those of the test set, as a
result of this, no any form of error was displayed by the model.
3.2. QSAR model validation

The internal coherence of the training set was established by using
leave-one-out cross-validation technique to ascertained the strength and
reliability of the developed model, because the candid significance of a
QSAR model is not merely their ability to mimic known activities of
chemicals, set by their fitting power (R2), but above all is their pro-
spective for guessing biological activity accurately. The great value of
Q2

LOO for pKi of NET inhibitors used (0.8755) speak well of a fully clad
internal validation of the model.

The plot of experimental pKi values against predicted pKi values for
training set was presented in Fig. 4. The displayed of linear relationship
was observed in the plot between the experimental and predicted ac-
tivities of the training set (R2¼ 0.911). The fact that all these results were
in agreement with QSAR validation tools presented in Table 3 is a
Fig. 2. Plot of predicted pKi values against exper
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confirmation of the reliability, robustness and stability of the developed
model [21].

The Fig. 3, depicts the Williams plot of the NET dataset, in which the
standardized residuals for each compound in the dataset were plotted
against their leverage values, coming about to acknowledgment of likely
outliers and outstanding chemicals in the models.

The applicability domain is set up inside a defined domain where all
the data point were within the boundary �3 for residuals and a leverage
threshold h*(h* ¼ 3po=n where po is the number of model parameters
and n is the number of compounds) [15]. Based on our findings, it is clear
that every one of the compounds of the training set and test set for the
dataset were inside the domain (square area) and no statistical value far
from others compounds (outlier) with standardized residuals >3d for the
dataset exist.

The percentage of contribution was calculated to determine the
relative importance and the contribution of every descriptor in the
model. The degree of contribution of each descriptor and variance
inflation factor (VIF) of the descriptor were estimated to evaluate the
percentage and the significance of contribution of the descriptors as re-
ported in Tables 2 and 4 respectively. The descriptor GGI10 showed
highest contribution value (27.6%) in the model with VIF value of 4.502
as reported in the two tables, but the contribution negatively affects the
model as it is observed in the Eq. (10) with negative regression
coefficient.

The robustness and reliability of the model was evaluated through Y-
randomization test to ascertain whether the developed model is by
chance correlation or not. After few repeated trials to compare the
stemmed scores with the scores of the original model with non-
randomized data, the new QSAR model generated was observed to
have low R2 and Q2

LOO values as reported in Table 5. The results of this
test were clearly in agreement with QSAR validation tools presented in
Table 3. This is an indication that the developed model is robust, good
imental pKi values for training and test sets.



Fig. 3. A Williams plot for the data set of pKi standardized residual against its descriptor space.

Fig. 4. Plot of predicted pKi values against experimental pKi values for training.

Table 5
Y-randomization table for QSAR Analysis.

Model R R̂2 Q̂2

Original 0.9545 0.9111 0.8702
Random 1 0.4197 0.1762 -0.2759
Random 2 0.3402 0.1157 -0.4558
Random 3 0.3943 0.1555 -0.3333
Random 4 0.4690 0.2199 -0.2220
Random 5 0.4408 0.1943 -0.1861
Random 6 0.1560 0.0243 -0.6456
Random 7 0.3589 0.1288 -0.3166
Random 8 0.3237 0.1048 -0.3536
Random 9 0.3323 0.1104 -0.4357
Random 10 0.3646 0.1329 -0.3307

Random Models Parameters

Average r: 0.3599
Average r̂2: 0.1363
Average Q̂2: -0.3555
cRp̂2: 0.8439
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and dynamic. The fact that cR2
p value > 0.5, confirms that the model

possesses good quality assurance and that the model is not only inferred
by chance but also very powerful.
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3.3. Elucidation of descriptors in NET pKi model

By interpreting the molecular descriptors presented in the model
(Table 2), it is possible to increase supportive chemical functional groups,
fingerprints and pharmacophores into the activities of the NET inhibitors.
Therefore, a sufficient interpretation of the QSAR results is given below.

ALogP is a 2D type molecular descriptor, and the first in our QSAR
model. It defined as Ghose-Crippen LogKow or Ghose-Crippen-
Viswanathan octanol-water partition coefficient. (ALogP) is calculated
from the AlogP model consisting of a regression equation based on the
hydrophobicity contribution of 115 atom types [22, 23]. AlogP estimates
are provided only for compounds having atoms of types C, H, O, N, S, Se,
P, B, Si, and halogens.

Each atom in every structure is classified into one of the 115 atom
types. Then, estimated logP for any compound is given by:

AlogP¼
X
i

niai

where n is the number of atom of type i and ai is the corresponding hy-
drophobicity constant. The list of the atom types with the corresponding
hydrophobicity contributions is given under the list of atom-centered
fragments. This descriptor tells us the higher the number of hetero



(12a3D)  (12a2D) (12m3D)                          12m2D

(38a3D)             (38a2D)
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Fig. 5. (12a 2D&3D), (38a 2D&3D) and (44a 2D&3D) depict 2D and 3D interactions at the binding site between receptor PDB code 2A65 with ligand 12, 38 and 44
while (12m 2D&3D), (38m 2D&3D) and (44m 2D&3D) show 2D and 3D interactions at the binding site between receptor PDB code 4M48 with ligand 12, 38 and 44
respectively.
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atoms in a molecule, the higher the tendency for this molecule to be less
hydrophobic. Since the percentage contribution of the descriptor in this
model is 13%, it indicates that more than 10% of the bioactivity of a lead
compound will improve should the number of heteroatoms present be
increased.

AATS7i and ATSC3p are defined as Average Broto-Moreau autocor-
relation - lag 7/weighted by first ionization potential and Centered Broto-
Moreau autocorrelation - lag 3/weighted by polarizabilities respectively.
They are both 2D autocorrelation descriptors and their respective per-
centage contribution to the models are given as 13 and 16.4% respec-
tively in Table 1. The ATS descriptor describes how a property is
distributed along the topological structure. It is a spatial autocorrelation
on a molecular graph, which can be used to improve the activity of the
compounds by altering the ionization potential and polarizability of the
7

compounds. Since these molecular descriptors contributed positively to
the model the pKi values of the compounds can be improved by adding
fragments to the compounds that can increase the polarity of the com-
pounds thereby creating the charge stability of the ligands' interaction
with the binding sites. GGI10 is a topological charge descriptor defined as
Topological charge index of order 10. GGI10 gave the highest contribu-
tion in the model, but since its contribution negatively affect the model,
then the steady reduction in this descriptor value can improve the Ki
values of the dataset. The ability of topological charge indices to describe
molecular charge distribution has been established by correlating them
with the dipole moment of a heterogeneous set of hydrocarbons, and so
reducing the number of heterogeneous hydrocarbons presently corre-
lated with the dipole moment of the molecule will lead to an increase in
the bioactivity of the compounds.



Table 6
Molecular interactions between the three ligands of higher binding affinity and the two receptors.

Ligand CHEMBL
ID

Ligand
Number

Binding Affinity
(kcal/mol)

Hydrogen bond Hydrophobic interactions Electrostatics
Interactions

Amino
acid

Bond length
(Å)

Amino Acid Amino Acid

CHEMBL67078 12a -9.3 LYS398 2.15279 ILE111, ALA319, VAL154, LEU162, LEU400, LEU25
12m -7.35 SER31 2.76717 PHE513,TYR32 TYR32

SER31 2.31044
CHEMBL197384 38a -10.3 ILE491, ILE410, TRP406,TRP99,

PHE494,ARG487,LEU464.ALA464,ILE472
PHE414

38m -7.5 ASP25 2.53334 TYR337, TYR59, ARG92 ASP25
CHEMBL200310 44a -9.9 GLN34 2.62533 ILE475, TYR471, ILE245, LYS474,ARG30,ALA319 ASP404

44m -8.45 PRO514 2.15327 PHE513, VAL101
SER31 2.76554
TRP519 2.1523
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IC2 is defined in Table 1 as Information content index (neighborhood
symmetry of 2-order), it is a 2D type information content descriptor. It
gave the least contribution to the model, but 10% contribution can be
significant depending on the nature of the molecule. The IC2 molecular
descriptor suggests that by introducing other bonds at that carbon, the
structural complexity of the molecules will be increased and the Shannon
entropy will also be increased thereby easily activating the interactions of
the molecule with the binding site.

RDF75u is an RDF descriptor (Radial Distribution Function de-
scriptors), this descriptor is based on the distance distribution in the
geometrical representation of a molecule and constitute a radial distri-
bution function code (RDF code) that shows certain characteristics in
common with the 3D-MORSE code. The radial distribution function in
this form meets all the requirements for a 3D descriptor, it also provides
further valuable information such as bond distances, ring types, planar
and non-planar systems. This fact is a most valuable consideration for a
computer-assisted code elucidation [24]. The positive regression coeffi-
cient of this descriptor in the model as contained Eq. (7) with the highest
value of degree of contribution as reported in Table 2 is a good indication
of its influential contribution to the antipsychotic activity with variation
in the bond distance and ring types of the studied compounds.

3.4. Docking result

The docking result of this study is presented in terms of binding af-
finity (kcal/mol) as reported in Supplementary Table S1. All the ligands
were docked into the active site of the receptors, the Crystal structure of
LEUTAA, a bacterial homolog of Naþ/Cl–dependent neurotransmitter
transporters and X-ray structure of dopamine transporter elucidates an-
tidepressant mechanism in order to evaluate their abilities to inhibit
these neurotransmitters. The current available findings of human neu-
rotransmitters transporters are based on X-ray crystal structures of bac-
terial and invertebrate homologs which includes the bacterial amino acid
transporters LeuT (PDB: 2A65) and the Drosophila melanogaster (PDB:
4M48) [18] as employed in this study.

The binding affinity values of the two receptors (PDB: 4M48 and PDB:
2A65) for all the studied compounds ranged from 4.4 kcal/mol to 10.3
kcal/mol and were reported in Supplementary Table S1. Ligands 8,
12,26, and 38 had higher binding affinity with the receptor PDB 4M48
and Ligands 9, 10, 12, 38 and 44 had higher binding affinity with the
receptor PDB 2A65 respectively. The Discovery Studio Visualizer was
used to visualize and analyze the three ligands of higher binding affinity
that were found to display higher binding affinity and common to the two
receptors as shown in Fig. 5.

The binding affinity, hydrogen bond, hydrophobic and electrostatic
interactions of the three ligands having higher binding affinity with the
two receptors were reported in Table 6. The number 12a, 38a & 44a
represent the interactions of the Ligands (compound 12, 38 and 44) be-
tween the receptor (PDB ID 2A65) while 12m, 38m & 44m depict the
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interaction of the ligands (compound 12, 38 and 44) between the re-
ceptor (PDB ID 4M48) respectively.

All the three ligands (compound 12, 38 and 44) with the higher
binding affinity were observed to inhibit the targets by forming hydrogen
bonds and hydrophobic interactions with amino acids of the two re-
ceptors (PDB ID 2A65) and (PDB ID 4M48) respectively except com-
pound 38 that could not form hydrogen bond with the receptor (PDB ID
2A65) as reported in Table 6. This may inform the higher resolution (2.99
Å) of the receptor (PDB ID 4M48) compare to the lower resolution
(1.65Å) of the other receptor (PDB ID 2A65) (https://www. rcsb.org).
The three ligands were found to be firmly bonded with Hydrogen bonds
of the receptor (PDB ID 4M48) pocket amino acids (SER31, ASP25,
PRO514 and TRP519). The higher number of Hydrogen bonds were
observed in the two ligands (compound 12 and 44) with the target
pockets of the receptor (PDB ID 4M48) whichmight be connected to their
higher activity (compound 12, pKi ¼ 7.383 and compound 44, pKi ¼
5.607) contrast with to the other ligand (compound 38, pKi ¼ 5.084)
with the lowest activity which formed just a single hydrogen bond with
the receptor. This infers a direct relationship between the binding affinity
and inhibitory activity of the studied compounds proved from the
number of hydrogen bonds formed between the ligands and the receptor.
However, high binding affinity is evident in the ligand 38 and this might
be because of its large number of hydrophobic interactions and electro-
static effect due to the presence of fluorine atom, Pi- Cation, Pi- Sigma, Pi-
Pi- stacked, Pi-Pi-T-shaped, Pi-Alkyl with amino acid residues
(ILE491,ILE410, TRP406,TRP99, PHE494,ARG487,LEU464.
ALA464,ILE472).

4. Conclusions

A QSAR investigation was performed on dataset of 50 norepinephrine
transporter (NET) inhibitors, mined from CHEMBL database. The result
of the QSAR modelling was reliable as it satisfies the OECD criteria for
model development. The combination of 2D and 3D descriptors generate
a good model to predict the inhibitory activity of the studied compounds.
The internal validation was reported in the work to have a Q2cv ¼ 0.870,
while the external validation reported in R2

Pred value was given as 0.583,
this implies a good predictive ability of the model.

The result of Applicability Domain (AD) shows that all the studied
compounds were within the defined domain. Molecular docking study
were carried out on all the compounds using two neurotransmitter
transporters (receptors) PDB IDs 2A65 and 4M48 respectively. Three li-
gands (compound 12,38 and 44) showed higher binding affinity were
found to best inhibit the two receptors by forming strong hydrogen bonds
and hydrophobic interactions with amino acids of the targets. However,
higher number of hydrogen bonds were observed between the receptor
(PDB ID 4M48) and two ligands (compound 12 and 44) out of the three
ligands with higher activity, compound 12 (pKi ¼ 7.387) and compound
44 (pKi ¼ 5.607) compare to compound 38 with the lowest activity (pKi

http://rcsb.org
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¼ 5.084). This suggests excellent correlation between the binding affinity
and inhibitory activity of the ligands and that the mechanisms or mode of
action of the ligands could be a direct interaction with the receptor (PDB
ID 4M48) of higher resolution (2.99 Å) value. Therefore, the two Ligands,
compound 12 (1-(2-(benzhydryloxy)ethyl)-3-(((3-phenylpropyl)ammo-
nio)methyl)piperidin-1-ium) and compound 44 (3-((bis(4-fluorophenyl)
methyl)ammonio)-8-(3-oxo-3-(phenylamino)propyl)-8-azabicyclo
[3.2.1]octan-8-ium) and the receptor PDB ID 4M48 (2.99 Å) proved to be
the most promising hit compounds, and a good receptor for this study.

The information derived from the QSAR investigation and molecular
docking analysis of this study could find a robust application in phar-
maceutical industries to design novel NET inhibitors with more potent
and more specific therapeutic anti-psychotic drugs.
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