
ARTICLE

Single-cell analyses of Crohn’s disease tissues
reveal intestinal intraepithelial T cells heterogeneity
and altered subset distributions
Natalia Jaeger1,8, Ramya Gamini 2,8, Marina Cella 1,8, Jorge L. Schettini 2,6, Mattia Bugatti3,

Shanrong Zhao2,7, Charles V. Rosadini2, Ekaterina Esaulova 1, Blanda Di Luccia1, Baylee Kinnett4,

William Vermi 3, Maxim N. Artyomov 1, Thomas A. Wynn2, Ramnik J. Xavier 5, Scott A. Jelinsky 2 &

Marco Colonna 1✉

Crohn’s disease (CD) is a chronic transmural inflammation of intestinal segments caused by

dysregulated interaction between microbiome and gut immune system. Here, we profile, via

multiple single-cell technologies, T cells purified from the intestinal epithelium and lamina

propria (LP) from terminal ileum resections of adult severe CD cases. We find that intrae-

pithelial lymphocytes (IEL) contain several unique T cell subsets, including NKp30+γδT cells

expressing RORγt and producing IL-26 upon NKp30 engagement. Further analyses com-

paring tissues from non-inflamed and inflamed regions of patients with CD versus healthy

controls show increased activated TH17 but decreased CD8+T, γδT, TFH and Treg cells in

inflamed tissues. Similar analyses of LP find increased CD8+, as well as reduced CD4+T cells

with an elevated TH17 over Treg/TFH ratio. Our analyses of CD tissues thus suggest a

potential link, pending additional validations, between transmural inflammation, reduced IEL

γδT cells and altered spatial distribution of IEL and LP T cell subsets.
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Inflammatory bowel disease (IBD) encompasses intermittent
chronic inflammatory disorders of the gastrointestinal tract
that significantly impair the quality of life in affected indivi-

duals and can result in comorbidities and complications requiring
repeated surgery1,2. IBD includes two major subtypes, Crohn’s
disease (CD) and ulcerative colitis (UC). CD inflammation spans
across all layers of the gut, while tissue damage in UC is confined
to the mucosa. Both genetic and environmental factors contribute
to IBD by generating abnormal interactions between the com-
mensal microbiome and the mucosal immune system that result
in uncontrolled intestinal inflammation. The conventional ther-
apy with anti-inflammatory and immunomodulatory drugs has
been recently integrated with biologicals that can effectively target
cytokines, such as TNF-α, IL-12 and IL-23, or inflammatory cell
recruitment with α4β7 blockers3. However, IBD still poses sig-
nificant therapeutic challenges.

High-dimensional single-cell profiling approaches, such as
single-cell RNA sequencing (scRNA-seq) and mass cytometry,
have been recently performed on intestinal specimens from
patients with CD or UC and controls. These studies provided
unbiased analyses of cell lineages and their functional states in
IBD, deconvoluted pathways underlying IBD pathogenesis and
supplied biomarkers predicting the course of disease and the
response to therapy4–10. While these studies have analyzed whole
mucosal biopsies or the lamina propria (LP) selectively, few
studies have analyzed intraepithelial lymphocytes (IEL) purified
from CD specimens. IEL comprise a quite diverse and complex
repertoire of TCRαβ+ and TCRγδ+ T cells11,12, which are stra-
tegically located at the interphase between the luminal environ-
ment and the intestinal barrier, contributing to intestinal
homeostasis and mucosal protection13,14.

Here, we examine T cells from 90 intestinal specimens of CD
and controls by either scRNA-seq, multi-parameter flow cyto-
metry or CyTOF, with CD specimens derived from surgical
resections of the terminal ileum of adult patients with severe CD.
Comparing IEL T cell profiles with those of T cells purified from
the LP, our data not only provide an unbiased view of T cell
lineages diversity and functional states in the intestinal mucosa
under both healthy and CD conditions, but also identify an
altered spatial distribution of T cell subsets between the IEL and
the LP compartments that potentially correlates with transmural
inflammation, although this remains to be validated with larger
patient cohorts.

Results
scRNA-seq analysis identifies multiple IEL T cell subsets. IEL
were prepared from surgical resections of the terminal ileum of
CD patients, which included both macroscopically inflamed tis-
sue (II) and adjacent non-inflamed tissue (NI) (Supplementary
Fig. 1a–c). Most CD cases required surgical treatment because of
severity and resistance to medical therapy (patient information:
Supplementary Data 1–3). Ileal resections from patients under-
going surgery for colonic polyposis or cancer were used as con-
trols. In an initial survey, we defined the baseline heterogeneity of
IEL T cells by scRNA-seq of about 15,000 cells sorted from two
CD patients and two controls (sorting strategy Supplementary
Fig. 1d). Unsupervised clustering by UMAP of gene expression
data from both CD and control samples identified ten cell clusters
(Fig. 1a, b). Differential expression of marker genes was used to
annotate the different cell types and states. Three T cell clusters
expressed CD8A (0, 1, and 6) and five expressed CD4 (2, 3, 4, 5,
and 8) (Fig. 1c). Among the CD8+ clusters, cluster 6 expressed
genes indicating a canonical effector phenotype, including KLRG1
(Fig. 1d), GZMB, GZMK, PRF1, IFNG, and FCRL6 (Supplemen-
tary Fig. 2a, b). Cluster 6 also expressed high level of KLF2

(Supplementary Fig. 2c), a transcription factor that promotes
lymphocytes circulation15. In contrast, cluster 1 and cluster
0 shared expression of ITGAE, the receptor for E-cadherin, which
is indicative of tissue residency16, and CD160, a receptor for
HVEM expressed on epithelial cells17 (Fig. 1d). Expression of
ENTPD1, which encodes the activation marker CD39, dis-
tinguished cluster 1 from cluster 0 (Fig. 1d). The expression of
γδTCR, NK cell receptors, cytotoxic mediators, and chemokines
(Supplementary Fig. 2a, b) in a subset of cells within these two
clusters suggested that additional subpopulations may be present
(see below).

Within CD4+ cells, clusters 2 and 4 showed a TH17
transcriptional profile, featuring RORC, CCR6 (Fig. 1d), RORA,
LTB, CCL20, and KLRB1 (Supplementary Fig. 2a–c). Both subsets
expressed CD40LG (Supplementary Fig. 2b), which sustains TH17
differentiation in vitro and in vivo18. Moreover, cluster 2
expressed genes indicative of immediate effector function,
including (a) cytokine genes IL17A and IL26 (Supplementary
Fig. 2a); (b) IL23R, which endows responsiveness to IL-23
(Supplementary Fig. 2b); (c) ENTPD1 (Fig. 1d); (d) CXCR6
(Supplementary Fig. 2b), which promotes retention in the
intestinal epithelium19; (e) CCL4 and GZMB (Supplementary
Fig. 2a), known mediators of TH17 pathogenicity20. Cells in
cluster 3 corresponded to naïve CD4+ T cells expressing CCR7
(Fig. 1d), SELL, TCF7, LEF1, as well as KLF2 (Supplementary
Fig. 2b, c). This cluster also contained a few naïve CD8+ T cells.
Clusters 5 and 8 were enriched for genes related to TFH and Treg
lineages. These genes encoded cell surface receptors, such as
IL6ST (for GP130) (Fig. 1d), PDCD1 (for PD-1), TIGIT, ICOS,
TNFRSF4 (for OX40), and IL6R (Supplementary Fig. 2b), as well
as transcription factors, such as TOX2 (Fig. 1d), MAF and BATF
(Supplementary Fig. 2c). The left portion of cluster 5 expressed
CXCL13 (Fig. 1d), BCL6 and CXCR5 (Supplementary Fig. 2b, c),
pointing to a TFH phenotype. The right portion of cluster 5
expressed the Treg markers FOXP3, IL2RA, ENTPD1 (Fig. 1d),
CTLA4, and IL10 (Supplementary Fig. 2a, b). In addition, the
Treg side of cluster 5 expressed PRDM1 (Supplementary Fig. 2b),
which facilitates Treg over TFH differentiation21. Cluster 8
uniquely expressed BTLA (Fig. 1d) and CD200 (Supplementary
Fig. 2b), which are markers of terminal TFH differentiation22.
Cluster 7 included CD4 and CD8 MKI67+ proliferating cells
(Fig. 1c, d), while cluster 9 (Fig. 1b) represented a small B cell
contamination. Altogether, our survey of human IEL compart-
ment shows the presence of circulating and resident CD8+ T cell
subsets, as well as CD4+ T cell subsets belonging to the TH17,
TFH, and Treg lineages.

Flow cytometry of IEL corroborates T cell diversity. To validate
scRNA-seq data we analyzed IEL of CD and control patients by
flow cytometry (gating strategy: Supplementary Fig. 3a, b; patient
information Supplementary Data 4). Cells were clustered using
viSNE analysis in Cytobank. To facilitate comparison of flow
cytometry with scRNA-seq data, t-SNE clusters were labeled with
the same numbers of the corresponding scRNA-seq cluster fol-
lowed by an asterisk. We adopted CD103 as a marker of tissue-
resident CD8+ T cells (Fig. 2a, b). Most CD103– non-resident
cells expressed KLRG1+ (cluster 6*) (Fig. 2b), consistent with the
KLRG1+ T effector cells identified by scRNA-seq (cluster 6) (see
Fig. 1d). CD103+ cells were split into CD39+ and CD39– clusters
(1* and 0*), which corresponded to scRNA-seq clusters 1 and 0.
Flow cytometry also identified a unique cluster of CD103–

KLRG1– cells (U) that lacked all tested markers and thus could
not match any subset identified by scRNA-seq (Fig. 2a).

Among CD4+ T cells, TH17 were marked by CD161 (Fig. 2c, d)
and spanned clusters 2* and 4*, which were distinguished
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by expression of CD39 (Fig. 2d). Naïve CD4+ T cells (3*)
encompassed GP130+TIGIT–BTLA–CD161–CCR6–CCR7+/low

cells (Fig. 2d). TFH and Treg formed two large clusters (5–8*)
which shared GP130, TIGIT, BTLA, and PD-1 as in scRNA-seq,
but differed for ICOS expression (Fig. 2d). The external edges of
clusters 5–8* expressed high level of CD25 (Fig. 2d) suggestive of
fully differentiated Treg. Overall, flow cytometric data confirmed
the presence of three distinct clusters of CD8+ T cells, as well as
TH17, TFH, and Treg in the human IEL compartment.

IEL show an aberrant representation of T cell subsets in CD.
To examine the impact of CD on IEL T cells, we quantified per-
centages of CD8+, CD4+, and γδ T cells in a large cohort of
patients (Controls: n= 33–34; CD NI: n= 19–20; CD II: n= 19)
by flow cytometry (Fig. 3a–c, Supplementary Data 5 and Source
Data 1). CD8+ T cells were significantly decreased in CD patients
at the inflamed site (Fig. 3a), a finding that was further supported

by immunohistochemistry data (Supplementary Fig. 3c–f). CD8+

T cell attrition was paralleled by a significant increase in CD4+

T cells (Fig. 3b). In addition, γδ T cells were significantly reduced
in the inflamed tissue of CD patients, as compared to controls
(Fig. 3c). We further examined whether CD impacted specific T
cell subsets in a fraction of the larger cohort of patients described
above (Controls: n= 15; CD NI n= 9; CD II n= 9). Quantifica-
tion of resident CD103+ CD8+ T cells and non-resident CD103–

KLRG1+ CD8+ T cells did not reveal major differences between
CD and controls (Fig. 3d–f), indicating global rather than subset-
specific reduction of CD8+ T cells in CD. In contrast, quantifi-
cation of different CD4+ T cell clusters showed a significant
increase of CD39+CD4+ T cells, CD39+CCR6+ TH17 cells
(Fig. 3g, h) and CD39+CD4+ TH17 within the non-resident
CD103– population (Fig. 3i) in CD patients, suggesting that these
cells may have recently settled into the tissue. In addition, BTLA+

and TIGIT+ CD4+ T cells were decreased in CD patients (Fig. 3j,
k), indicating reduced representation of TFH. Finally, we observed a

Fig. 1 scRNA-seq of IEL T cells identifies discrete subsets of CD4+ and CD8+ T cells. a Unsupervised UMAP analysis of IEL T cell clusters. T cells were
pooled from two controls and two CD patients (8822 cells control, 6909 cells CD). b Heat map displaying the top ten differentially expressed genes in each
cell cluster. c Identification of CD4 and CD8A expressing cells. d UMAP of representative selected genes associated with the identified clusters.
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significant decrease in the relative proportion of CD25hi CD4+

T cells in CD, which may correspond to Tregs (Fig. 3l). Altogether,
these results suggested that the IEL compartment of CD patients
exhibits an aberrant T cell landscape. Notably, some CD-associated
alterations were evident in the non-inflamed tissue. The non-
inflamed tissue may exhibit early cellular changes reflecting
ongoing disease without any macroscopic sign of inflammation
and may predict risk of recurring inflammation.

Reclustering reveals T cell subsets with unique features. To
further dissect T cell heterogeneity within the major IEL popu-
lations, we reclustered scRNA-seq data of three pairs of clusters
(see Fig. 1a). These included tissue-resident CD8+ T cell clusters
0 and 1 (0–1), the TFH-Treg clusters 5 and 8 (5–8), and the TH17
clusters 2 and 4 (2–4). Subclusters were indicated with a super-
script number next to the original cluster pair. The 0–1 cluster
pair was resolved into five specialized subsets (Fig. 4a). Cluster
0–10 corresponded to γδ T cells, as indicated by the expression of
transcripts for γδTCR (TRDC and TRGC1), as well as the tran-
scription factors ID323 and HOPX (Fig. 4b and Supplementary
Fig. 4a). These γδ T cells selectively expressed the signaling
adapter SH2D1B as well as PDGFD and CSF1. Cluster 0–13

encompassed a CD8+ T cell subset that stood out for production
of IFN-γ (IFNG), granzyme B (GZMB), and expression of the NK
cell inhibitory receptor KLRC1 (Fig. 4b and Supplementary
Fig. 4a). Both clusters 0–10 and 0–13 shared expression of CD39
(ENTPD1) and several NK cell receptors, including KIR2DL4,
KLRC2, KLRD1, and SLAMF7. Cluster 0–11 expressed IL7R, IL2,

and TCF7 (Fig. 4b and Supplementary Fig. 4a), which are indi-
cative of long-lived and memory-like properties24,25, as well as
lymphotoxin B (LTB), and the DC attracting chemokines XCL1
and XCL226. Cluster 0–12 expressed the master transcription
factor for tissue residency ZNF68327, and markers of cytotoxicity,
such as GZMB, PRF1, and TNFSF10 (Fig. 4b and Supplementary
Fig. 4a). As opposed to clusters 0–10 and 0–13, this cluster did not
exhibit CD39 or NK cell receptors but expressed the epithelial
membrane protein 3 (EMP3) (Fig. 4b and Supplementary Fig. 4a).
The small cluster 0–14 contained CD8+ T cells marked by
CD40LG and a network of p53 regulators, such as EIF5A, MDM4,
and SET28 (Fig. 4b and Supplementary Fig. 4a). CD8+ T cell
clusters 0–11, 0–14, and 0–12 produced the S100A family mem-
bers A4, A6, and A10, which have antimicrobial functions (Sup-
plementary Fig. 4a).

We also re-analyzed the cluster pair 5 and 8 including TFH and
Treg. This analysis identified six clusters (Fig. 4c). Clusters 5–81

and 5–84 represented two distinct clusters of TFH, both of which
expressed the chemokine CXCL13 and the TFH master transcrip-
tion factor BCL6 (Fig. 4d and Supplementary Fig. 4b). However,
5–81 uniquely expressed CXCR5, TNFSF8, and the G-protein-
coupled receptor P2RY829. Conversely, cluster 5–84 expressed
CYSLTR130 (Fig. 4d and Supplementary Fig. 4b). Cluster 5–84

also expressed BTLA29, as well as unique genes, such as amyloid
precursor protein (APP), MS4A6A, and SERPINE2 (Supplemen-
tary Fig. 4b). Cluster 5–80 encompassed Treg and contained both
FOXP3+ Treg (right side), as well as LAG3+ Tr1 producing IL-10
(left side)30. Cluster 5–82 was located between Treg and TFH,

BTLA

TIGITGP130

CD25

CD161

ICOSPD-1

CD39

5*- 8*

5*- 8*

2*

4*
3*

U

0*
1*

6*

CD103

CD4+ T cells

CD8+ T cells CD39 KLRG1

c d

ba

Fig. 2 Identification of IEL CD8+ T cell and CD4+ T cell subsets by flow cytometry. a Schematic t-SNE clustering of IEL CD8+ T cells. Number illustrates
the relationship with clusters observed by scRNA-seq. Asterisk illustrates the different experimental approach. U; undefined. b t-SNE clustering of IEL
CD8+ T cells from a representative donor showing expression of CD103, CD39, and KLRG1. c Schematic t-SNE clustering of IEL CD4+ T cells. Number
illustrates the relationship with clusters observed by scRNA-seq. Asterisk illustrates the different experimental approach. d t-SNE clustering of IEL CD4+

T cells from three representative donors showing expression of CD161, CD39, GP130, TIGIT, BTLA, PD-1, ICOS, and CD25.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22164-6

4 NATURE COMMUNICATIONS |         (2021) 12:1921 | https://doi.org/10.1038/s41467-021-22164-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


shared expression of PRDM1 with Treg, but showed residual
expression of CXCR5 and CXCL13; this subset may reflect a TFH-
Treg plasticity reported both in human and mouse31. Cluster
5–83 encompassed cells expressing the γδTCR transcripts TRCG1
and TRCG2, as well as CD8A, CCL5, and the cytotoxic mediators
GZMA and GZMB (Supplementary Fig. 4b). These cells may be
γδ T cells or CD8+ αβ T cells expressing TRCG1 and TRCG2
transcripts32. Noteworthy, a few cells in this cluster expressed
FOXP3. Because of a lack of specific markers, cluster 5–85 could
not be explicitly identified.

We finally re-analyzed the CD4+ T cell cluster pair 2–4, because
it contained a small group of CD8A+ cells among a large

population of TH17 cells (see Fig. 1c). Reclustering of the 2–4
cluster pair generated four distinct subsets (Fig. 4e). Cluster 2–40

corresponded to activated cytokine-secreting IL23R+ TH17,
whereas cluster 2–41 expressed CXCR4, GPR183, and CXCR3,
which indicate quiescent TH1733 (Fig. 4f and Supplementary
Fig. 4c). Cluster 2–42 belonged to the γδ T cell lineage, as
indicated by TRCG2 and CD8A expression. These cells expressed
RORC, IL17A, and IL26, explaining the initial co-clustering with
TH17 cells and suggesting that they may represent a discrete
subpopulation of γδ T cells with a type 17 polarization (Fig. 4f).
This γδ T cell subset was also marked by NCR3 (Fig. 4f). To
validate this γδ T cell subset, we stained IEL with a mAb for
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terminal ileum of controls and CD patients. b Percentages of IEL CD4+ among CD3+ T cells in terminal ileum of controls and CD patients. c Percentages of
IEL TCRγδ+ among CD3+ T cells in terminal ileum of controls and CD patients. a, b Controls (N), n= 33 (15 frozen, 18 fresh); CD, non-inflamed site (NI),
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samples used in Fig. 3a–c. Data were median and interquartile range. Significance was calculated using an ordinary, one-way ANOVA, multiple
comparisons test with Prism v8 software. a **P= 0.0094; b *P = 0.0178, ***P= 0.0001; c **P= 0.0081; g *P= 0.0148; h N vs. NI *P= 0.0134, N vs. II
**P= 0.0310; i N vs. NI **P= 0.0079, N vs. II *P= 0.0214; j N vs. NI *P= 0.0204, N vs. II **P= 0.0087; l *P= 0.0315. Source data are provided as a
Source Data file (Source Data 1).
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TCRVδ2, followed by an antibody that recognizes all γδ TCRs,
and a mAb for NKp30 (patient information in Supplementary
Data 6). Among Vδ2– γδ+ T cells, about 25–50% of the cells
expressed NKp30 in different individuals (n= 9), suggesting that
NKp30+ γδ T cells represent approximately half of the TCRVδ2–

Vδ1+ γδ T cells (Fig. 4g, h and Supplementary Fig. 4d). All of
these cells expressed CD39 (Fig. 4h). In contrast, NKp30 was not
expressed by terminal ileum CD8+TCRγδ– T cells (Fig. 4i and

Supplementary Fig. 4d), contrary to what shown for colonic CD8+

T cells of UC patients10.
To validate the functional relevance of NKp30 on this unique

γδ T cell subset, we sorted all γδ T cells from control patients and
tested the expression of RORγt on NKp30+ vs. NKp30– cells. As
shown in Fig. 4j, NKp30+ γδ T cells expressed higher level
of RORγt than NKp30–. We further expanded NKp30+ γδ T cells
in vitro to perform functional assays. Expanded γδ T cells

Fig. 4 Reclustering of heterogenous IEL CD8+ and CD4+ T cells populations. a Unsupervised UMAP reclustering of clusters 0 and 1 from Fig. 1a. b UMAP
of representative selected genes associated with the identified clusters. c Unsupervised UMAP reclustering of clusters 5 and 8 from Fig. 1a. d UMAP of
representative selected genes associated with the identified clusters. e Unsupervised UMAP reclustering of clusters 2 and 4 from Fig. 1a. f UMAP of
representative selected genes associated with the identified clusters. g Overlay expression of NKp30 in Vδ2– (pink) vs. Vδ2+ (black) γδ T cells.
h, i Representative flow plots showing the expression of NKp30 in TCRγδ+Vδ2– CD39+ (h) and CD8+TCRγδ–CD39+ (i). T cells in terminal ileum of control
patients (one donor representative of nine is shown). j Overlay expression of RORγt in NKp30– (black) vs. NKp30+ γδ T cells (pink). k Overlay expression of
NKp30 in peripheral blood TCR αβ+ T cells (black) vs. NKp30+ sorted γδ T cells (pink). l IL-26 production by NKp30+ γδ T cells upon antibody mediated
crosslinking of NKp30. MFI mean fluorescence intensity, PB peripheral blood, IC isotype control.
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maintained high levels of NKp30 expression (Fig. 4k) and
produced IL-26 upon engagement of NKp30 with a cognate
antibody (Fig. 4l). Because of the reported antibacterial properties
of IL-2634, our results suggest that this discrete γδ T cell subset
may have a protective role in intestinal homeostasis.

T cell clusters in LP are differentially activated and represented
compared to IEL. We next surveyed the baseline heterogeneity of
CD3+ cells in the LP by scRNA-seq of 29,247 cells sorted from
the same CD and control samples analyzed for IEL (Supple-
mentary Fig. 1a–c, e; patient information in Supplementary
Data 1). Unsupervised clustering of scRNA-seq data from LP
T cells by UMAP identified nine clusters (Fig. 5a, b). Three T cell
clusters expressed CD8A (1, 2, and 8), six expressed CD4 (0, 3, 4,
5, 6, and 7) (Fig. 5c), while one (9) expressed both and was

enriched in cell cycle genes, such as MKI67, STMN1, TUBB, and
TUBA1B (Fig. 5b, d). Within CD8A+ clusters, cluster 1 showed
the hallmarks of effector CD8+ T cells: KLRG1 (Fig. 5d), EOMES,
TBX21, CCL4, CCL3, CCL5, IFNG, PRF1, GZMB, GZMA, GZMH,
and GZMK (Supplementary Fig. 5a, b). This cluster was remi-
niscent of IEL cluster 6. Cluster 2 and 8 expressed the HVEM
receptor CD160 and ITGA1 (Fig. 5d and Supplementary Fig. 5c),
and the chemokines XCL1 and XCL2 (Supplementary Fig. 5b).
Cluster 8 expressed the NK cell receptors KLRC1, KIR2DL4,
KLRC2, KLRD1, TRDC, and ENTPD1 (Fig. 5b, d and Supple-
mentary Fig. 5b). Overall, LP clusters 2 and 8 paralleled IEL
clusters 0 and 1, respectively.

Among CD4 T cells, cluster 0 corresponded to TH17 based on
expression of CCR6, RORA (Fig. 5d), KLRB1, LTB, and CCL20
(Supplementary Fig. 5b, c). Only few cells on the top of the cluster
were enriched in genes indicative of effector function, such as IL17A,

Fig. 5 scRNA-seq of LP T cells identifies discrete subsets of CD4+ and CD8+ T cells. a Unsupervised UMAP analysis of LP T cell clusters. T cells
were pooled from two controls and two CD patients (9107 cells control, 20,140 cells CD). b Heat map displaying the top ten differentially expressed genes
in each cell cluster. c Identification of CD4 and CD8A expressing cells. d UMAP of representative selected genes associated with the identified clusters.
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IL23R, IL26, RORC, CXCR6, GZMB, ENTPD1, and CCL4 (Fig. 5d
and Supplementary Fig. 5a–c), indicating that LP contains more
quiescent than activated TH17 compared to IEL (Supplementary
Fig. 6a). Notably, cluster 0 was also enriched in LGALS3 and GPR65
(Supplementary Fig. 5c). LGALS3 encodes galectin 3 that has
antibacterial and antifungal immunity35, corroborating antimicro-
bial properties of TH1736. GPR65 is a proton sensing G-protein-
coupled receptor that has been found to be a risk factor for IBD37.
Cluster 3 corresponded to naïve T cells expressing CCR7 (Fig. 5d),
LEF1, TCF7, SELL, and KLF2 (Supplementary Fig. 5a, c). Cluster 5
and 6 were both TFH based on TOX2 and CXCR5 expression
(Fig. 5d and Supplementary Fig. 5c); cluster 6 was further
distinguishable from cluster 5 based on the selective expression of
CXCL13 (Fig. 5d), PDCD1, BTLA, and CD200 (Supplementary
Fig. 5c). As opposed to IEL TFH, LP TFH were not readily
distinguishable into P2RY8+ and CYSLTR1+ subsets. Cluster 4
corresponded to Treg expressing FOXP3, IL2RA (Fig. 5d), ENTPD1,
BATF, IL10, LAIR2, TNFRSF4 (for OX40), and TNFRSF9 (for
CD137) (Supplementary Fig. 5a–c). The Treg subset was enriched in
GPX1 (Fig. 5d) and GLRX (Supplementary Fig. 5b), which are
induced by FOXP3 and encode molecules protecting from oxidative
stress38,39. Cluster 5, 6, and 4 shared expression of CTLA4, TIGIT,
ICOS (Supplementary Fig. 5c) and the transcription factors TOX,
TOX2, andMAF (Fig. 5d and Supplementary Fig. 5a), corroborating
that TFH and Treg lineages are closely related31. Finally, cluster 7
identified a unique cluster of CD4+ T cells exhibiting a heat-shock
stress-activated pathway, as indicated by expression of HSP family
members (HSPA1A, HSPA1B, and DNAJB1), JUN, TNF, and IL2
(Fig. 5b, d and Supplementary Fig. 5a, b). The activation of this
pathway was also evident at the bottom of the CD8A+ cluster 2
(Fig. 5c, d). Altogether, our data indicated that IEL and LP harbor
overlapping T cell subsets, although TH17 in LP are more quiescent
than those in the IEL compartment (Supplementary Fig. 6a).
Furthermore, LP contained a unique subset of T cells that express
heat-shock stress-pathway genes and secreted cytokines such as TNF
and IL2.

Severe CD modifies the T cell landscape in the LP. To validate
scRNA-seq analysis of LP and quantify differences related to dis-
ease status, we performed mass cytometry on fresh LP T cells of
CD (NI: n= 9; II n= 6) and control patients (n= 8) (patient
information: Supplementary Data 7). Dimensionality reduction by
viSNE analysis enabled to solve T cell heterogeneity in 20 different
clusters. Notably, mass cytometry identified more clusters than
scRNA-seq analysis, suggesting that this technique may better
distinguish cell subsets that express shared markers at different
levels. Eight clusters expressed CD8 (15, 8, 17, 16, 2, 4, 18, and 12),
ten clusters expressed CD4 (14, 5, 13, 10, 9, 7, 6, 3, 1, and 20), a
small cluster of γδ T cells (19) expressed neither CD4 or CD8, and
a tiny cluster (11) remained undefined (Fig. 6a, b). CD103 dis-
tinguished tissue-resident CD8+ and CD4+ T cells from circulat-
ing cells. CD103– non-resident CD8+ T cells included clusters 15
and 8, which corresponded to naïve CD45RAhi and memory
CD45RO+ CD8+ T cells, respectively. CD103+ resident CD8+ T
cell clusters 18, 2, 4, and 12 were separated based on expression of
CD161 (16 and 2), CD39 (16), CD94 and NKG2A (12), and CCR4
(18) (Fig. 6a, b). Cluster 17, which mapped close to clusters 15 and
8 between circulating and tissue-resident cells, exhibited low/
intermediate levels of CD103 (Fig. 6b), suggesting that it may
represent recently immigrated CD8+ T cells settling into the tissue.

Within CD4+ T cells, CD103– clusters 1, 3, 6, and 20,
corresponded to circulating memory TH17 cells expressing
CD161, CD45RO, and CD127 (Fig. 6a, b). The four clusters
were distinguished based on the expression of CD39, CCR4 (6),
CD27 (6 and 3), and CD226 (1 and 20) (Fig. 6a, b). The

expression of CD226 may be suggestive of pathogenicity, as
CD226 has been implicated in autoimmunity40. Clusters 5 and 14
represented tissue-resident memory TH17 because of the expres-
sion of CD103, CD45RO, and CD161. As in IEL, these cells were
split in CD39+ and CD39– subsets. Cluster 7 consisted of Treg as
indicated by high CD25 and CD39 expression (Fig. 6b), while
cluster 9 included TFH cells based on high TIGIT expression41

(Fig. 6b). Clusters 13 represented naïve CD45RAhi CD45RO–

CD4+ T cells, while cluster 10 was marked by expression of
CD45RO and loss of CD45RA, indicative of a memory phenotype
(Fig. 6a, b). Finally, cluster 20 was distinguished based on CD56
expression (Fig. 6b), which is typical of cytokine-induced
killer cells.

Quantification of different LP clusters in CD and control
patients revealed an opposite trend than what observed in IEL,
with a significant increase in CD8+ T cells paralleled by a
decrease in CD4+ T cells (Fig. 6c, d; fresh samples triangles).
These data were confirmed by flow cytometry in a different
cohort of frozen samples from control (n= 9) and CD (n= 11)
patients and combined to the CyTOF data (Fig. 6c, d; frozen
samples circles; patient information: Supplementary Data 7 and
Source Data 2). Among CD8+ T cells, CD103+ resident cells were
increased in CD compared to controls (Fig. 6e), as evidenced by
expansion of clusters 2, 4, 12, and 16 (Fig. 6f–i). Although total
CD4+ T cells were reduced in CD, TH17 of clusters 5 and 14 were
significantly increased at the non-inflamed site of CD lesions
(Fig. 6j). On the contrary, Treg (7) and TFH (9) were decreased
(Fig. 6k, l). The increase in TH17 cells (CD4+CCR6+CD161+)
and decrease of TFH (TIGIT+) was further confirmed by running
CITRUS analysis (Supplementary Fig. 7a–c). Taken together, our
data suggested that inflammatory TH17 and CD8+ T cells are
increased in the LP of CD, paralleled by an attrition of CD4+

T cells with regulatory properties, consistent with deepened gut
wall inflammation.

Discussion
Through a high-resolution analysis of human intestinal IEL
T cells in controls and severe adult CD, our study defined a vast
heterogeneity of T cell lineages in the IEL compartment,
including various subsets of CD8+, γδ+, and CD4+ T cells.
Compared to controls, CD was associated with major abnorm-
alities in the composition of IEL T cells, which included: (a) an
increase in inflammatory CD39+ TH17; (b) a decrease in Treg,
which might exacerbate inflammation; (c) a decrease in TFH,
which may explain the impaired mucosal IgA production pre-
viously reported in CD42; and (d) a global reduction of CD8+

T cells and γδ T cells. These changes in the IEL compartment
were coupled with increased CD8+ T cells and TH17, as well as
reduced TFH and Treg in the LP, likely reflecting the deepening of
inflammation and overt transmural damage1,2. Overall, despite
some limitations of our study due to cohort heterogeneity of CD
patients, our results offer insight into T cell correlates of trans-
mural inflammation and relapsing/recurrent disease.

The remarkable heterogeneity of human T cells identified in
the IEL compartment reflected the presence of different T cell
lineages, as well as various stages of differentiation, activation,
and tissue residency within each lineage. TH17 cells included
quiescent cells and cells capable of immediate effector functions,
which were readily distinguished based on the mutually exclusive
expression of CXCR4 and CD39, among other distinctive mar-
kers. IEL CD39+ TH17 may be a two-edged sword. On one hand,
they exhibit pathogenic features, such as expression of GZMB and
CCL4, suggesting that they may be cytotoxic against epithelial
cells and recruit inflammatory cell types that promote tissue
destruction. On the other hand, production of IL-17 and IL-26
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may enhance barrier function, providing protection. Given that
CD39 has been shown to sustain TFH survival by degrading
proapoptotic ATP released in the intestinal environment43, CD39
may sustain survival of the TH17 cells. Further increasing diver-
sity, TH17 expressed different levels of CD103, indicating the
presence of TH17 at different stages of migration ranging from
circulating to tissue-resident.

TFH also included two major subsets: one subset expressed P2RY8,
a G-protein-coupled receptor that inhibits cell migration upon
binding S-geranylgeranyl-L-glutathione, which is present in bile
salts29; another subset expressed CYSLTR1, which binds to another
glutathione-conjugated lipid mediator, LTC429. TFH expressing high
levels of CYSLTR1 were not previously identified in lymph nodes and
may be specific to IEL30. These TFH subsets showed other distinctive

Fig. 6 Quantification of CD8 and CD4 T cell clusters by CyTOF analysis in LP of control and CD patients. a Schematic t-SNE of CD4+ and CD8+ T cells
from LP of all donors concatenated together (n= 18) controls (N), n= 8; CD, non-inflamed site (NI), n= 9; CD, inflamed site (II), n= 6. Total of
23 samples. b t-SNE of the indicated markers in CD4+ and CD8+ T cells. c, d Quantification of total CD8+ (c), total CD4+ (d) in LP of controls and CD
patients by CyTOF (triangles= fresh samples) and FACS (circles= frozen samples). c, d Control (N), n= 17 (8 fresh, 9 frozen); CD, non-inflamed site (NI)
n= 19 (9 fresh, 10 frozen); CD, inflamed site (II), n= 14 (6 fresh, 8 frozen). e–i Quantification of total CD8+ TRM (e) and CD8+ clusters 2 (f), 4 (g), 12 (h),
and 16 (i) in LP of controls and CD patients by CyTOF. j–l Quantification of the CD4+ clusters 5 and 14 (j), 7 (k), and 9 (l) in LP of controls and CD patients
by CyTOF. e–l Controls (N), n= 8; CD, non-inflamed site (NI), n= 9; CD, inflamed site (II), n= 6. Circles and triangles on the boxplots show data collected
for each individual donor. Data were median and interquartile range. Significance was calculated using an ordinary, one-way ANOVA, multiple comparisons
test with Prism v8 software. c **P= 0.0014; d **P= 0.028; e *P= 0.0139; f *P= 0.0178; h *P= 0.0178; i *P= 0.0219; j N vs. NI *P= 0.0156, NI vs. II *P=
0.0465; k **P= 0.0014; l **P= 0.0283. TRM tissue-resident memory T cell. Source data are provided as a Source Data file (Source Data 2).
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markers: P2RY8+ TFH expressed CXCR5 and TNFSF8 (for CD30L);
CysLTR1+ TFH expressed BTLA and CD200. P2RY8 mediates the
retention of TFH and B cells in the germinal center, while BTLA
restrain TFH germinal center responses29. TNFSF8 gene poly-
morphisms have been associated with risk of CD44. Although IEL
TFH did not show mRNA for the B cell stimulatory cytokine IL-21,
P2RY8+, and CysLTR1+ TFH subsets may control mucosal B cell
responses through other mechanisms, such as BTLA–HVEM and
TNFSF8–TNFRSF8 interactions.

IEL CD8+ T cells were also quite heterogeneous, including
canonical CD103–KLRG1+ cytotoxic CD8+ T cells and multiple
subsets of tissue-resident CD8+ T cells, which shared the
expression of CD103 and CD160 that may secure retention of
T cells through binding to E-cadherin and HVEM on epithelial
cells, respectively. Moreover, CD160 may shape the function of
CD8+ T cells by inducing IFN-γ45. Tissue-resident CD8+ T cells
included a subset of IL-7R+TCF7+ cells producing the DC che-
moattractants XCL1 and XCL226, which may recruit DCs from
the LP. Other resident CD8+ T cells subsets were prone to
effector functions: one subset expressed IFN-γ and the NK
receptor KLRC1 specific for HLA-E; another expressed cyto-
toxicity mediators, lacked NK receptors but expressed the
membrane protein EMP3, which has yet unknown function in
immune responses. Finally, a group of resident CD8+ T cells
expressed EIF5A, MDM4, and SET, which control p53 activity28,
suggesting evasion from apoptosis and senescence. Many tissue-
resident CD8+ T cells expressed S100A family members, which
may contribute to antimicrobial functions.

One remarkable result of this study is the identification of at
least two subsets of γδ T cells within the IEL. One subset
expressed TH17 markers, such as RORC, IL-23R, IL-22, and IL-26.
RORγt+ γδ T cells have been extensively described in mouse47,48

but not in human. Distinctive features of these γδ T cells included
the expression of TCRVδ1, CD39, and NKp30, an activating cell
surface receptor specific for B7H649. Importantly, NKp30+ γδ
T cells expressed higher levels of RORγt ex vivo as compared to
NKp30– γδ T cells and engagement of NKp30 resulted in IL-26
production, suggesting that these cells may have a protective
function during homeostasis. Some traits of these γδ T cells, such
as NKp30 expression and IL-26 production, were recently
reported in a subset of CD8 T cells expanded in colon of UC
patients10. Whether these colonic cells are bona fide CD8 T cells
or γδ T cells expressing CD8, as we find in the small intestine,
remains to be established. Another γδ T cell subset expressed the
canonical γδ T cell transcription factor ID332; this subset
expressed NK cell receptors and produced CSF1 and PDGFD,
pointing to a potential crosstalk with macrophages and epithelial
cells. While subsets of human γδ secreting CSF1 have been
reported46, PDGFD secretion by γδ T cells has not been described
before. In addition, a rare cell subset expressing γ-constant region
of γδTCR and CD8A expressed FOXP3. Future studies will be
required to precisely identify these cells and to test their reg-
ulatory function.

Notably, our cohort of severe adult CD showed a reduction of
IEL CD8+ T cells and γδ T cells. Consistently, a population of
CD39+ CD8+ T cells and γδ T cells has been recently reported to
decrease in colonic mucosa biopsies of pediatric CD patients9.
This population overlaps with the γδ and CD8+ T cell subsets
expressing NK cell receptors and CD39 reported here. While we
observed a global reduction rather than a selective loss of specific
subsets of CD8 and γδ T cells, this discrepancy may depend on
differences in patient ages (children vs. adults), sampling location
(colon vs. ileum), type of specimen (biopsies vs. surgical resec-
tions) or degree of disease.

Finally, analysis of LP T cell transcriptomes identified unique
functional features not immediately related to the classical T cell

functional modules. A subset of LP CD4+ T cells expressed heat-
shock induced stress-pathway genes and cytokines, such as TNF
and IL-2. A T cell subset expressing heat-shock proteins was also
among five IEL populations recently reported in CD50. Intrigu-
ingly, a recent study showed that febrile temperature in mice
induces TH17 differentiation and augments pathogenicity
through heat-shock response genes51. Together, these observa-
tions highlight the involvement of heat-shock response in the
differentiation of T cells in the intestine. Expression of GPX1 in
Tregs of the LP revealed the activation of anti-oxidative pathways
in intestinal T cells, which may be particularly relevant to CD, as
GPX1 gene polymorphisms have been associated with risk of
CD52,53. These results will prompt future studies to determine the
impact of these unique functions in CD pathogenesis.

Methods
Preparation of single-cell suspension from intestinal samples. Single-cell sus-
pension was prepared as previously described54. Briefly, mucosal tissue from
terminal ileum was separated from the muscular layer and serosa and cut into
small pieces. Intraepithelial lymphocyte cells were extracted by rotating the tissue at
room temperature for 40 min in Hank’s balanced salt solution, 10% FCS, and 5
mM ethylenediaminetetraacetic acid (EDTA). Cells were filtered through 100-μm
cell strainers and dithiothreitol (DTT) was added at a final concentration of 5 mM.
After intraepithelial lymphocyte removal, LP cells were extracted by digesting tissue
in complete RPMI medium containing 1 mgml–1 Collagenase IV (Sigma, C-5138)
at 37 °C for 1 h under agitation. Cells were filtered and subjected to density gradient
centrifugation using 40 and 70% Percoll solutions. Cells were collected, sorted, and
processed for scRNA-seq or collected and stained for CyTOF. From a set of
patients cells were processed and frozen for later CyTOF or flow cytometry ana-
lysis. Control patients for the present study were patients undergoing abdominal
surgery for colon cancer or polyposis, which had non-involved terminal ileum
removed, as part of the surgical procedure.

All human studies were conducted under the approval of the Institutional
Review Boards of Washington University. All ileum samples were provided as
surgical waste with no identifiers attached on written informed consent to the
Digestive Disease Research Cores Center at Washington University. The
demographic data provided in this study will not allow patient identification.

Immunohistochemistry. Formalin-fixed paraffin-embedded tissue blocks used for
this study were retrieved from the tissue bank of the Department of Pathology
(ASST, Spedali Civili di Brescia, Brescia, Italy). Four-micron thick tissue sections
were used for immunohistochemical staining. Sections were incubated with anti-
human CD4 (clone 4B12 1:50 Thermo Scientific) and antihuman CD8 antibody
(clone C8-144B Agilent 1:50) and the reaction was revealed using Novolink
Polymer (Leica Microsistem). For double staining, after completing the first
immune reaction, the second was visualized using Mach 4 MR-AP (Biocare
Medical), followed by Ferangi Blue. Finally, the slides were counterstained with
Meyer’s Haematoxylin.

Antibodies. Information on the antibodies used for flow cytometry and sorting is
available in Supplementary Data 8.

Flow cytometry and sorting. Cells were sorted on BD FACS Aria II and flow
cytometry analyses were performed on BD Symphony A3 instrument. Data were
analyzed by FlowJo software v10.7.1 (TreeStar).

scRNA-seq and data analysis. T cells were sorted from processed IEL and LP as
CD45+, lymphocyte gate, singlets, and alive CD3+ CD19– expression. Sorted cells
were sequenced using 10X Genomics platform with chemistry version 2. Cell
Ranger pipeline (https://support.10xgenomics.com/single-cell-gene-expression/
software/over-view/welcome) was used to process Chromium single-cell RNA-seq
output to align reads and generate gene-cell expression matrices. Briefly, short
sequencing reads were aligned to the GRCh38 reference genome and Ensembl55

transcriptome by STAR56. The uniquely aligned reads were used to quantify gene
expression levels for all Ensembl genes. We filtered out low-quality cells from the
dataset if the number of genes detected was <500 or >3000, or the percentage of
mitochondrion reads was >15%. Mitochondrion and ribosomal genes usually
consumed a large fraction of reads in our dataset, and their relative abundance
varied significantly from sample to sample. Such genes were not interesting in our
research, and thus were excluded for downstream data analysis. Additionally, all
genes that were not detected in at least 1% of all our single cells were discarded.
Average UMI were 2960 and 3020 for IEL and LP T cells, respectively.

scRNA-seq downstream analysis. Downstream analyses were performed using
Seurat R software package version 3.0 (http://satijalab.org/seurat/). After removing
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unwanted cells and genes from the dataset, raw UMIs in each cell were first scaled
by library size and then log-transformed. To improve downstream dimensionality
reduction and clustering, we first regressed out unwanted source of variation
arising from the number of detected molecules. Then highly variable genes were
identified and selected for PCA reduction of high-dimensional data. Cells in this
reduced spaced were harmonized to adjust for batch effects coming from multiple
donors including both normal and CD using the Harmony tool implemented in
Seurat v357. These low dimensional corrected Harmony embeddings were used for
downstream analyses. Graph-based clustering was performed on the reduced data
for clustering analysis with Seurat v3. The resolution in the FindClusters function
in Seurat was set to 0.6 and the clustering results were shown in a UMAP plot. For
different cell types, cells were grouped based on top markers. MAST in Seurat v3
was used to perform differential analysis58. For each cluster, DEGs were generated
relative to all of the other cells.

CyTOF acquisition and analysis. All antibodies information is available in Sup-
plementary Data 9. Cells were washed with Cy-FACS buffer (CyPBS, Rockland,
MB-008; 0.1% BSA, Sigma, A3059; 0.02% Sodium Azide, Sigma, 71289, 2 mM
EDTA, Hoefer, GR123-100) stained on ice for an hour. After two washes cells were
stained with cisplatin (Enzo Life Sciences, NC0503617) for 1 min, washed again
twice, fixed in 4% PFA (Electron Microscopy Sciences, 15710) for 15 min, spun
down and re-suspended in Intercalator-Ir125 (Fluidigm, 201192 A) overnight. Cells
were washed and counted and analyzed on a CyTOF 2 mass cytometer (Fluidigm).
Samples were manually gated using Cytobank. Background, dead cells (Cisplatin+),
doublets (DNA1/2 stain), and normalization beads were excluded. Dimensionality
reduction analysis was performed by equally sampling CD45+ CD3+ CD19− cells
per donor based on 20 different markers (CD4, CD8a, NKp44, CD127, CD45RA,
CD103, TIGIT, CCR4, CD39, CD45RO, CCR6, CD25, TCRγδ, CD161, NKG2A,
CD226, CD94, CD56, CD27, and CD294) using the viSNE tool59 in Cytobank to
apply the Barnes–Hut implementation of the t-SNE algorithm. viSNE data were
exported from Cytobank and uploaded into MATLAB implementation of
Phenograph60 and transformed using a cofactor of five for subsequent clustering
analysis. Visualization of clusters identified by Phenograph was done using the R
package ggplot2. CITRUS analysis was performed by equally sampling CD45+

CD3+ CD19− CD4+ (1807) cells per sample based on the expression of 14 markers
(CD45RO, CD45RA, CCR6, CCR4, CD161, CD127, CD25, CD39, TIGIT, CD117,
CD103, CD27, NKp44, and CD226) using the CITRUS tool in Cytobank. Sig-
nificant changes in cell frequency were inferred with SAM (a nonparametric cor-
relative method) for an FDR <1%. Every cluster displayed contains at least 3% of all
clustered cells and are scaled on the basis of frequency of cells in each cluster.

Ex vivo intracellular staining of γδ T cells for RORγt. Total γδ T cells were
sorted from IEL of control patients and cell surface stained for NKp30, CD39, fixed
and permeabilized and stained intracellularly for RORγt with eBioscience
FoxP3 staining kit.

In vitro T cell culture and NKp30 crosslinking. NKp30+ γδ T cells were sorted
from IEL of control patients and expanded in vitro with PHA (HA16, Remel),
irradiated feeder and IL-2. Expanded cells were stimulated with plate bound anti-
NKp30 (clone 30.95.1) or isotype control (CRL-1729, ATCC). IL-26 was measured
in supernatants 72 h later by ELISA (CUSABIO).

Statistical Analysis. Statistical analysis was performed using Graphpad Prism
8.4.3 (GraphPad Software, La Jolla, CA) or R version 3.6.2 (2019), as indicated in
the figure legends. Data were presented as median and interquartile range. Unless
otherwise noted, statistically significant differences between groups were deter-
mined by ordinary one-way ANOVA. In all figures, the following symbols were
used to designate significance: *P≦ 0.05, **P ≦ 0.01, ***P≦ 0.001.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The scRNA-seq have been deposited in GEO under the GSE157477. Source data are
provided with this paper.
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