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Abstract
Background Two prostate cancer (PC) classification methods based on transcriptome profiles, a de novo method referred to
as the “Prostate Cancer Classification System” (PCS) and a variation of the established PAM50 breast cancer algorithm,
were recently proposed. Both studies concluded that most human PC can be assigned to one of three tumor subtypes, two
categorized as luminal and one as basal, suggesting the two methods reflect consistency in underlying biology. Despite the
similarity, differences and commonalities between the two classification methods have not yet been reported.
Methods Here, we describe a comparison of the PCS and PAM50 classification systems. PCS and PAM50 signatures
consisting of 37 (PCS37) and 50 genes, respectively, were used to categorize 9,947 PC patients into PCS and PAM50
classes. Enrichment of hallmark gene sets and luminal and basal marker gene expression were assessed in the same datasets.
Finally, survival analysis was performed to compare PCS and PAM50 subtypes in terms of clinical outcomes.
Results PCS and PAM50 subtypes show clear differential expression of PCS37 and PAM50 genes. While only three genes
are shared in common between the two systems, there is some consensus between three subtype pairs (PCS1 versus Luminal
B, PCS2 versus Luminal A, and PCS3 versus Basal) with respect to gene expression, cellular processes, and clinical
outcomes. PCS categories displayed better separation of cellular processes and luminal and basal marker gene expression
compared to PAM50. Although both PCS1 and Luminal B tumors exhibited the worst clinical outcomes, outcomes between
aggressive and less aggressive subtypes were better defined in the PCS system, based on larger hazard ratios observed.
Conclusion The PCS and PAM50 classification systems are similar in terms of molecular profiles and clinical outcomes.
However, the PCS system exhibits greater separation in multiple clinical outcomes and provides better separation of prostate
luminal and basal characteristics.
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Introduction

There has been much recent progress in the use of prostate
cancer (PC) genomics to identify drivers of aggressive dis-
ease. These advances have spurred development of com-
mercially available genomic classifiers that can identify
aggressive tumors at high risk of progression to metastatic
and/or castration resistant PC (CRPC) [1–7]. Despite this
technology, there is no universally accepted or widely used
molecular subtyping system for PC, unlike other cancers such
as breast cancer, in which luminal A, luminal B, and basal
subclassification are commonplace and clinically meaningful.
Despite these limitations, PC subtypes have been proposed
based on genomic criteria, such as various somatic alterations
in chromatin sequence, (e.g., TMPRSS-ERG fusions [8, 9])
and androgen receptor amplification [3, 4]. The Cancer
Genome Atlas identified several genomic PC subtypes,
referred to as ERG, ETV1, ETV4, FLI1, SPOP, FOXA1,
IDH1, and Other [7]. Tomlins et al. [10] described
four subtypes based on gene expression (ERG+, ETV+,
SPINK1+, and Triple Negative (ERG−/ETS−/SPINK1−)).
However, the clinical applicability of these PC genomic
classifiers has been limited [11, 12].

Many reports have proposed gene expression signatures
as a means of tumor classification [13–18]. Two
transcriptome-based classification methods were recently
reported that categorize PC into three subtypes [19, 20]. Our
group described the prostate cancer classification system
(PCS), an integrated approach employing activation sig-
natures of 14 pathways associated with PC biology to
interrogate a virtual cohort of 1321 clinical samples [19].
Two luminal subtypes (PCS1 and PCS2) and one basal
subtype (PCS3) were described in this report. PCS1 tumors
exhibited the poorest clinical outcomes, including increased
risk of metastatic progression, PC-specific mortality, and
overall survival. In contrast, no significant differences in
clinical outcomes were observed between PCS2 and PCS3;
however, both PCS1 and PCS3 tumors were enriched in
bone metastases in comparison to PCS2 [21]. In the initial
report, we validated the PCS scheme with ten independent
patient cohorts and 19 laboratory models of PC. In line with
this, PCS1-specific genes were highly expressed in andro-
gen receptor signaling inhibitor (ARSI) resistant PC [19]
and this was independently validated by our recent study
using a novel circulating tumor cell RNA assay system [22].
The initial You et al. study [19] was the first to categorize
PC into only three subtypes using genomic approaches.

Zhao et al. [20] applied a variation of the widely used
PAM50 breast cancer classifier to a large PC transcriptome
dataset. PAM50 classifies breast cancer into luminal A
(LumA), luminal B (LumB), HER2, Normal-like, and Basal
subgroups [23]. The adaptation of PAM50 to PC focused on

luminal and basal PC phenotypes and disregarded the HER2
and Normal-like subtypes described in the standard
PAM50 system. Similar to the PCS system, PAM50
revealed that transcriptome data alone can divide PCs into
only three subtypes, LumA, LumB, and Basal. These sub-
groups were associated with varied clinical behaviors.
LumB exhibited the worst survival rate, while LumA and
Basal subtypes exhibited similar clinical outcomes with
better survival rates. In comparison to other classification
schemes, which identified as many as seven PC subtypes
[1–7], it is intriguing that both PCS and PAM50 concluded
that PCs can be categorized into two distinct luminal and
one basal subtype using only transcriptome data.

To date, no comparison has been made between these
two different three-category classification systems. To
address this gap, here we present a comparison of the PCS
and PAM50 systems. We applied the PCS and PAM50
methods to two large PC transcriptome datasets: (1) the
Prostate Cancer Transcriptome Atlas (PCTA) and (2) the
Decipher GRIDTM database (GRID) (Supplementary
Table 1). The PCTA is a virtual cohort consisting of 1,321
PC transcriptome profiles. These data were used to develop
the PCS [19]. The GRID is a cohort consisting of 8626 PC
transcriptome profiles, a subset of which was employed in
the Zhao et al. study [20]. We hypothesized that the PCS
and PAM50 systems have many similarities as well as
differences in terms of molecular profiles and clinical out-
comes. We thus performed a comparative analysis assessing
three different measures: (1) gene expression patterns, (2)
pathway associations, and (3) correlation with clinical
outcomes.

Methods

Statistical analysis

To examine the association between clinical outcomes and
PCS and PAM50 categories in the tumors from the GRID
dataset, we used Kaplan–Meier survival analysis and Cox
proportional hazards regression analysis with the following
outcomes: biochemical recurrence (BCR), metastasis (Met),
and PC-specific mortality (PCSM). To test whether PCS or
PAM50 classification was prognostic independent of other
clinical variables, multivariable analyses were performed
adjusting for pathological grade, which was categorized into
three groups with Gleason sum score of less than 7, equal to
7, and more than 7. All analyses were conducted using
Python (version 2.7). p < 0.05 was considered statistically
significant. Detailed information of transcriptome datasets
and analysis procedures used in this study are described in
Supplementary Methods.
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Results

Conserved gene expression patterns between PCS
and PAM50

We applied the PCS and PAM50 classifiers to assign the
tumors from the PCTA cohort (n= 1,321) [19] and the
GRID cohort (n= 8,626) into PCS1-3 and LumA/B and
Basal subtypes. Differential expression patterns of PCS37
genes [19] were displayed by PCS classes with the PCTA

and the GRID datasets (Fig. 1A and Supplementary Fig. 1),
showing distinct expression patterns of individual PCS
class-specific genes. For example, 12 PCS1-specific genes
(STMN1, MCM4, CCNB1, CDC6, CDKN3, EZH2, TPX2,
FOXM1, KIF11, HMMR, MKI67, and KNTC1) are only
highly expressed in PCS1 tumors (Fig. 1A). The GRID
contains 4% (346/8,626) PCS1, the most aggressive PCS
subtype, as most specimens were primary PCs. In the PCTA
cohort, containing 260 metastatic PCs, 26% (377/1,321) of
patients were assigned to PCS1. In total, 66% (176/260) of

Fig. 1 PCS37 and PAM50 genes in the PCTA and the GRID
datasets. The heatmap depicts differential expression of PCS37 and
PAM50 in the PCTA and GRID datasets based on A PCS and B
PAM50 grouping. C The heatmap shows differential expression of
PAM50 genes in the PCTA and GRID datasets based on PCS

grouping. D The Venn diagram of PCS37 and PAM50. E The dis-
tribution of PAM50 subtypes across three PCS subtypes in the PCTA
and GRID datasets. PCS prostate cancer subtype, LumA Luminal A
subtype, LumB Luminal B subtype, Basal Basal subtype.
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metastatic PCs belong to this PCS1 subtype. LumB, the
most aggressive PAM50 subtype, accounts for 29% (2,474/
8,626) of the GRID cohort and 47% (624/1,321) of the
PCTA cohort. Of 260 metastatic PCs in the PCTA cohort,
170 (65%) patients were assigned LumB.

We then assessed PAM50 gene expression by PAM50
classes with both datasets (Fig. 1B). These 50 genes also
showed distinct expression patterns among the classes.
However, their expression was not unique to a specific
subtype. For example, some genes that were highly
expressed in LumB also showed high expression in Basal.
In addition, some genes (e.g., NAT1, GRB7, MAPT) did
not show a clear differential expression pattern among the
PAM50 classes. Both PCS37 and PAM50 displayed clear
separation into three PC classes. We further assessed the
expression pattern of PAM50 genes by the PCS classifier
(Fig. 1C). Of note, genes with high expression in LumB or
Basal were highly expressed in PCS1. These genes exhibit
mostly low expression in LumA.

Given that both classification methods resolve all PCs
into three subtypes, it is interesting that only three genes
(CCNB1, CDC6, and MKI67) overlap between the two
systems (Fig. 1D). These three genes show high expression
in both PCS1 and LumB. We observed all PCS categories in
all classification groups as defined by PAM50 in both
PCTA and GRID (Fig. 1E). We found a high frequency of
PCS2 in LumA, but not PCS1 and PCS3. LumB was
enriched for PCS1, while Basal subtype but not LumA or
LumB was enriched for PCS3. This was validated by
visualizing the distribution of the tumors from each cate-
gory and their overlaps using PCS37 and PAM50 gene
expression (Supplementary Fig. 2A). We then defined
centroids of each categories and estimated the pairwise
distances between the PCS and PAM50 categories (Sup-
plementary Fig. 2B and Supplementary Table 2). Consistent
with the enrichment of sample numbers shown in Fig. 1E,
three subtype pairs (PCS1 versus LumB, PCS2 versus
LumA, and PCS3 versus Basal) exhibit the shortest distance
between centroids. Taken together, three subtype pairs
(PCS1 versus LumB, PCS2 versus LumA, and PCS3 versus
Basal) show comparable enrichment in terms of number of
tumors commonly included in both subtypes, despite the
small number of genes shared by PCS37 and PAM50.

Pairwise overlap of PCS and PAM50 classes in
cellular functions

We computed enrichment scores using the GSEA method
[24] with hallmark gene sets [25] for all the PCS and
PAM50 categories. In the PCTA, PCS1 samples were
highly enriched with E2F targets and G2M checkpoint;
PCS2 samples were enriched with androgen response, fatty
acid metabolism, and cholesterol homeostasis; and PCS3

was enriched with IL6-JAK-STAT3 signaling and KRAS
signaling (UP) (Fig. 2A). PAM50-classified samples in the
PCTA showed an overall similar enrichment result with
PCS classification (Fig. 2A). LumA samples were enriched
in fatty acid metabolism, androgen response, cholesterol
homeostasis. LumB samples were enriched with the hall-
mark gene sets of PCS1, such as E2F targets and G2M
checkpoint. Basal samples were enriched in the same hall-
mark gene sets as PCS3 (Fig. 2B). In the GRID, PCS1, and
PCS2 were enriched in E2F targets, G2M checkpoint, fatty
acid metabolism, androgen response, and cholesterol
homeostasis, but PCS3 did not show any significant
enrichment of any of these hallmark gene sets. PAM50-
classified samples in the GRID showed the same enrich-
ment pattern. LumB exhibited higher ES of E2F targets and
G2M checkpoint than LumA, but the highest score was
androgen response in LumB-enriched hallmark gene sets
(Supplementary Fig. 3A). The highest enrichment score in
LumA was androgen response, similar to PCS2 (Supple-
mentary Fig. 3B).

Luminal and basal marker expression in PCS and
PAM50 classifications

We assessed expression levels of luminal and basal cell
marker genes in the PCTA and the GRID datasets [19, 26].
Expression of these marker genes was highly concordant
with PCS classification in both the PCTA (Fig. 3A) and the
GRID (Fig. 3B), consistent with our prior results in the
initial PCS report [19]. In the PAM50 classes, LumB and
Basal subtypes display clear high and low expression of
luminal and basal marker genes, respectively. However,
LumA tumors exhibit mixed marker gene expression,
indicating a composite luminal and basal expression phe-
notype. This result suggests that the PCS classification
scheme is superior in separating prostatic luminal and basal
gene expression.

PCS1 and LumB are associated with the worst
survival outcomes

We examined relationships between subtype category and
the clinical outcomes of PCSM, BCR, and Met using the
GRID. PCS1 within the PCS categories (Fig. 4A) and
LumB within the PAM50 categories (Fig. 4B) were the
most aggressive for all three metrics (PCSM, BCR, and
Met). Cox proportional hazard analysis was performed
using the two classification systems. In univariable analysis
using the PCS scheme, the PCS1 subtype exhibited the
highest hazard ratio (HR) (PCSM: 3.91 [2.78–5.52], BCR:
2.48 [1.34–4.08], Met: 3.91 [2.78–5.52]). Similarly, the
LumB subtype exhibited the highest HR (PCSM: 1.85
[1.32–2.61], BCR: 1.54 [1.01–2.29], Met: 2.04 [1.58–2.55])
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(Fig. 4C). In all combinations of pairwise comparisons,
except for LumB compared to LumA in BCR (HR= 3.41
[2.40–4.87]), PCS1 exhibited higher HRs compared to
LumB (Supplementary Table 3). We also performed mul-
tivariable analysis of PCS or PAM50 adjusting for Gleason
score (Table 1). After the adjustment, PCS still showed
larger HR (PCSM: 3.76 [2.17–6.25], BCR: 2.03
[1.39–2.96], Met: 3.38 [2.26–5.06]) compared to PAM50
(PCSM: 1.51 [0.96–2.38], BCR: 1.43 [1.14–1.79], Met:

1.73 [1.30–2.29]). Importantly, we found that controlling
for Gleason score did not dramatically affect the HRs in
either PCS or PAM50, indicating both are largely inde-
pendent of Gleason grade for predicting patient outcomes.
Of note, both multivariable PCS and PAM50 models with
Gleason score exhibited the same concordance index at
0.75. We further checked the association of each subtype
and Decipher score [27], which is designed to predict
metastasis risk after radical prostatectomy. The Decipher

Fig. 2 Enriched cellular processes of PCS and PAM50 subtypes in
the PCTA. A Enriched seven hallmark gene sets of PCS (left) and
PAM50 (right) categories were displayed with radar chart in the PCTA
cohort. B Radar chart illustrates overlaps of enriched hallmark gene

sets by PCS1 versus LumB, PCS2 versus LumA, and PCS3 versus
Basal in the PCTA cohort. LumA Luminal A subtype, LumB Luminal
B subtype, Basal Basal subtype.
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score was significantly higher in PCS1 and LumB compared
to other subtypes (Supplementary Fig. 4A, B). Multi-
variable analysis of Decipher score after adjustment of
Gleason score was performed to compare with PCS and
PAM50. Decipher score exhibited the highest HRs and
significant p values in PCSM, BCR, and Met (Supple-
mentary Fig. 4C).

Discussion

In this study, we performed a comprehensive cross-
comparison of subtype assignments obtained from the PCS
and PAM50 classification methods. We found that three
subtype pairs (PCS1 versus LumB, PCS2 versus LumA, and
PCS3 versus Basal) show conserved gene expression patterns
in the tumors included in both subtypes. Distance metrics of
subtype centroids followed by visualization showed a simi-
larity between these three pairs of subtypes. Despite the fact
that only three genes overlap between the PCS37 and
PAM50 signatures, these three subtype pairs exhibit very
similar enrichment of cellular processes, as well as the dis-
tance of the centroids between the subtypes (e.g., PCS1 and
LumB). This result suggests high concordance of the two

subtypes in cellular functions and clinical phenotypes. Finally,
a further comparison was made in clinical outcomes with
PCSM, BCR, and Met, demonstrating that PCS1 and LumB
subtypes are the most aggressive tumors with the worst sur-
vival outcomes in each categorization scheme.

The two classification methods likely reflect underlying
luminal and basal biology as described in basic PC studies
[19, 20]. PCS was originally designed as an unbiased
classification scheme, with 14 PC relevant pathway acti-
vation signatures that revealed two luminal and one basal
phenotype, while the PAM50 as applied to PC was biased
toward luminal and basal phenotypes at the outset [20]. As
such, it is interesting that two distinct PC categorization
schemes converged to similar conclusions about the manner
in which PCs can be grouped from transcriptome data
alone. As shown in Fig. 3, both PCS and PAM50 exhibit
differential expression of luminal and basal marker genes.
However, PCS classes show consistent luminal and basal
marker gene expression with clear separation between
PCS1/2 and PCS3, respectively, while LumA tumors have
high expression of basal marker genes, which are highly
expressed in Basal tumors as well. This suggests that PCS
classification more accurately identifies prostate luminal and
basal phenotypes expressed within the cancer specimens.

Fig. 3 Gene expression of
Luminal and Basal cell
markers in the PCTA and the
GRID. The heatmap displays
expression of the Luminal and
Basal cell marker genes in the
PCTA (A) and the GRID (B).
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The development of classification schema such as PCS and
PAM50 in PC represents an important evolution in the field.
Rather than considering an isolated biomarker or limited

groups of biomarkers, these approaches focus on patterns of
gene expression that ultimately relate to key biological drivers
of the disease process. Thus far, these classifiers have shown

Fig. 4 Clinical outcomes in distinct PCS and PAM50 subtypes in
the GRID. Kaplan–Meier survival curves shows differential clinical
outcome association of PCS (A) and PAM50 (B) categorization.
Tables below the KM plot represent the number at risk. (PCSM

prostate cancer-specific survival, BCR biochemical recurrence, Met
metastasis.) C Forest plots display hazard ratios of PCS, PAM50, and
Gleason grade against PCSM, BCR, and Met. (GS Gleason score).

A comparative study of PCS and PAM50 prostate cancer classification schemes 739



the capacity to enhance clinical prediction and prognostication
beyond conventional clinical criteria used in practice today.
Emerging data with PAM50 and PCS point toward their
potential utility in personalizing the approach to PC care,
particularly with the use of systemic therapies such as ARSIs
(e.g., abiraterone, enzalutamide, apalutamide, and dar-
olutamide) and taxanes (e.g., docetaxel and cabazitaxel).
Analysis of samples from the SPARTAN clinical trial
revealed clinically important differences in behavior in
response to apalutamide, based on PAM50 classification. In
SPARTAN, PAM50 Basal patients seemed to have a greater
absolute benefit from ADT and apalutamide, suggesting these
patients may benefit from intensification with ARSIs [28].
Consistent with this, analysis of PCS1 and LumB specimens
in the GRID from patients receiving ADT showed higher
rates of PCSM, BCR, and Met compared to PCS2/3 or
LumA/Basal (Supplementary Fig. 5). However, absence of
information on ADT response in the GRID prohibits analysis
of relative performance of the PCS and PAM50 classifications
with respect to this clinical variable. While encouraging,
prospective validations of these data are needed prior to more
widespread deployment of these approaches. Studies are now
underway that will provide important insights into this
question, including the ongoing NRG-GU-006/BALANCE
study (NCT03371719), which used PAM50 as a stratification
variable, and has now finished accrual and is expected to yield
results within the next 3 years.

While tissue-based classification will remain an impor-
tant standard in PC, the clinical behavior of this disease
makes obtaining tissue samples from patients with meta-
static disease challenging. Given the potential importance of
these tools in advanced PC/metastatic CRPC, additional
means of deploying these technologies is crucial. For-
tunately, given recent technical advances, it will become
possible to conduct genomic classifications using liquid
biopsies [22]. These blood-based tools will also require
prospective validation. Liquid biopsies are included in

ongoing studies, including NRG-GU-006/BALANCE.
These initial studies will provide a foundational experience
for use of PCS and PAM50 in clinical practice.

In order for these classification schemes to be useful in
a clinical setting, it is critical that they offer actionable
prognostic information. We observed a disparate percen-
tage of subtype assignments within the study cohorts. The
GRID consists of a prospective cohort (n= 7,000) and a
retrospective cohort (n= 1,626) as shown in Supple-
mentary Fig. 1. In the GRID, only 3.7% of the prospective
cohort and 5% of the retrospective cohort are classified as
PCS1, whereas the PCTA cohort contains 19% of primary
tumors classified as PCS1. The likely explanation for this
difference is that the GRID and the PCTA contain dif-
ferent proportions of high grade tumors or tumors with
distinct metastatic potential. However, these three cohorts
include a similar percentage of high risk patients (Gleason
score > 7), and PCS1 tumors exhibit the worst prognosis
in low grade tumors (Gleason score ≦ 7) based on our
study [19]. This indicates that the PCS categorization is a
variable independent variable of Gleason grade. On the
other hand, the proportion of PCS1 (6% in our previous
study [19]) and the incidence rate of metastases were
similar, with about 3–6% of newly diagnosed PC cases
with metastasis [29, 30]. The PCS1 assignment rate can
therefore vary according to metastatic potential indepen-
dent of pathological grade.

It is also well known that dataset composition and
choices for reference construction affect subsequent subtype
calling. Of note, standard PAM50 classification used in
Zhao et al. and the present study is profoundly affected by
the composition of the sample cohort used for reference
construction. Zhao et al. conducted median centering to the
GRID retrospective and prospective cohorts separately prior
to applying the PAM50 algorithm. Thus, the percentage of
PAM50 categories was assigned different median values
from each cohort. In this study, we applied single median

Table 1 Multivariable Cox
proportional hazard regression
analysis for PCS and PAM50
classification with clinical
parameters.

Multivariable analysis with PCS Multivariable analysis with PAM50

Variable Hazard ratio p value C-index Variable Hazard ratio p value C-index

PCSM

PCS 3.76 (2.17–6.52) <0.001 0.75 PAM50 1.51 (0.96–2.38) 0.073 0.75

Gleason score 2.16 (1.74–2.66) <0.001 Gleason score 2.25 (1.83–2.78) <0.001

BCR

PCS 2.03 (1.39–2.96) <0.001 0.66 PAM50 1.43 (1.14–1.79) 0.002 0.67

Gleason score 1.71 (1.55–1.88) <0.001 Gleason score 1.69 (1.54–1.86) <0.001

Met

PCS 3.38 (2.26–5.06) <0.001 0.71 PAM50 1.73 (1.30–2.29) <0.001 0.72

Gleason score 2.03 (1.79–2.31) <0.001 Gleason score 2.04 (1.80–2.32) <0.001

Multivariate analysis of PCS or PAM50 classification system with Gleason score was performed.
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values based on the GRID, combining retrospective and
prospective cohorts because the median value approaches
the actual population mean as the sample number increases.
In future studies, it will be necessary to introduce a method
for improving classification robustness by applying appro-
priate reference construction [31].

PC is one of the malignancies most affected by genetic
factors [32], and a range of genomic alterations and struc-
tural variations associated with the clinical outcomes have
been described [3, 7, 33]. However, the present study is
based only on transcriptome data, and did not consider
genetic or structural changes associated with the cancers in
the individual PCS and PAM50 categories. Thus, our report
identified differences and similarities between the two
classification schemes but did not make comparisons with
other PC subtyping systems. In the future, comparative
analysis with other classification methods using multi-omics
data [3, 7, 34] will complement the work described here.

In conclusion, PCS and PAM50 present a new lens
through which PC may be viewed. There are important
similarities in these signatures despite obvious differences
in origin and performance (based on existing datasets or
samples). Prospective validation of these tools is underway
and will help to clarify how they may be most effectively
deployed in clinical practice.
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