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Protection of Mcc950 against high-glucose-induced
human retinal endothelial cell dysfunction

Yi Zhang1,2,3, Xuehua Lv1,3, Zizhong Hu1, Xiaojian Ye1, Xinhua Zheng1, Yuzhi Ding1, Ping Xie*,1 and Qinghuai Liu*,1

Diabetic retinopathy (DR) is a well-known microvascular complication related to inflammation. Mcc950 is a potent and specific
inhibitor of the NLRP3 inflammasome but its influence on DR has not been studied. Thus, we evaluated the anti-inflammatory
effects of Mcc950 on high-glucose-induced human retinal endothelial cells (HRECs) and the potential underlying mechanism. In
surgical excised proliferative membranes from DR patients, high expression of NLRP3, caspase 1 and IL-1β was observed and
co-localization of NLRP3 and IL-1β occurred in CD31+ labeled HRECs. Moreover, in high-glucose-stimulated HRECs, increased
production of the NLRP3 inflammasome activation and severe apoptosis were rescued with Mcc950 treatment. Additionally, the
inhibitory effect of Mcc950 was mimicked through downregulation of NEK7 by siRNA in high-glucose-induced HRECs and Mcc950
treatment remarkably inhibited Nek7 and NLRP3 interactions by co-immunoprecipitation, suggesting that Mcc950 may be a
potentially protective agent against inflammation, likely via downregulation of the Nek7-NLRP3 pathway. In conclusion, Mcc950
inhibited HREC dysfunction under high-glucose conditions and this research may offer insight for future pharmaceutical
approaches for treating DR.
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Diabetic retinopathy (DR) is a major diabetic complication that
can cause significant visual impairment and blindness.1,2

During the development of DR, retinal endothelial cell (REC)
dysfunction is an important initiator of a multifactorial
pathology3-5 that relies on metabolic abnormalities and
inflammation.6,7 Emerging evidence indicates that high-
glucose-induced sterile inflammation is involved in the onset
and progression of REC damage8-11; however, no effective
drugs are available to treat REC damage.
The NLRP3 inflammasome, which is made up of NLRP3,

apoptosis-associated speck-like domain containing a
caspase-recruitment domain (ASC) and pro-caspase 1, is a
group of intracellular innate immune proteins thought to act as
sensors of pathogen- and damage- associated molecular
patterns.12 The activation of NLRP3 inflammasome can
promote the cleavage of pro-caspase 1 and pro-IL-1β into
their mature pro-inflammatory forms,13 which contribute to the
development of type 2 diabetes,14 atherosclerosis,15 gout,16

Alzheimer disease17 and age-relatedmacular degeneration.18

Glucose abnormalities have also been reported to be an
important trigger of the sterile inflammatory response which is
mediated by the NLRP3 inflammasome.6,19 Therefore, the
NLRP3 inflammasome may be an effective target of pharma-
cological therapy to treat REC damage induced by high
glucose.
Recently, a diarylsulfonylurea-based compound Mcc950 (or

CRID3) was reported to be a highly specific NLRP3 inhibitor20

and its molecular target is of interest. Coll’s group21 reported
that Mcc950 suppressed the formation of ASC complexes
instead of blocking K+ efflux, Ca2+ flux or NLRP3–ASC

interactions in response to NLRP3 and AIM2 stimulation.
Also, Mcc950 specifically inhibits NLRP3 activation most likely
by direct action on the protein or by interaction with pathways
closely linked to NLRP3 activation.20 NEK7,22 as a Ser/Thr
kinase during mitotic cell division, has been consistently
proved to be a factor required for NLRP3 inflammasome
activation by three independent groups.23-25 As a switch
between inflammasome activation and cell division, NEK7
was confirmed to bind directly to NLRP3. The interaction
between NLRP3 and NEK7 depends on LRR (leucine-rich
repeats) or perhaps the NOD domain of NLRP3 and the
kinase domain of NEK7.22,25 Thus, NEK7-NLRP3 association
is necessary for assembly and activation of the NLRP3
inflammasome. Furthermore, Shi’s group23,26 suggests that
Mcc950 or other glyburide-derived sulfonylureas might act by
disrupting NEK7–NLRP3 interactions. We studied the role of
Mcc950 in mediating high-glucose-induced NLRP3 inflamma-
some activity in human retinal endothelial cells (HRECs) and
sought to identify whether the NEK7-NLRP3 pathway is
involved in anti-inflammation effects of Mcc950.

Results

NLRP3 inflammasome activation in proliferative mem-
branes from DR patients. To learn whether the NLRP3
inflammasome is involved in the pathogenesis of membrane
proliferation, we used immunohistochemistry with NLRP3,
IL-1β and endothelial cell adhesion molecule 1 (CD31).
Figure 1 shows more intense NLRP3 and IL-1β staining in
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CD31-labeled endothelial cells in proliferative membranes
compared with controls. Additionally, western blot (Figure 2)
confirmed elevated NLRP3, caspase 1 and IL-1β protein
expression in proliferative membranes from DR and expres-
sion was modest in normal human retinas.

Effect of high glucose or Mcc950 on HREC viability and
proliferation. Figure 3a shows that compared with controls
(5.5 mM normal glucose treatment), HRECs significantly
increased after 15 mM high-glucose treatment for 72 h while
approximately 18.1 and 28.7% reduction were induced
after 30 mM and 50 mM high-glucose treatment, respectively.
Because 50 mM glucose treatment may have produced
unreliable data, 30 mM was used for subsequent experi-
ments to study the protective effect of Mcc950 on high-
glucose-induced cell death. Mcc950 (0.1, 1, 10, 100 μM) had
no significant effect on cell viability and proliferation
(Figure 3b). However, pretreatment with Mcc950 rescued
HREC viability in response to high-glucose stimulation
(Figure 3c).

Attenuation of high-glucose-mediated IL-1β secretion by
Mcc950 pretreatment in HRECs. A correlation between
IL-1β released in cell supernatant with high-glucose expo-
sure was studied and we found that IL-1β expression
was increased after high-glucose exposure in a time- and
concentration-dependent manner (Figure 4a and Supple-
mentary Figure 4a). Figure 4b shows that more IL-1β was
inhibited (but this was not significantly different among these
three groups) in cells treated with 1, 10 and 100 μM Mcc950

Figure 1 Immunofluorescence staining for NLRP3 inflammasome activation in
normal human retinas and proliferative membranes from DR patients. (a) The co-
localization of NLRP3 and CD31(endothelial cell adhesion molecule-1) in normal
human retinas and proliferative membranes from DR patients by immunofluores-
cence (scale bar of 50 μm). (b) The co-localization of IL-1β and CD31(endothelial cell
adhesion molecule-1) in normal human retinas and proliferative membranes from DR
patients by immunofluorescence

Figure 2 Western blot analysis of the expression of NLRP3, caspase1 and IL-1β in proliferative membranes. (a) The extracted protein was used to detect the expression
levels of indicated proteins in proliferative membranes and normal human retinas. β-actin was used as protein loading control. (b–d): Relative expression level of NLRP3,
caspase1 and IL-1β from three independent experiments was quantified. Expression is shown relatively to β-actin in each group, which was set to 1. Significant differences were
calculated using Student’s t-test. *Po0.05 versus control. PM: proliferative membrane; Control: normal human retina
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compared to 0.1 μM Mcc950 or controls with 30 mM high
glucose for 72 h. Therefore, 1 and 10 μM Mcc950 were
selected for subsequent experiments.

Protection of Mcc950 against high-glucose-induced
HREC apoptosis. HREC apoptosis was measured and
Figure 5a shows that few TUNEL-stained cells were apparent
in controls (~3.2%) and more intense staining occurred with
high glucose (~38.2%). Mcc950 significantly reduced the
percentage of apoptotic cells to about 28.5% (Figure 5b) and
data suggest the presence of an anti-apoptotic role of
Mcc950 against NLRP3 inflammasome activation.

Effect of Mcc950 on high-glucose-stimulated NLRP3
inflammasome mRNA expression in HRECs. Transcript
expressions (mRNA) of NLRP3, caspase 1 and downstream
IL-1β in HRECs were obtained and NLRP3, caspase 1 and
IL-1β mRNA were significantly increased compared to
controls (Figures 6a–c). However, there were no significant
differences between 1 or 10 μM Mcc950 treatment groups
and the high-glucose group.

Mcc950 inhibited high-glucose-stimulated NLRP3 inflam-
masome activation in HRECs. We measured post-
transcriptional expression of multiple proteins in cell lysis buffer
after high-glucose treatment with/without Mcc950 interference.
Compared to controls, NLRP3, pro-caspase 1 and pro-IL-1β
protein was increased after stimulation by high glucose and this
high expression was sustained with 1 or 10 μM Mcc950, which
was consistent with mRNA expression data. However, mature
caspase 1 and IL-1β were inhibited by the addition of 1 or 10 μM
Mcc950. Mcc950 suppressed activation of the NLRP3 inflamma-
some, sequentially disturbing the transformation of pro-caspase 1
and pro-IL-1β into mature caspase 1 and IL-1β (Figures 7a–d).
A subsequent analysis of the effect of Mcc950 on HRECs

after stimulation with high glucose was made using immuno-
fluorescence. Representative immunofluorescent images
(Figure 8 and Supplementary Figure 8) indicate strong
double-labeling of NLRP3 and IL-1β in the high-glucose group
and that Mcc950 reduced the expression of IL-1β.

NEK7 by siRNA inhibited high-glucose-stimulated
NLRP3 inflammasome activation in HRECs. To explore
whether NLRP3–NEK7 interactions contribute to HRECs

Figure 3 Effect of high glucose or Mcc950 on HREC viability and proliferation. (a) Dose–response effect of high glucose on HREC viability and proliferation. HRECs viability
were tested in normal glucose condition (5.5 mM) or high glucose(15, 30, 50 mM) condition for 72 h. Data are shown as the mean±S.E.M., n= 8 technical replicates. One-way
ANOVA followed by Tukey’s multiple comparison test. *Po0.01 versus control. (b) Mcc950 (0.1,1,10,100 μM) treatment for up to 48 h has no significant effect on cell viability and
proliferation. Data are shown as the mean±S.E.M., n= 3 technical replicates. One-way ANOVA followed by Tukey’s multiple comparison test. (c) Effect of Mcc950 on HRECs
treated with 30 mM high glucose for 72 h. Cell survival shows significantly rescued by Mcc950 (0.1,1,10,100 μM) in high-glucose condition. Data are shown as the mean±
S.E.M., n= 8 technical replicates. One-way ANOVA followed by Tukey’s multiple comparison test. *Po0.01 versus control, #Po0.01 versus 30 mM high-glucose group
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induced by high glucose, we measured changes in expres-
sion of the NLRP3 inflammasome in HRECs transfected with
si-NEK7. Figure 9 shows that NEK7 protein expression was
reduced by si-NEK7 but there was no significant change with
high glucose or Mcc950 treatment. Compared with scrambled
siRNA group with no treatment, NLRP3, pro-caspase 1, pro-
IL-1β, caspase 1 and IL-1β protein increased after stimulation
with high glucose in the scrambled siRNA group, the si-NEK7
group and in the 10 μM Mcc950-treated group. However,
caspase 1 and IL-1β protein were suppressed in the si-NEK7
group and Mcc950-treated group. Thus, depletion of NEK7
and addition of Mcc950 inhibited NLRP3 inflammasome
activation induced by high glucose in HRECs.

Anti-inflammatory effect of Mcc950 via NLRP3–NEK7
pathway in high-glucose-stimulated HRECs. Co-immuno-
precipitation was used to examine the interaction between
NEK7 and NLRP3 in the presence/absence of Mcc950. The
NLRP3–NEK7 interaction was significantly enhanced after
high-glucose stimulation, but was suppressed in both
Mcc950 treatment groups (Figures 10a and b). Thus, there
is an inhibitory effect of Mcc950 on NLRP3 inflammasome
activation by the NEK7–NLRP3 signaling.

Discussion

Activation of the NLRP3 inflammasome is thought to be key for
the progression of pro-inflammatory effects of retinopathy
including age-related macular degeneration18 and DR.27

Using immunofluorescence and western blot we confirmed
NLRP3 inflammasome activation in human REC of prolifera-
tivemembranes, a crucial characteristic of PDR.28–30 The anti-
NLRP3 inflammasome effect of Mcc950 for macrophages,
microglia, myoblasts and dendritic cells is well described,31-34,

but its effect on inflammation of HRECs is unexplored. Thus,
we investigated the potency of Mcc950 for attenuating
inflammation in HRECs induced by high glucose.
In HRECs we observed that high glucose upregulated

inflammatory cytokine IL-1β, which induces production of

Figure 4 Mcc950 pretreatment attenuated high-glucose-mediated IL-1β secre-
tion. (a) Measurement of IL-1β released from HRECs incubated in a media that
contained 5.5, 30 mM glucose for 24,48 or 72 h, respectively. Data are shown as the
mean± S.E.M., n= 3 technical replicates. One-way ANOVA followed by Tukey’s
multiple comparison test. *Po0.01 versus control, #Po0.01 versus 24 h
high-glucose treatment. (b) Concentration-dependent effect of Mcc950 on HRECs
in 30 mM glucose condition for 72 h. Data are shown as the mean±S.E.M., n= 3
technical replicates. One-way ANOVA followed by Tukey’s multiple comparison test.
*Po0.05, #Po0.01 versus control

Figure 5 Protection effect of Mcc950 against high-glucose-induced HREC
apoptosis. (a) Apoptosis cells in control culture medium, high-glucose culture medium
or high glucose with Mcc950 culture medium were detected by TUNEL assay (scale
bar of 50 μm). (b) Quantitative analysis of TUNEL-positive cells after incubating in
three different culture media. Data are shown as mean±S.E.M., n= 4 technical
replicates. Significant differences were calculated using one-way ANOVA followed by
Tukey’s multiple comparison test. *Po0.01 versus control. #Po0.01 versus
high-glucose group
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oxygen radicals to damage DNA35,36 and induce
apoptosis.37,38 Mcc950 not only inhibited NLRP3 inflamma-
some activation as evidenced by suppressing cleavage of
caspase 1 and downstream interleukin IL-1β production, but
decreased apoptosis and mature IL-1β released by HRECs.
Thus, Mcc950 has an anti-inflammatory role in the pathogen-
esis of impaired glucose-mediated retinopathy, and these
data agree with previous reports that Mcc950 can inhibit
NLRP3 inflammasome activation in dermal and pulmonary
inflammation,31 crystal-induced kidney fibrosis,33 valosin-con-
taining protein-associated diseases,32 cryopyrin-associated
periodic syndromes,20,39,40 hypertension,41 and myocardial
infarction.42

We measured NLRP3, pro-caspase 1 and pro-IL-1β mRNA
before and after Mcc950 treatment in high-glucose-stimulated
HRECs, and found no significant difference in either setting,
consistent with data from Perregaux’s group.20,43 Interestingly,
mature caspase 1 and IL-1β protein expression significantly
reduced while NLRP3, and pro-caspase-1 and pro-IL-1β were
still highly expressed after Mcc950 treatment with high
glucose. Thus, according to Coll and Petra Sušjan’s
theory,20,44 Mcc950 does not directly target NLRP3 inflamma-
some activation at the genetic level but rather influences
protein interaction or pathways closely linked to NLRP3
activation. Of note, two proteins, GSTO145 and Txnip,46 have
initially been considered to be possible targets of Mcc950.

Figure 6 Effect of Mcc950 on high-glucose-stimulated NLRP3 inflammasome mRNA expression in HRECs. (a–c) Relative mRNA expression level of NLRP3, caspase1 and
IL-1β was quantified. Expression is shown relatively to β-actin in each group, which was set to 1. Data are shown as mean± S.E.M., n= 3 technical replicates. Significant
differences were calculated using one-way ANOVA followed by Tukey’s multiple comparison test. *Po0.01 versus control

Figure 7 Mcc950 inhibited the activation of NLRP3 inflammasome by western blot analysis. (a) Expression level of indicated proteins was analyzed after incubating in normal
culture medium, high-glucose culture medium, high-glucose culture medium with 1 μM or 10 μMMcc950 supplementation. (b–d) Expression is shown relatively to β-actin in each
group, which was set to 1. Data are shown as mean±S.E.M., n= 3 technical replicates. Significant differences were calculated using one-way ANOVA followed by Tukey’s
multiple comparison test. *Po0.05 versus control, #Po0.05 versus high-glucose group. HG, high glucose
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However, co-immunoprecipitation experiments indicated that
GSTO1 interacted with ASC rather than NLRP3 directly.21

Although the thioredoxin interacting protein (Txnip) was
identified as a redox sensitive ligand of NLRP3,46 not enough
evidence suggested that the signaling pathway leading to
NLRP3 activation requires Txnip.47

NEK7 has been confirmed to bind directly to NLRP3 and is a
factor required for NLRP3 inflammasome activation in macro-
phages induced by nigericin.23 In the present study, we
observed that downregulation of NEK7 by siRNA inhibited
NLRP3 inflammasome activation, which partly mimicked the
effect of Mcc950 treatment in high-glucose-induced HRECs.
However, there was no significant change in expression of
NEK7 with the addition of Mcc950. We next verified whether
Mcc950 can target the interaction between NEK7 and NLRP3
and co-immunoprecipitation data showed that the NEK7–
NLRP3 interaction responded to high glucose stress aswell as
LPS priming after ATP stimulation,23 but this was suppressed

by Mcc950. This is the first confirmation of the hypothesis of
Shi’s group23,26 that the inhibitory effect of Mcc950 on NLRP3
inflammasome activation is partly mediated by downregulat-
ing NEK7–NLRP3 activity. Thus, Mcc950 can protect HRECs
from high-glucose-induced dysfunction via disrupting the
binding of NEK7 with NLRP3, and therefore, Mcc950 may be
a promising pharmaceutical approach for the future
treatment of DR.

Materials and Methods
Human surgical samples. All procedures abided by the tenets of the
Declaration of Helsinki (for human subjects) and to the ARVO Statement on human
subject research. We received institutional approval from the review committee of
The First Affiliated Hospital with Nanjing Medical University. Proliferative
membranes were surgically removed from six patients with PDR (ages 60± 6
years; duration of diabetes 16± 7 years), who underwent pars plana vitrectomy and
membrane peeling by the same surgeon, and retinal sections from normal donor
eyes (n= 4) were used as controls (aged 40± 5 years).

Cell culture and siRNA-mediated interference. HRECs were obtained
from Angioproteomie company (Boston, MA, USA). HRECs were cultured in
endothelial cell medium (Sciencell, Carlsbad, CA, USA) supplemented with 5% fetal
bovine serum (FBS), 100 μg/ml penicillin, and 100 μg/ml streptomycin (Gibco
Laboratories, Grand Island, NY, USA). HRECs were incubated at 37 °C in a
humidified atmosphere containing 5% CO2 and air. A separate cohort of HRECs
was exposed to normal glucose (NG, 5.5 mM D-glucose (Sigma, St. Louis, MO,
USA)), 30 mM high glucose and 50 mM high glucose in the presence or absence of
Mcc950 (Tocris Bioscience, Bristol, UK). Experiments were performed between cell
passages 3 and 8.
Nek7-specific siRNA (siNek7) and scrambled siRNA (siScrambled) were

purchased from (GenePharma, Shanghai, China). HRECs (60–70% confluent) were
transfected with Lipofectamine 2000 Reagent (Invitrogen, Carlsbad, CA, USA) at a
final siRNA concentration of 100 nmol/l. Six hours after transfection with the indicated
concentrations, media was replaced with fresh culture medium and the transfected
cells were incubated for 48 h. Oligonucleotides used for Nek7 were: siNek7: 5′-AU-
AUUAACUAACUGUCGGAGdTdT-3′ and control scrambled-siRNA: 5′-GCACUA-
ACCUACCAACAAUdTdT-3′.

Cell viability assay. Viability and proliferation of HRECs was measured using
a cell counting kit-8 (CCK-8, Biosharp, Hefei, China). Briefly, 2 × 103 of HRECs were
seeded into each well of a 96-well plate and allowed to attach for 24 h. Cells were
cultured in serum-free media for starvation for 12 h. Then, cells were stimulated with
different concentrations of glucose with or without Mcc950 (0.1, 1, 10, 100 μM) for
24 h, and 10 μl CCK-8 was added to each well followed by incubation for an
additional 2–4 h at 37 °C. Then, absorbance (450 nm) was measured. Experiments
were repeated at least three times.

Western blot. HRECs obtained from passage 6 were grown to 70–80%
confluence and then starved for 12 h in 0.5% FBS/ECM. HRECs were pretreated
with Mcc950 for 2 h before stimulation with high glucose. Then, HRECs and
proliferative membrane samples from DR patients or donor eyes were lysed using a
nuclear and cytoplasmic protein extraction kit (Beyotime, Haimen, China). Lysates
were centrifuged at 15 000 × g for 10 min at 4 °C. Protein was quantified using
Bradford’s reagent with bovine serum albumin as a standard. Proteins were
separated using 10% SDS-PAGE and transferred to a polyvinylidene difluoride
membrane (Millipore, IPVH00010, Bedford, MA, USA). Then, the membrane was
blocked for 1 h at room temperature with 5% (v/v) nonfat dry milk. After three
washes with PBST, the membrane was incubated in PBS at 4 °C (overnight) with
anti-caspase 1 (1:1000, Cell Signaling Technology, Boston, MA, USA, No.2225),
anti-NLRP3 (1:1000, Proteintech, Chicago, USA, No. 19771-1-AP), anti-IL-1β
(1:1,000, Cell Signaling Technology, No. 12242). The membrane was again washed
with PBST and incubated for 1 h at room temperature with a horseradish
peroxidase-conjugated secondary antibodies. Signals were developed using a
standard ECL western blot detection reagent (Amersham Biosciences, Arlington
Heights, IL, USA). Densitometric analysis was performed with ImageJ software.

Figure 8 Immunofluorescence analysis of the expression of NLRP3 and IL-1β in
HRECs. (a) Representative immunostaining images showed the NLRP3/ IL-1β
double labeling HRECs induced by three different culture media (scale bar of 50 μm).
(b) Quantitative analysis of the ratio of NLRP3/IL-1β co-labeling cell to total cell after
incubating in three different culture media. Data are shown as mean±S.E.M., n= 3
technical replicates. Significant differences were calculated using one-way ANOVA
followed by Tukey’s multiple comparison test. *Po0.01 versus control, #Po0.05
versus high-glucose group
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Co-immunoprecipitation assay. Cells were extracted with lysis buffer
(10 mM KCl, 1.5 mM MgCl2, 10 mM HEPES, 1 mM PMSF, 1 mM DTT) and
homogenized for 30 min at 4 °C. Protein extracts were centrifuged at 12 000 × g for
15 min at 4 °C, and then the supernatants containing total protein were collected.

Equal amounts of protein were exposed to antibodies against control
immunoglobulin G (1:100, Abcam, Cambridge, MA, USA, ab200699) or Nek7
(1:10, Abcam, ab133514), which was immobilized on protein A/G beads (Beyotime).
After a 3 h incubation at 4 °C with gentle rotation, beads were washed extensively

Figure 9 NEK7 by siRNA inhibited high-glucose-stimulated NLRP3 inflammasome activation in HRECs. (a) Expression level of indicated proteins in scrambled siRNA group,
scrambled siRNA+ HG group, NEK7 siRNA+ HG group, scrambled siRNA+HG+Mcc950 group was detected by western blot, respectively. (b–d): Expression is shown relatively to
β-actin in each group, which was set to 1. Data are shown as mean± S.E.M., n= 3 technical replicates. Significant differences were calculated using one-way ANOVA followed by
Tukey’s multiple comparison test. *Po0.05 versus scrambled siRNA group, #Po0.05 versus scrambled siRNA+ HG group

Figure 10 Mcc950 suppressed high-glucose-induced HREC dysfunction via NLRP3–NEK7 pathway. (a) Effect of Mcc950 on the endogenous NEK7–NLRP3 interaction in
high-glucose condition was examined by immunoprecipitation and immunoblot. The lysate of control group without HG or Mcc950 treatment was applied for IgG control, using the
same amount of protein. (b) The density value of NLRP3 interacted with NEK7 was normalized for its input protein level. Data are shown as mean± S.E.M., n= 2–3 technical
replicates. One-way ANOVA followed by Tukey’s multiple comparison test. *Po0.01 versus control, #Po0.01 versus HG group
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five times with lysis buffer, boiled and microcentrifuged. Proteins were detected with
monoclonal antibodies against Nek7 (1:10 000, Abcam, ab133514), NLRP3
(1:1000, Proteintech, No. 19771-1-AP) by western blot.

RNA isolation and cDNA synthesis. At the end of the time point, cells
were trypsinized, washed with ice-cold PBS twice and total RNA was isolated using
Trizol reagent (Life Technologies, Grand Island, NY, USA). RNA was measured
using 260/280 UV spectrophotometry. Total RNA pellets were resuspended in
RNase-free water, followed by removal of potentially contaminated DNA by
treatment with DNase I (Life Technologies). Next, 1 μg of total RNA from each
sample was used for reverse transcription with an oligo-dT and a Superscript II (Life
Technologies) to generate first-strand cDNA in a 20 μl reaction mixture. Finally, the
cDNA was stored at − 20 °C before use.

Real-time PCR. RT-PCR was performed to measure expression of mRNA with
the following primers: human NLRP3 (forward, 5′-GCACCTGTTGTGCAATCTGAA
-3′; reverse, 5′-TCCTGACAACATGCTGATGTGA)-3′, human capsase1 (forward,
5′-TTTCCGCAAGGTTCGATTTTCA-3′; reverse, 5′-TGGGCATCTGCGCTCTACCA
TC-3′), human IL-1β (forward, 5′-TCCAGGGACAGGATATGGAG-3′; reverse, 5′-TC
TTTCAACACGCAGGACAG-3′). A 4.4 μl aliquot of cDNA was amplified using
RT-PCR in a total volume of 10 μl. RT-PCR was performed with an initial
denaturation step at 95 °C for 30 min followed by 40 cycles of standard PCR.
NLRP3, caspase 1, IL-1β mRNA expression were normalized to β-actin mRNA.

ELISA. ELISA was conducted on culture media collected after treatment. Media
samples were immediately centrifuged for 5 min at 4000 × g to collect conditioned
culture supernatant, which was stored at − 80 °C until use. IL-1β released by
HRECs was measured using a commercially available ELISA kit (R&D System,
Minneapolis, MN, USA) according to the protocol described by the manufacturer.

Immunofluorescence. Samples from patients with PDR or donor eyecups
were fixed with freshly prepared paraformaldehyde (4%) for 2 h at 4 °C, dehydrated
using 30% sucrose solutions for 30 min and sent immediately to OCT compound
(Sakura, PA, USA) for frozen sections. Frozen sections were cut at 10 μm thickness
at − 20 °C and stored at − 80 °C until staining. Sections were stained by NLRP3
(1:500, Abcam, ab4207) or IL-1β (1:500, Abcam, ab2105) with CD31 (1:500,
Abcam, ab24590). HRECs were fixed with freshly prepared paraformaldehyde (4%)
for 30 min at 4 °C. Then, cells and frozen tissue sections were washed 10 min with
PBS (three times), and blocked with 1% FBS in PBS for 1 h at room temperature.
After a 10-min washing with PBS three times, samples were incubated with NLRP3
or IL-1β overnight at 4 °C in a humidified chamber. After a 10-min washing with PBS
three times, cells were incubated with corresponding secondary antibodies
conjugated with Alexa Fluor 488 (1:500, Abcam) or Alexa 594 (1:500, Abcam) for
1 h at 37 °C in a darkened humidified chamber. Cell nuclei were stained with 4′,
6-diamidino-2-phenylindole (DAPI, Sigma, St. Louis, MO, USA). Fluorescence was
observed using a confocal microscope (Olympus 1X81, Olympus, Tokyo, Japan).

TUNEL staining. Cell death was measured using TUNEL (Roche Biochem-
icals, Mannheim, Germany), according to the manufacturer’s instructions. After
treatment with 4% freshly prepared paraformaldehyde for 30 min, samples were
washed in PBS 10 min. Then, samples were treated with permeabilization solution
(0.1% Triton X-100 in 0.1% sodium citrate) for 15 min. After washing, the labeling
reaction was performed using a solution containing terminal deoxynucleotidyl
transferase, its buffer and fluorescein-dUTP. During this step, slides were incubated
at 37 °C for 60 min in a humidified chamber. After washing, cell nuclei were stained
with DAPI for 15 min. Fluorescent images were photographed using a confocal
microscope (Olympus 1X81, Olympus, Tokyo, Japan).

Statistical analysis. All data are expressed as means± S.E.M. One-way
ANOVA or a Student’s t-test was performed to assess statistical differences between
the groups using SPSS19.0 software and Graphpad Prism 5.0 (P-valueo0.05 was
accepted as statistically significant).
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