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Several precision livestock farming (PLF) technologies, conceived for optimizing farming

processes, are developed to detect the physical and behavioral changes of animals

continuously and in real-time. The aim of this review was to explore the capacity of

existing PLF technologies to contribute to the assessment of pig welfare. In a web search

for commercially available PLF for pigs, 83 technologies were identified. A literature

search was conducted, following systematic review guidelines (PRISMA), to identify

studies on the validation of sensor technologies for assessing animal-based welfare

indicators. Two validation levels were defined: internal (evaluation during system building

within the same population that were used for system building) and external (evaluation

on a different population than during system building). From 2,463 articles found, 111

were selected, which validated some PLF that could be applied to the assessment

of animal-based welfare indicators of pigs (7% classified as external, and 93% as

internal validation). From our list of commercially available PLF technologies, only 5%

had been externally validated. The more often validated technologies were vision-based

solutions (n = 45), followed by load-cells (n = 28; feeders and drinkers, force plates and

scales), accelerometers (n = 14) and microphones (n = 14), thermal cameras (n = 10),

photoelectric sensors (n = 5), radio-frequency identification (RFID) for tracking (n = 2),

infrared thermometers (n = 1), and pyrometer (n = 1). Externally validated technologies

were photoelectric sensors (n = 2), thermal cameras (n = 2), microphone (n = 1),

load-cells (n = 1), RFID (n = 1), and pyrometer (n = 1). Measured traits included activity

and posture-related behavior, feeding and drinking, other behavior, physical condition,

and health. In conclusion, existing PLF technologies are potential tools for on-farm

animal welfare assessment in pig production. However, validation studies are lacking

for an important percentage of market available tools, and in particular research and
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development need to focus on identifying the feature candidates of the measures (e.g.,

deviations from diurnal pattern, threshold levels) that are valid signals of either negative

or positive animal welfare. An important gap identified are the lack of technologies to

assess affective states (both positive and negative states).

Keywords: PLF, sensor, validation, welfare, sows, piglets, fattening pigs

INTRODUCTION

Animal welfare comprises three components (1): natural living,
affective states, and basic health and functioning. Natural living
corresponds to the ability of animals to live according to their
behavioral needs. An affective state refers to animal’s emotions
and moods, which can go from negative (e.g., depressed) to
positive (e.g., pleasure). Basic health deals with the normal
biological functioning and fitness of animals.

These three components of animal welfare can be measured
by indicators based, primarily on the animal, but the surrounding
environment can also provide useful information. Animal-based
indicators provide a more direct measure of the welfare of the
animal compared with resource-based indicators. As an example,
to assess the absence of prolonged hunger, Welfare Quality R©

(WQ) (2), one of the most spread animal welfare assessment
protocols, uses the body-condition score as an animal-based
indicator. However, in the absence of a reliable animal-based
indicator for assessing the absence of prolonged thirst, a resource-
based indicator such as water supply, is used, which can only
inform about an aspect of the environment animals live in.

Knowledge on the welfare of pigs is important for producers
(3) and consumers (4). As an example, for producers, poor
health or the presence of damaging behavior such as tail biting
negatively impact growth performance (5, 6). Diseases and
injuries might urge producers to increase the use of antibiotics
(7). Regarding consumers, animal welfare is considered as an
important aspect of product quality (8), and studies indicate
their willingness to pay for pork produced with enhanced welfare
(9–11). Goods produced under improved welfare conditions
can be communicated to consumers by certification schemes
and associated labeling. Most animal welfare labels related to
pig farming in Europe have requirements concerning resource-
based welfare indicators such as a space allowance, provision
of bedding and enrichment, and minimum transportation
time (12). However, animal-based indicators have gained more
attention, especially after the WQ protocols were published.
For example, most pig welfare labels consider mother-offspring
interaction through setting a minimum weaning age (e.g., Mehr
tierwohl in Germany, Beter Leven in Netherlands, and Bedre
Dyrevelfærd in Denmark).

At present, an adequate assessment of farm animal
welfare requires a substantial amount of time and effort.
Furthermore, current welfare assessment protocols have some
other limitations. To mention a few, they do not contain all
three components of animal welfare (1), often lack animal-based
indicators, focus on expressing the welfare status at group (farm)
level instead focusing on the individual (13), and are largely

based on human observation (14), which might imply some
subjective judgements (15). This means that current protocols
provide a limited picture of the welfare of animals throughout
their life, restricting the capacity for early detection welfare
problems as well as overall life-time welfare.

The use of monitoring technology in animal production
systems to optimize farming processes and reduce human
workload, often called precision livestock farming (PLF), is
growing. According to Berckmans (15), the objective of PLF is
to provide the farmers with tools for online and continuous
monitoring of the status of the animals and their environment.
These tools may therefore help in decision-making and
management of the herd (16). Moreover, PLF could contribute
with relevant information related to animal welfare in an easier
and quicker manner, making continuous welfare assessments
more feasible.

Different sensors exist to measure features of individual
pig behavior, and/or physical conditions (e.g., accelerometers,
microphones, cameras) (17). PLF can add value for the welfare
assessment of animals by (1) allowing individual or sub-group
tracking, (2) avoiding stressful procedures involving an animal
handling during assessment (e.g., by body weight measurements
using video cameras instead of manual weighing), and (3)
allowing real-time monitoring. In addition, allows implementing
early-warning signals of suboptimal status of the animals, to
prevent welfare problems (18). PLF technologies have some
limitations though. Technologies are created by humans, who
set limits for specific problem detection (e.g., tail biting), so
could also be burdened with certain subjectivity (18, 19). Also, as
demonstrated in large-case studies for sensor profitability in dairy
farmers, investment in PLF technologiesmight not necessary lead
to economic gain (20, 21). In addition, not all PLF tools have
an automatic alert, making a gap between the time of problem
detection and the potential intervention of the staff. Reliability of
data management could be considered a further limitation, since
it is carried out by the PLFmanufacturing company, which in fact
are the data owners. To improve transparency, evaluation on the
PLF tools performance by external bodies is essential.

A procedure for validation in the real operation environment
of a technology is required before it is transferred to the market
(22). Validation is the procedure for evaluating the performance
of a technology contrasted with a gold standard to know if it
achieves satisfactory prediction accuracy of a measured trait (23).
For instance, how well a thermal camera detects fever, compared
with a standard thermometer, or how well an automatic feeding
system can detect feeding behavior. This validation procedure
should be performed internally (on a sample of individuals
during the system building), but also externally (on different
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individuals than those used during building phase) (24). For the
sake of transparency, buyers (i.e., farmers) need to know the
exact features of the technology they are buying and how accurate
they monitor a given condition. It is preferable that the external
validation need is carried out by independent bodies.

To the best of our knowledge, an overview of existing
PLF technologies that potentially can be used for pig welfare
assessments and the validity and reliability of these technologies,
is still lacking. The aim of this review is to explore market
available PLF technologies that are potentially applicable in
commercial pig production, and to review (1) their ability to
contribute to longitudinal welfare assessment, and (2) their state
of validation. This review focus on technologies that have been
validated (either internal or external) and which results have
been published.

MATERIALS AND METHODS

Search for Commercially Available
Technologies
A web search to identify commercially available PLF systems
for pigs was conducted by using Google search engine by
one researcher (YG), between February and April 2020. Search
terms included pigs (and related words such as sows, piglets),
and different technologies known to monitor animal-based
welfare indicators for pigs. Technologies provided by a wide
range of suppliers were scanned. More specifically, the search
criteria included the following animal categories: (pig), (piglet),
(weaner), (fattener pig), (sow), and the technology using one of
the following terms: (automatic drinker OR automatic waterer),
(automatic feeder), (electronic feeding station), (activity sensor
OR activity monitor), (RFID), (GPS), (thermal camera), (infrared
thermometer), (automatic weigh scale), (sorting scale), (weight
camera), (body condition score sensor OR automatic body
condition score), (body condition camera), (lameness sensor),
(automatic lameness detection), (pressure mat OR force sensor),
(automatic behavior analyzer), (image-based behavior analyzer),
(body-temperature sensor), (automatic sound analysis), (cough
sensor OR cough monitor). No boolean operators were applied,
except OR boolean, as Google does not allow the use of ∗ to
automatically fill the search term to include related words. The
example search looked as follows: pig automatic weigh scale OR
automatic weigher.

The first five pages (50 hits) of results in each search
were reviewed. Only commercially available technologies were
selected for further review, excluding prototypes or devices
in the building phase. If required, technology providers were
approached to clarify the stage of development. Information on a
sensor name, provider name, internet link, sensor type, aim, and
provider country were summarized. Information regarding the
production phase that the technology is applicable or designed
for, was also specified.

Literature Search
Following the Preferred Reporting Items for Systematic Reviews
and Meta-Analysis (PRISMA) guidelines (25), a literature search
was conducted by one researcher (YG), and verified by a

second researcher (AS). The search was focused on finding
external validation studies on PLF technologies for pig welfare.
In addition, the obtained data set (studies reporting different
validation levels) was used for checking internal validation to find
potential technologies for pig welfare monitoring that are not yet
externally validated.

The literature search was conducted through Web of Science
and Scopus databases, between the 1st of June and the 31st
of July 2020. Search terms included: different phases in the
production cycle of pigs, terms regarding validation, types of
sensor or their commercial names. Besides, some animal-based
welfare indicators were included as search terms, including
body temperature, body weight, and locomotion as physical
condition indicators; activity, feeding, drinking and vocalizations
as behavioral indicators; and cough and lameness as physiological
indicators. Search terms related to individual recognition and
animal location in the pen were also included.

Search terms were applied to title, abstract and keywords
as follows:

(pig OR sow OR weaner OR piglet OR fattenn∗)
AND
(validat∗ OR evaluat∗ OR assess∗ OR test∗)
AND (one of the following search combinations)

1. (accelerometer), ((“activity sensor” OR “motion sensor” OR
“locomotion sensor” OR “infrared motion” OR (activity
AND automat∗))

2. ((position∗ AND sensor) OR rfid OR “tracking system”)
3. ((vision AND camera) OR “image analysis”)
4. ((thermistor OR infrared) OR (body temperature) AND

(monitor∗ OR detect∗ OR sensor)
5. ((scale∗ AND weigh∗) AND automat∗)
6. (“body condition scor∗” AND sensor OR automat∗)
7. ((“feeding behavior∗” OR “feeding behavior∗”) AND sensor)
8. (“feeding station” OR “feed∗ meter” OR “water meter” OR

“automatic feeder”)
9. (“drinking behavio∗” AND monitoring)
10. ((sound AND sensor) OR (cough AND detect∗))
11. (respiratory AND distress AND monitor)
12. ((sound AND sensor) OR (vocali∗ AND detect∗))
13. ((gait OR lameness OR lame∗) AND (sensor OR “image

analy∗” OR image OR automat∗ OR mat OR “pressure mat”
OR “pressure sensor” OR “force plate∗”))

NOT (review OR beef OR sheep OR survey OR goat∗ OR hors∗

OR pipeline OR genom∗ OR “wild boar” OR “swine model” OR
“porcine model”).

To make sure that all technologies identified in the first search
were checked for validation, an additional search of literature
using the name of identified commercial sensors in Google
(Supplementary Table 1) was performed. An example of search
criteria for “FLIR T300” technology was: pig OR piglet OR weaner
OR fattener OR sow FLIR T300.

Inclusion and Exclusion Criteria
Only peer-reviewed articles, written in English and published
between January 2000 and July 2020 were considered. Articles
related to welfare assessment in species other than domesticated
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FIGURE 1 | Countries of origin of commercially available PLF technologies with potential use in pig welfare assessment. For companies with multiple locations,

address of the headquarter was used. Some companies have operations in more than one country.

TABLE 1 | Commercially available Precision Livestock Farming technologies categorized by the sensor type and measured trait.

Type of technology Animal-based measure Number of identified % over total commercial

technologies solutions (n = 83)

Load cells and flow meters Force plates Gait attributes 2 Load cells with

RFID

18

22% 45%

Load cells Feed intake 3

Flow meter Water intake 2

Load cells/Flow meter 1

Feeder/drinker Feed/water intake 5

Scale Body weight 5

Feeder/drinker/RFID Feed/water intake/body weight 15 Load cells without

RFID

19

23%

Scale/RFID Body weight 4

Cameras Body weight 14 22 26%

Behavior and activity 8

Thermal cameras Body temperature 10 12%

Microphones Cough 2 5 6%

Animals sounds 3

Accelerometers Activity 4 5%

Body temperature devices Contact-temperature device Body temperature 2 2%

Pyrometer Body temperature

Photoelectric sensors Lameness 2 2%

GPS Location 1 1%

RFID Individual identification and

tracking

1 1%
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FIGURE 2 | Modified PRISMA flow diagram (25) with the systematic review search strategy and study selection.

pigs (Sus scrofa) were excluded. Studies not addressing
technology development or validation, as well as studies using a
PLF technology, but not testing its performance or validating it,
were also excluded.

Only articles addressing automated and on-farm applicable
PLF technologies were included in this review. Studies testing on
pigs not meant for farm practices (e.g., minipigs) were excluded.

Articles neither dealing with aspects directly related to animal
welfare (such as estrus detection) nor with animal-based welfare
indicators (e.g., environmental measurements such as climatic
aspects) were excluded. Duplicates were also removed from the
data set.

Selected studies were grouped based on the type of PLF
technology [accelerometers, photoelectric sensors, RFID (Radio
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Frequency Identification), load-cells, flow meters, microphones,
cameras, thermal cameras, infrared (IR) thermometers,
pyrometers]. The final data set included sample size, production
phase, and the relevant animal-based indicator(s).

Study Classification
A gold standard is defined as a criterium by which given tool
was evaluated (26, 27). In the conducted review, there were three
possible options:

1) tool was validated against a human observer,
2) tool was validated against other tool with well-defined

performance record,
3) tool was validated based on its ability to detect change

in animal behavior or physical condition during
planned experiment.

As in Stygar et al. (28), a similar review but focusing on dairy
cattle PLF technologies to monitor animal welfare, and based on
Altman et al. (24), we defined the following levels of validation:

1) External self-validation: studies where the system was
evaluated using a fully independent data set, meaning
that data was collected from different herds not used for
system development. Validation was conducted by either one
scientist, at least, involved in the technology development
or by someone representing the company who owns
the technology.

2) External independent validation: studies where the technology
was validated using a fully independent data set, from different
herds than those used for technology development, and
research was conducted by independent scientists with no
relationship with the company that owns the technology.

3) Internal validation: studies where the technology was
validated using the same data set as for technology building,
or where the commercial name of the technology was not
specified, or the origin of the validation data set was unknown.

For determining the validation level within the literature search,
the technology and the validation location were identified. The
technologies were identified by looking for their commercial
names or papers describing its development phase (prototypes).
Studies where the specific location of herd was not mentioned
(for example due to privacy concerns), but clearly used different
herds than for system building, were included as external
validation level.

RESULTS

Commercially Available Technologies
All PLF technologies with a potential link to animal-based pig
welfare assessment are listed in the Supplementary Table 1. In
total 83 technologies were found, based on 10 different types
of sensors, from 46 different providers whose headquarters
are located in 17 countries. Figure 1 shows the origin of
the commercially available technologies. Most of the providers
are located in the United States of America (n = 22), the
Netherlands (n = 18), and Germany (n = 11), followed by
Belgium (n = 7), China (n = 5), and Canada (n = 4).

FIGURE 3 | Temporal distribution of validation studies on PLF technologies

included in this review, with potential use in pig welfare assessment.

Location of providers was identified in a minor extent in other
countries (including Spain, Australia, Slovakia, Scotland, Austria,
Switzerland, Turkey, Sweden and England).

As summarized in Table 1, load-cells based and vision-based
technologies were the largest groups of identified technologies.
Thermal-image technology was the third most common
type of sensor. Remaining identified technologies included
microphones, accelerometers, body temperature devices,
photoelectric sensors, GPS (Global Positioning System), and
RFID (for animal tracking). Most of the identified commercial
tools can be used for different pig production phases, however,
some are targeted at a specific production phase. Of the
commercially available technologies, 39% was used for fattening
pigs, 33% for sows, and 28% for piglets and weaned piglets.
Load-cells based and vision-based body-weight tools are mainly
used for fattening pigs. No technologies exclusively developed or
adjusted for piglets and weaners were found.

Literature Search on Validation Trials
The literature search through databases provided 2,463 results.
Nineteen studies used the commercial names of technologies
identified in the web search. After removing duplicates and
applying the inclusion and exclusion criteria, 111 studies
remained. The PRISMA flow diagram in Figure 2 describes the
stages of studies selection process and reasons for exclusion.

As illustrated in Figure 3, the number of publications on
PLF internal and external validation increased over the last
decade. Neither the internal nor the external validation studies
followed any particular pattern of temporal distribution of
the publications. Only eight (7%) of the 111 selected studies,
fulfilled the external validation criteria, whereas 103 (93%) were
classified as having an internal validation (Figure 4). Within
the internal validation studies, 23 (22%), did not meet the
criteria for external validation, but could be included as internal
validation. In 18 of those 23 studies, the name or origin of the
sensor was not provided; it was therefore impossible to identify
its commercial availability or development stage. This applied
to nine studies with camera-based technologies (29–37), three
studies on load-cells [a drinker (38), a scale (39), and a force plate
(40)], two on RFID (41, 42), two on accelerometer (including
one on accelerometer and microchip for body-temperature)
(43, 44), one study on microphone (45), and one on load
cells with RFID (46). In the other five of those 23 studies,
the origin or location of the herds used, or the origin of the
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FIGURE 4 | Number of studies classified as internal or external validation for different sensor categories.

TABLE 2 | Number of peer-reviewed validation studies on sensor technologies used in pig production, categorized by sensor type and validation level (internal or external).

Type of sensor Number of internal validation studies Number of external validation studies Total number of validation studies

Camera 45 0 45

Load-cells With RFID- 8 (Feeders-9 Drinker-1) With RFID- 1 (Feeder-1) With RFID- 10 (Feeders-10 Drinker-1)

Without RFID- 7 (Force plates-5 Scales-2) Without RFID- 0 Without RFID- 7 (Force plates-5 Scales-2)

Accelerometer 14 0 14

Microphone 13 1 14

Thermal camera 8 2 10

Photoelectric

sensors

3 2 5

Flow meters 2 0 2

RFID 1 1 2

Non-contact

body-temperature

sensors

Infrared thermometer- 1 Pyrometer- 1 Infrared thermometer- 1 Pyrometer- 1

The bold numbers indicates the total sum of the number of internal and external validation studies on each type of sensor. In brackets: the specific sensors included in each sensor type

category.

sensor was not described [two studies on thermal cameras (47,
48), one on load cells with RFID in a feeding station (49),
one on cameras (50), and one on microphone (51)]. From
the obtained list of commercially available PLF technologies,
14% were validated in some identified papers of literature
search (12 of 83 technologies), of which 5% corresponded to
external validation (52–55).

An overview of internal and external validation studies
can be found in Table 2. Most internal validation studies
concerned camera-based technologies, followed by load-
cells based technologies. The next most frequent validated
type of sensors were accelerometers and microphones,
followed by thermal-cameras, photoelectric sensors,
flow meters, and RFID (for animal tracking). The
less common validated technologies were non-contact
body-temperature sensors (infrared thermometers,

and pyrometer). All validation studies, together with
performance indicators, are described in detail in
Supplementary Table 2.

Regarding the productive phase of animals used for the
studies, the most frequently used pigs were fatteners (51 studies),
followed by sows (28 studies), and weaners (21 studies). Sensors
for piglets and gilts were less frequent (eight and five studies,
respectively). In our results on commercial search, no PLF
solution developed or adapted exclusively for piglets or weaners
was identified. However, research on PLF solutions for piglets
exists, as studies on cameras, thermal cameras, feeders with RFID,
microphones, photoelectric sensors, pyrometers and RFID for
tracking were identified using young pigs (from birth to 10 weeks
old or up to 70 days old) as target animals. Five studies used
pigs in general, not specifying the productive phase. Sample size
used in the selected studies are illustrated in Figure 5. Some
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TABLE 3 | Studies on externally validated (independent or self-validated) sensor technologies with potential use in pig welfare assessment, specifying the sensor type,

commercial name, the animal-based indicator assessed and its evaluation level (individual or group).

Technology name Indicator Reason of use

(monitored trait)

Evaluation

level

Nr of

validation

trials

Used sensors Independent

validationa

Self-

validationb

OPTEX RX-40QZ Activity and

posture-related

behavior

Active and/or passive

(without distinguishing on

activity type)

Group 1 Photoelectric (56)

STREMODO

(commercially unavailable)

Physical condition Stress vocalization (due to

handling)

Group 1 Microphone (57)

FLIR E5 thermal imaging

camera

Physical condition Body temperature Individual 2 Thermal camera (53)

FLIR ThermoCAM S60 Physical condition Body temperature Individual (54)

FIRE Physical condition Body weight Individual 1 Load cells and RFID (52)

Feeding and

drinking behavior

Feed intake (kg)

Pyrometer Optris Physical condition Body temperature Individual 1 Pyrometer (55)

Prototype system Feeding and

drinking behavior

Feeding behavior, feeding

time and/frequency

Individual 1 RFID (58)

Standing lying sensor Activity and

posture-related

behavior

Posture change (between

lying, standing and sitting)

Individual 1 Photoelectric (59)

aExternal independent validation—validated using independent data set (different animals and herd than for technology building) and co-authors were not involved in

technology development.
bExternal self-validation—validated using independent data set (different animals and herd than for technology building) and was developed and validated by at least one the same

co-author (based on the authorship of papers) or have been validated by at least one co-author representing a company providing a technology.

patterns were observed in relation to the size of the samples
and validated technology. The smallest sample size (including
samples of <10 animals) was used in studies validating cameras
(eight studies), accelerometers (five studies), microphones (three
studies), RFID for tracking (one study), and force plates (one
study). However, most of the studies on accelerometers (11 out
of 14 studies) and force plates (four out of five studies) were
conducted using sample sizes smaller than 24 animals. Automatic
feeders and drinkers, with or without RFID, and sorting scales
systems, were mostly validated in studies using sample sizes from
55 to more than 1,000 animals. Three studies on drinkers with
RFID validated the technology using samples between 25 and 30
animals. Studies validating accelerometers, force plates, cameras,
microphones and RFID for tracking of animals used samples sizes
from 3 tomore than 500 animals. Studies on thermal cameras and
photoelectric sensors also were performed using varied ranges of
sample sizes (from 11 to 297 animals). In the external validation
studies sample sizes were between 20 and 63 animals.

Validation Studies and Technologies for
Welfare Assessment in Pigs
External Validation Studies
Table 3 summarizes the externally validated (self-validation and
independent validation) technologies with potential use for pig
welfare assessment.

Measured Traits and Technologies in Internal and

External Validation Studies
Table 4 provides an overview of technologies tested to monitor
different welfare indicators related to pig production. Validated

FIGURE 5 | Sample size (the number of animals) used for external or internal

validation in the reviewed studies.

traits were grouped in following categories: activity and posture-
related behavior, feeding and drinking behavior, other behaviors,
physical condition, and health-related traits.

Activity and Posture-Related Behavior
We identified five sensor types (cameras, accelerometers,
photoelectric sensors, thermal cameras, and RFID) that were
used for activity measurement (Table 4). The following traits
were monitored: general motion activity (active, inactive state),
walking (number of steps, identified as separate behavior),
tracking (identifying location or number of animals in this
location), postural state and transition between states (lying,
standing and sitting), as well as general motion activity and
tracking (studied in relation to thermal comfort). We identified
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TABLE 4 | Summary of internally and externally validated technologies to monitor different pig welfare indicators, classified by monitored trait and sensor type.

Indicator Reason of use (monitored trait) Technologies tested

Activity and

posture-related

behavior

Active and/or passive (without distinguishing on activity type) Accelerometer (60–65)

Photoelectric sensor (56)a, (66–68)

Camera (30, 69–71)

Lying Camera (72–76)

Accelerometer (43, 60–62, 77, 78)

Standing Camera (72–74, 79)

Accelerometer (43, 62, 77)

Sitting Camera (72–74)

Accelerometer (43, 77)

Kneeling Camera (73, 74)

Posture state and transitions between states (e.g., between lying and

standing)

Photoelectric sensor (59)a

Accelerometer (78)

Camera (74)

General motion activity and tracking (related to thermal comfort) Camera (34, 76, 80)

Accelerometer (78)

Thermal camera (81)

Walking (number of steps) Accelerometer (61)

Tracking (identifying location or number of animals) Camera (32, 82–84)

RFID (41)

Feeding and drinking

behavior

Feed intake (kg) Load cells with RFID (52)a, (49, 85)

Feeding time and/or frequency RFID (42, 58, 86)a, (87, 88)

RFID and environment temperature and humidity sensors (46)

Camera (37, 73, 74)

Accelerometer (61, 64)

Hunger stress identification Thermal camera (89)

Microphone (90–92)

Nursing, suckling Camera (37)

Drinking time and/or frequency RFID (93)

Accelerometer (64)

Camera (37, 73, 74, 94–97)

Thirst stress identification Thermal camera (89)

Microphone (90, 92)

Other behavior Nest- building behavior Accelerometer (98)

Aggressive behavior Camera (99–104)

Accelerometer (64)

Cascade defense (freezing and startle duration) Camera (105)

Rooting Accelerometer (61)

Mounting behavior Camera (97, 106)

Tail biting Camera (50, 107)

Water flow meter and environment temperature sensor (108)

Exploratory behavior Accelerometer (64)

Playing behavior Camera (96)b

Accelerometer (64)c

Physical condition Gait attributes Load cells [force plates, (35, 40, 109–111)]

Camera and accelerometer (112), Camera (113)

Cough detection Microphone (45, 51, 114, 115)

Body weight Camera (29, 33, 36, 116–122)

Load cells (scales) with RFID (52)a

Load cells (scales) (39, 123)

Muscle score Camera (124)

Body temperature Thermal camera (48, 53)a, (54)a, (125, 126)

Pyrometer (55)a

Stress (e.g., due to heat or cold, pain, fear) Microphone (57, 90)a, (91, 92, 127–130)

Thermal camera (89)

(Continued)
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TABLE 4 | Continued

Indicator Reason of use (monitored trait) Technologies tested

Health-related traits Lameness and claw lesions detection Accelerometer (131)

Camera (35)

Thermal camera (132)

African Swine Fever (sign: changes in activity level) Camera (31)

Accelerometer and microchip for body temperature (44)

Influenza A virus (signs: fever) and changes in activity level IR thermometer (133)

Respiratory disease Thermal camera (47, 134)

Microphone (135, 136)

General health problems RFID (137)

Diarrhea Water flow meter (38)

aExternal validation study.
bWater base play.
cUse of manipulating material.

five sensor types (cameras, accelerometers, photoelectric sensors,
thermal cameras, and RFID) that were used for activity
measurement. Studies on accelerometers were mostly developed
for sows, to classify postures and activity. Several studies
validating the use of image analysis for postural states monitoring
were found. For activity traits related to tracking (individual
recognition and pen location), two types of sensors were
identified: cameras and RFID. General motion activity and
tracking related to thermal comfort (clustering behavior) was
assessed using thermal-imaging.

Feeding and Drinking Behavior
Five types of technologies were identified for monitoring feeding
and drinking behavior: RFID (feeders and drinkers), cameras,
accelerometers, thermal cameras, and microphones (Table 4).
Measured traits were: feed intake, feeding and drinking frequency
and duration, stress related to hunger or thirst, as well as nursing
and suckling behavior. Sows’ nursing behavior was monitored
using cameras (37). The estimation of stress conditions related
to hunger and thirst was assessed by vocalizations (90–92)
using microphones and via skin temperature using thermal
cameras (89), applying different stressors to the animals. Feed
intake was monitored using RFID in an electronic feeding
station (52, 85). Evidence suggests that the performance of RFID
feeders for monitoring feeding behavior is negatively affected by
accumulation of debris under the feed trough, the large number
of pigs per feeder space and pen space allowance (52). Therefore,
frequent recalibration of the device is needed. Other studies
validated feeding stations for monitoring individual daily feed
intake (49). RFID systems were also validated for registering
feeding and drinking patterns of individual growing-finishing
pigs (58, 86, 93). Drinking patterns can be monitored using video
analysis for evaluating visits to the drinker and contact time
(94, 95), and for distinguishing drinking from drinker-playing
behavior (96). Cameras for the identification of behavior of sows
were used for identifying feeding and drinking behavior in the
farrowing crate (37, 73, 74), as well as in group-housed sows (97).

Other Behavior
For monitoring other behavior, accelerometers, cameras, and
water flow meters were used (Table 4). Cameras were the most

often tested for monitoring other behavior (n = 12), followed by
accelerometers (n= 5). Cameras were used for assessing behavior
as a predictor of tail biting outbreak (restlessness) (107), as well
as for recognizing high and medium aggression events based
on image detection of motion and acceleration (as displacement
in image) (100–103). Accelerometers were used for assessing
movement associated to nest-building (98) and aggression (64).
Water flow meters have been used in a study for predicting
tail biting outbreaks by combining the frequency of use of
water points and ambient temperature (108). Image analysis was
also used for recognizing movement and location associated to
walking, running, exploring, playing, nursing, feeding, urinating
and mounting. Image methods for analyzing low tail posture as
an early warning of tail biting have been studied (50). None of the
vision-based tools have been externally validated (see Table 2).

Physical Condition
The following technologies were identified for monitoring
physical condition: load cells (force plates, scales), load cells with
RFID, cameras, microphones, thermal cameras, and pyrometer
(Table 4). Measured traits included gait attributes (weight
distribution on legs, gait characteristics, axial body movements
trajectory during walking), cough, body temperature, stress (e.g.,
due to heat or cold, pain, fear), body weight as well as muscle
score (loss in muscle condition is associated to acute and chronic
diseases, and affects strength, immune function, and wound
healing). Body weight was the most studied attribute, followed by
stress and gait characteristics. Cameras were frequently used to
assess body weight. One study tested the potential of depth-image
analysis to evaluate axial body movements trajectory during
walking, as an early indicator of lameness (113). Microphones
were applied for evaluating the features of stress vocalizations,
applying stressors such as handling, cold, heat, pain, hunger and
thirst (eight studies) and for cough detection. Load cells (force
plates) were applied for gait characteristics assessment. Thermal
image was used for assessing body-temperature as an alternative
of rectal temperature measurement. Also, the usefulness of
thermal image to assess piglets’ stress by measuring body-
temperature changes when applying stressors (cold, pain, hunger,
thirst) was tested (89). One study was found using a pyrometer
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for continuously measuring body-temperature, showing negative
validation results (55). Load cells (scales) with and without RFID
were validated for assessing body weight.

Health-Related Traits
Seven technologies were identified for assessing health-related
traits: cameras, accelerometers, infrared thermometer, thermal
cameras, microphones, RFID, and water flow meters (Table 4).
The following health-related traits were assessed: lameness,
claw lesions, detection of signs of disease associated to African
Swine fever (decrease in activity), as well as Influenza A
virus (fever), respiratory disease, diarrhea, and general health
problems. Respiratory disease was the most frequent studied
health-related trait (four studies), followed by body-temperature
to detect fever (three studies), and lameness (three studies).
Acceleration in combination with body-temperature data was
tested for generating early alerts of disease (44). Acceleration
was also applied for lameness detection based on sows’ postures
(131). Thermal imaging for assessing health problems was
applied in three studies: one for detecting inflammation related
to lameness in pregnant sows (132), and two for respiratory
disease assessment (measuring skin-temperature at chest level
for detecting lung tissue damage) (47, 134). One study tested
the use of infrared thermometry for fever detection (133).
Microphones for cough detection to identify sick pigs was
applied in two studies. Moreover, RFID data were used to
detect deviations in individual pigs’ feeding patterns to point
diseases or other disturbances, correlating it with the Welfare
Quality R© protocol assessment (looking for skin, ear and tail
lesions, soiling, abnormalities in body condition, respiration,
locomotion, bursitis, lameness, or diarrhea) (137). Finally, water
usage data from flow meters have been tested as an early
indicator of potential presence of diseases at group level,
demonstrating that changes in diurnal drinking patterns of pigs
can predict, for example, a diarrhea outbreak before clinical signs
show up (38).

DISCUSSION

The aim of this review was to explore existing PLF technologies
that potentially can contribute to measure animal-based welfare
indicators of pigs and investigate their validation status. There is
a substantial number of PLF tools (83 in our commercial list) in
the market that can be potentially used to assess animal-based
indicators of pig welfare. However, only a limited number of
technologies have been internally validated, and only four market
available technologies were externally validated (two thermal
cameras, one pyrometer for monitoring body-temperature, and
one RFID feeding station for monitoring feed intake and body
weight) (52–55). Through this review, we identified important
gaps in terms of validation on commercially available sensors.
PLF tools that can identify stress due to hunger and thirst (90–92)
have been found in the literature search but not in the commercial
search. Similarly, tools that can assess play (64, 96), exploratory
behavior (64), and aggressive behavior (64, 99–104) as well as
models trained for recognizing specific diseases, such as African
swine fever (31, 44), are not yet commercially available. The

combination of different sensors as part of the same PLF solution
was identified in several studies of the literature search, but they
were not found as commercial solutions in our list (except for
the combination of RFID and load cells, and accelerometers with
body temperature sensors attached to ear tags).

Initially, we were searching for externally validated tools.
However, only eight tools with external validation records were
found. Therefore, the obtained data set has been used to find out
which technologies have potential to contribute to pig welfare
monitoring, but are not yet externally validated. Among the
market available PLF tools, only 14% were found in validation
studies. However, it needs to be noted that information obtained
from the market is an overview of available PFL tools, as only
products with websites and commercial information in English
were included. Besides, several solutions may have been left
out of the list, as we excluded technologies not addressing
animal-based welfare indicators, or without direct involvement
with animal welfare, for instance, those measuring reproductive
parameters [e.g., (138–141)], or animal identification, such as
facial recognition (142, 143).

Also, the literature search on validation studies may not have
included all relevant PLF technologies for measuring animal-
based welfare indicators. The reason for this was the choice of
search criteria. Our search criteria specified the type of sensor
applied to title, abstract and keywords. For this reason, some
studies which mention sensor type only in material and methods
section were omitted. This was the case for one study on image-
analysis, one on water meters and one on load-cells (144–146) for
instance. Pen fouling outbreaks, which can cause health problems
due to poor hygiene, can be predicted by analyzing lying behavior
using machine learning (144) and drinking patterns from water
meters (146). The usefulness of load-cells to detect abnormalities
in growth patterns of pigs at group level has been proved, even
if the animals are not individually identified, by measuring the
initial body weight, average daily gain and daily fluctuations
in body weight parameters (145). One of the exclusion criteria
was to remove articles not dealing with animal-based welfare
indicators. Hence, all papers that use environmental data for
welfare monitoring [e.g., (147), using ambient temperature data]
were excluded.

The recent development of certain technologies, such as
computer vision based technologies (analysis of static images
and video, 2D, 3D and thermal-imaging) begin to appear on
the market (148). In our review, vision-based PLF was the
type of technology that could have potentially assessed the
largest number of animal-based welfare indicators. However,
most studies using computer vision for monitoring measures
related to animal welfare assessment still report some need of
improvement. For instance, in automatic body-weight detection,
there is a need for development of algorithms accounting for
the effect of gender and genotype (118), and the refinement of
algorithms on automatic detection rate of pig boundaries (116).
Similarly, for lameness detection, some reports have suggested
the need for algorithms refinement to increase sensitivity and
reliability (113), and the need to incorporate additional elements
to the system, such as infrared lights (35). None of the reviewed
systems were externally validated.
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Performance of Validated and
Commercially Available PLF Technologies,
and Its Potential for Pig Welfare
Assessment
According to our results there are no guidelines on the reporting
of performance information in PLF validation studies. For that
reason, the differences in performance measures reported by
validation studies were not used as exclusion criteria. To be
considered valid and feasible in commercial conditions, the
performance of a technology should be tested in multiple
practical scenarios, in different types of production systems and
with different housing environments. In the reviewed studies,
external validation was only performed in 7% of studies. Low
number of validation studies can be explained by: (i) insufficient
reporting (e.g., lack of information on validation place), (ii)
low scientific interest (e.g., reluctance of scientific journals to
publish validation studies on tool not applied for research), (iii)
high costs and labor intensity of data collection, (iv) reluctance
to publish negative results, and (v) the recent development of
certain technologies. According to our results, validation trials
for commercial purposes were less common than for research
purposes, and it could be due to time and resources requirements
for validation. Besides, market available PLF technologies for pigs
are mostly calibrated by the providers, and its precision and
reliability on data management is assumed by them without an
independent validation (Table 3). The fact that PLF companies
perform validation trials themselves, and could obtain negative
results without reporting these, has to be considered as an
important reason for reluctance of dissemination.

Concerning the quality of reporting, external validation
requires specific information on the location of the trials,
the name of validated device, software provider, and studied
population, knowledge about the origin of the animals, if the
test procedure was applied in commercial or experimental
conditions, and clear information on which golden standard was
used for validation and how it was measured. Information gaps
in reporting were found in 22% of studies, for which reason were
classified as internal validation studies. Few examples are the
study of Petry et al. (48), and Guarino et al. (51), which despite
reporting their results under laboratory and practical conditions,
presented lacks of information in materials and methods
(regarding used animals, and study location, respectively).

In addition, internal validation studies with samples smaller
than 10 or 20 animals were very frequent (validating some
cameras, accelerometers, microphones, RFID for tracking, and
force plates). It was observed that larger samples (above 20
animals) were mainly used in studies validating feeders and
drinkers with or without RFID, and sorting scales. According to
Royston and Altman (23), an appropriate validation sample is
required to provide a reasonably accurate estimate of a measure
and to avoid the risk of false negatives. Thus, studies with limited
sample sizes could have low validity and are inconclusive (23).
However, at present, a standardized parameter is not known for
what could be considered a reasonable sample size (depending
on the type of technology to be validated). A remarkable lack
was found regarding technologies developed or with adapted

algorithms for young pigs exclusively. Thus, there is an important
concern in regard to the usefulness of PLF for monitoring the
welfare of young animals.

As stated by Stygar et al. (28), in the case of the dairy
cow industry, devices used for the official recording of milk
(such as milk samplers) must comply with the requirements
of the International Organization for Standardization (ISO)
to obtain the certification, and must be tested for approval
by the International Committee for Animal Recording and
Analysis (ICAR) (149). Recommendations on proper validation
procedures for PLF technologies for pig industry are still lacking.

There is a constant development of PLF technologies to
offer solutions for animal production including animal welfare.
Despite the lack of external validation for the majority of
technologies, the link between the feature measured by a sensor
and the state of the animal in terms of welfare is not always
clear. For instance, camera-based motion detection is often
mentioned as a tool for welfare assessment. However, few studies
have demonstrated a clear link between features of motion and
specific animal welfare problems, such as lameness (113), or
specific diseases (31). The performance of identified types of PLF
for monitoring animal-based welfare indicators and measured
traits in validation studies will be described below. The types of
sensors are listed in descending order, according to the number
of validation studies compiled for each. Supplementary Table 2

shows full information on the validation results of each study.

Camera-Based Technologies
Internal validation of the vision-based technologies inmany cases
reported very promising results with accuracy above 95% [e.g.,
(30, 33, 58, 73, 74, 93, 95, 97, 107, 145–147)]. However, none of
the outstanding performance results for vision-based monitoring
have been confirmed by external validation. Image-analysis has
been used for assessing sows’ postures, such as standing, lying,
and sitting (73), evaluating lying patterns in group-housed pigs
responding to thermal conditions of the pen (76, 80), detecting
animals’ location (32, 84), distinguishing drinking and drinker-
playing behavior (96), identifying feeding behavior (37, 73, 74,
97), recognizing aggression events (100–103) and tail biting (50),
estimating body weight (36, 118, 119), and detecting African
swine fever (31).

Changes in animals’ postures can be used as health indicators
(31). Although the assessment of certain postures (sitting,
kneeling) is not very accurate using vision based technologies
(72), it is possible to distinguish standing active behaviors,
such as feeding or walking, against resting patterns (30, 69).
Lying posture, predicted by image-analysis, can indicate health
problems. For instance, resting duration and frequency changes
due to diseases (31), lesions and stressful situations, are at the
same time associated to damaging behavior outbreaks (50, 107).
Similarly, resting can be used to extrapolate maternal ability of
sows, as it is associated to nursing behavior (37), and thermal
comfort in the pen (34). Lying posture can also be used for
assessing diurnal activity patterns of the animals (79). Image
technologies that detect locomotion and axial body-movement
are promising tools for assessing lameness, an important welfare
issue (113), especially in sows (35).
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Image based technologies are also able to accurately assess
drinking behavior and water usage, which are acknowledged to
be crucial for pig welfare (73, 74). Vision-based technologies
have great potential of assessing animal welfare by continuously
monitoring behaviors of pigs, which can be used to detect
changes and deviations in normal behavioral patterns related
to animals’ affective state (150). Some specific features such
as the posture of the tail can provide useful information in
relation to tail biting outbreaks or can even be related to the
affective state of the pig (150). Besides, computer vision can
provide information on behavioral changes such as interactions
between individuals, allowing the detection of aggressive events
and affiliative behaviors as nursing and playing (37). The use of
image-analysis to evaluate the cascade defense has been validated
in just one study, however, it still shows the potential of this tool
to assess fear and stress-associated conditions (105).

Body weight detection, individual recognition, behavior and
activity tracking are the most frequent uses of commercial image
PLF technologies. According to Wurtz et al. (148), one of the
difficulties of camera-based technologies is to monitor animals
at individual level. Nevertheless, results on studies validating
vision algorithms for individual identification and location, seem
to be promising (84). Image-based individual recognition is not
invasive, and can be used in real-time, helping to overcome some
of the limitations of RFID systems (stress to the animals when
attaching an RFID tag, and time requirements to the farmer
in attaching and reading). Current protocols, such as Welfare
Quality R© (2), assess the nutritional state of animals by the
body-condition. Image-analysis seems to be a promising tool to
improve the assessment of the nutritional status continuously, by
monitoring the body size (117, 122). Compiled results on camera-
based systems in farm conditions for pig weight estimation, show
potential of these tools for reducing the need of human-animal
interaction, reducing stress associated to an unfamiliar human
presence (118, 119, 124). Besides, camera-based PLF allows to
monitor specific situations as farrowing, and the detection of the
number of piglets in the farrowing pen, which has been studied
to prevent perinatal asphyxia and piglets’ crushing (83).

Load Cells and Flow Meters
Flow meters are discussed in the same section with load-cells,
as its application for welfare assessment is strongly related to
monitoring of feed-intake. Load-cells also include force plates.

Scales without individual identification have been used for
body weight measurement. Reported deviations are around 1 kg
at group (39) and individual level (123). In combination with
RFID, load-cells systems (electronic feeding stations), could
estimate body weight with a percentage error of 3% (52), showing
less accuracy than an ordinary scale. Monitoring the feed intake
by measuring the feed weight in an electronic station with RFID
was found to reach a 90% accuracy (85). An overestimation
of 1.1% of feed intake has been found in one study (49).
Feeding patterns (time and frequency) of individual growing-
finishing pigs can be analyzed by combining RFID and load-
cells, reaching an accuracy of 97% (58, 86). RFID data for
measuring the drinking behavior of individual pigs, showed 93%
of accuracy (93).

Load-cell technologies allow to monitor body weight and
growing patterns at group level. When working with RFID, load-
cells can monitor feeding and drinking patterns and growing
performance at individual level, overcoming one of the challenges
that cannot be achieved by current welfare protocols, which can
only monitor these aspects at group level. Although a normal
growth pattern may have little predictive value in terms of
good animal welfare, growth deviations or retardations have
been used to identify health issues and other welfare problems
(137). Automatic feeders with RFID are a promising technique
to understand animals’ requirements and anticipate welfare
problems based on feeding patterns deviations, allowing the
implementation of corrective measures and thus improving
animal health and welfare (46).

Force Plates
Lameness is a frequent and important welfare problem, because
of the intense pain it causes, the disadvantages that it brings
in terms of access to food and water (151, 152). Also, in the
normal housing conditions of a pig farm, which mainly use
slatted floor (151), may only exacerbate the problem. Due to
stocking density, and subjectivity of observations, the usual visual
diagnosis of lameness is challenging. The most affected animals
often lose feeding times, and consequently body condition
decreases, which gets the attention of farm staff, and that is when
observation is usually performed. Early diagnosis of lameness
can prevent the associated high culling and mortality rates,
especially for sows (152). Force plates are accurate for evaluating
gait characteristics and detecting lameness even at an early
stage (40). Several validation studies confirm their potential
(35, 40, 109–111, 153). Different features have been extracted
and validated using visual observation as a gold standard (109,
110, 153). Weight distribution of legs (percentage of weight, ratio
between the weights applied by contralateral legs, weight shifting,
amplitude of weight bearing and weight removing) significantly
correlated with the golden standard (CV= 5.22%) (111). Weight
shifting frequency and the ratio between the weights applied by
contralateral legs performed the best in terms of identifying lame
individuals (109).

Flow Meters
The use of flow meters to assess drinking patterns and water
usage, have proved useful for prediction of several welfare
conditions, such as presence of disease (38), and tail biting
outbreaks (108). Performance of warning algorithms based on
deviations from expected diurnal pattern in water consumption,
showed that the algorithms were capable to predict a diarrhea
outbreak 1 day before presentation of clinical signs (38).

Accelerometers
Accelerometers have been used to classify postures and activity
with a performance for detecting and classifying activity ranging
from 75 to 100% (60–64, 77). By classifying postures and activity
nest-building behavior can be monitored to predict farrowing
time with an accuracy of 86% (98). Acceleration data have also
been used to detect lameness based on sow postures with an
accuracy of up to 93% (131). Acceleration in combination with
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body temperature data was tested for generating early alerts of
disease, reaching 97% of sensitivity and 89% of specificity (44).

Deviations in activity pattern might point out to health issues
(44) and lameness (131). Accelerometers can therefore provide
useful information, but the application on pig farms will be
limited because sensors have to be attached to individual pigs,
implying handling stress. For instance, accelerometers may be
embedded in ear tags, which requires the perforation of an
animal’s ear for placement. Another alternative is the attachment
of the accelerometer on the animal’s back or leg, but ensuring
that the device remains in place can lead to complications.
Besides, the maintenance of a device attached to the pigs’ bodies
could be difficult under farm conditions, as it can motivate
other pigs’ chewing behavior in response to novelty of an object
(154). Short battery life of wearable sensors is also a limitation
of its applicability on farm. However, optimization of power
consumption and battery life are currently being improved (65).
For lameness detection, accelerometers can be mainly relevant to
be used in sows.

Microphones
Microphones accuracy for assessing and classifying vocalizations
was >73% (eight out of nine validation trials studies).
One sound-analysis algorithm reached an accuracy of 98%
distinguishing stress vocalizations associated to pain, using
duration and intensity of vocalization signal as a gold standard
(91). The detection of vocalizations related to hunger, thirst,
cold and heat conditions (ranged from 69 to 71%) (91). Cough
detection for localization of sick pigs at barn level using
microphones, reached an interval of confidence of 95% (135).
It was also found an accuracy from 73 to 93% for correct
identification ratio of sick pigs cough sounds (136).

Sound analysis has been used for detecting coughing pigs.
Coughing is a sign of respiratory problems or at least of poor
climate conditions (dust, ammonia). Measuring coughing is
therefore a relevant indicator contributing to animal welfare
assessment, although it cannot be done at the individual
level. Furthermore, if stress and pain related vocalizations
can be reliably identified, it could also be used to further
welfare aspects such as stress assessment and fighting events,
for instance. Distress vocalizations induced by hunger, or
extreme thermal discomfort seem to be more difficult to
classify than vocalizations due to pain (91). Future research
is needed in a larger vocal spectrum of vocal signals, not
only to assess negative welfare aspects but also for assessing
positive welfare.

Thermal Cameras
Thermal cameras are mainly used for remote sensing of body
temperature (17). Body temperature is relevant in relation to
animal welfare because over certain thresholds it can evidence
hyperthermia or hypothermia and may also reflect fever.
Besides, thermal imaging seems to be a promising tool for
monitoring physiological responses as inflammation related to
lameness (132), and animals’ distribution responding to housing
thermal conditions (81). Additionally, thermal imaging can be
a promising tool for assessing acute stress events by body

temperature changes (89). Thermal image for predicting stress
in piglets, reached accuracies of 50, 86, 91, and 100% when
stress was related to pain, hunger, thirst, and cold, respectively
(89). Thermal cameras for assessing animals’ space distribution
(clustering behavior) in function of body temperature and
radiated temperature, was validated showing a significant
correlation between clustering and temperature response (81).
Also, the correlation between thermal image measurements and
rectal temperature was high (r = 0.80) (126). Inflammation
related to lameness in pregnant sows was also detected using
thermal imaging, showing significant correlation between mean
upper metatarsal temperature and sows’ parity (132). Therefore,
thermal imaging allowed to differentiate between lame and
non-lame sows, and to detect temperature differences in the
affected leg. Hence, the welfare problem resulting from the pain
caused by the inflammation associated with lameness (151),
can be detected by thermal imaging. Thermal imaging at chest
level for the diagnosis of lung tissue alterations associated
with Actinobacillus pleuropneumoniae infection, by measuring
the body temperature at chest level, reached a specificity
of 100% (134).

Photoelectric Sensors
Photoelectric sensors, the only sensor group with external
validation records for activity measurements, showed a precision
lower than 90% (56, 66). The potential of these sensors to detect
position changes in puerperal sows showed 64% of sensitivity
and 88% of specificity (59). For monitoring activity levels in pigs,
photoelectric sensors detected movement in <1 s (67).

Photoelectric sensors can detect movement and therefore
provide useful information about the activity level and postural
transitions, which contribute to welfare assessment. According
to Besteiro et al. (56), these sensors work better with recently
weaned piglets and assessing play than feeding behavior. As
the body-weight of animals increases, the coverage area of
the photoelectric sensor decreases, resulting in less precise
measurements. In contrast, the detection of intense activity is
more precise than non-intense activity (56).

RFID
RFID technology used for individual recognition of multiple pigs
at the same RFID reader in the pen, can reach an accuracy
of 92% (41). It has been demonstrated that the use of two
RFID tags instead of one, increased the accuracy up to 97%
(58, 86). Deviations in feeding patterns as an indicator of disease,
monitored by RFID data, have showed an accuracy of 97%, and a
precision of 71% (137).

RFID is used for individual identification, and this is essential
if we want to opt for an increasingly individualized welfare
evaluation. RFID is very useful in combination with many other
devices such as scales and automatic feeders and drinkers. RFID
allows to track animals’ location. It may offer additional practical
applications such as monitoring social interaction as a possible
transmission path for diseases (155), as the contact intensity
and length between individuals may be an indicator for disease
transmission (156).
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Non-contact Body-Temperature Sensors
Non-contact body-temperature sensors revealed its limited
usefulness as an alternative to sensing temperature measurement.
The one study found on pyrometer for continuously measuring
pigs’ body temperature showed that the performance was not
reliable (55). Under fever-induced situations, comparing vaginal
thermometer data and pyrometer data in the orbital area of
animals in time periods from 0.25 to 5 h, a positive correlation
was found only in a third of the sample. The longer themeasuring
period, the fewer animals showed a significant correlation.
Similar conclusions were obtained from testing the accuracy
of infrared thermometers for body-temperature measurement,
compared to rectal temperature as a gold standard (133).
Several authors conclude that environmental conditions such
as ambient temperature, sunlight, air movement, barn and pen
configuration, and stocking density, have a significant impact
on the reliability of infrared thermometry to assess body-
temperature in pigs (133, 157).

Trends and Gaps in PLF Technologies for Pig

Welfare Assessment
To increase transparency of animal production, there is a need for
reliable data on the welfare of farmed animals. This information
is above all important for the animals as if used in a proper
way it can improve their lives. It can also assist both consumers
and producers to make decisions from an informed perspective.
For the sake of the animals and production efficiency, producers
need to monitor the health and welfare status of animals.
It may be done with reliable and up-to-date information
as early-warning systems, before implementing corrective and
timely measures. Consumers are demanding clear information
about farm animal welfare to assist them in identifying and
choosing enhanced welfare-friendly products. Recent advances in
sensor technologies increasingly allow systematic and automated
monitoring of several indicators that inform about the welfare
status of farm animals. This data could be transformed to useful
information for consumers as labeling.

However, there is a need to identify and select the most
appropriate indicators and the relevant PLF technologies to
assess them. This review, is the first of its kind, spotting
relevant technologies that can assist on this task. Nevertheless, we
identified some challenges and gaps that need to be addressed.
To date, welfare has been based on focal assessments, and
as information is mainly applicable to the day in which the
evaluation is carried out, a limited picture of welfare status
of animals is provided. PLF technologies dispense continuous
welfare information using both behavioral (e.g., activity) and
physiological indicators (e.g., body temperature and weight),
which could yield a continuous and systematic assessment at
different stages of their life, and in the future, may revolutionize
the way animal welfare is evaluated. This may allow to investigate
deviations from normality at the individual level, leading to one
welfare appraisal which is predominantly animal-based, and that
is less dependent on environmental-based indicators. Deviations
from “normal” patterns at individual level will account for
individual differences rather than trying to understand “average”
animals. Information on the evolution of animal behavior and

welfare throughout an animal’s lifetime and throughout the
chain may facilitate understanding of factors impairing or
promoting it. This understanding of animal welfare will further
be reinforced by accessibility to large data sets, only available with
the integrated automatic and systematic assessment.

There is thus a need for an integration of the different aspects
of animal welfare (i.e., health, nutrition, comfort, affective state
and natural behavior) into relevant information that could assist
stakeholders to make decisions. The combination of sensors
may provide more relevant information than if taken separately
as animal-based indicators can be related. For instance, the
use of one activity sensor may alert when an animal stops
moving, which could be a sign of different health problems
(e.g., lameness, disease), but if the activity sensor is combined
with a thermal camera informing about body temperature, the
welfare information delivered can be much more precise. In
order to cover these needs, block chain technology has been
judged useful to integrate information throughout the entire
production chain and monitor welfare at different stages of the
animal’s lives (158, 159).

Market availability and validation records of sensor
technologies dedicated to animal-based welfare monitoring
in dairy industry has been recently conducted (28). There are
clear differences between dairy and pig industry when it comes to
market availability, type of sensors used and validation records.
It seems that the pig industry is behind dairy regarding sensor
availability (and validation), especially when population numbers
are compared [pigs around 677.6 millions of heads (160) against
to 270 million oh head in dairy cattle (161)]. Looking on
the nature of production, pigs are mostly kept in groups,
and very often are not individually identified. Since lifespan
of a productive pig is limited (excluding sows), individual
identification is relatively expensive and more difficult to manage
(145, 162). Nevertheless, individual identification allows for a
more specific picture of any sub-optimal state of well-being,
which is not captured by group averages (46, 58, 85, 86, 93, 145).
There is a difference in the investment on individual animals’
identification in function of their productive objectives. Sows
are more commonly identified by RFID tags than fattening pigs,
especially in farms using electronic feeding stations, as their
productive lifespan is longer. In fattening pigs, group monitoring
is more common as it reduces the costs of assessment. This
might be a reason why some technologies, which would have
great potential for health and welfare monitoring, are so scarcely
represented on the market.

Based on market analyses, it is clear that availability of vision-
based monitoring for pigs are greater than in cattle production.
It could be due to cost concerns (163). For example, in order to
monitor the body weight of fattening pigs, few technologies could
be considered. Using a weight sorting system based on load cells
and RFID requires substantial investment on farms and might
only be feasible in newly constructed farms (164), while cameras
can be installed also to already operating systems with potentially
less financial input. Interestingly, neither of those systems are
validated externally.

In conclusion, existing PLF technologies are potential tools
for on-farm animal welfare assessment in pig production. A
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variety of animal-based welfare indicators can be monitored
on an individual scale, continuously and in real time, using
PLF. These tools had demonstrated potential for yielding a
continuous and systematic assessment at different stages of
animals’ lives, overcoming some difficulties and gaps of current
welfare assessment protocols. Thus, in the future, PLF may
revolutionize the way animal welfare is assessed and informed.
However, validation studies are lacking for an important
percentage of market available solutions, and in particular,
research and development need to focus on identifying feature
candidates of the measures (e.g., deviations from diurnal pattern,
threshold levels etc.) that are valid signals of either negative
or positive animal welfare. An important gap identified are the
lack of technologies to assess affective states (both positive and
negative states).

In this review, tools were validated against three possible
golden standards: human observer, other tool with well-defined
performance record, or based on the tool’s ability to detect
change in animal behavior or physical condition during planned
experiment. The need for an established protocol for the
validation procedures of PLF technologies can be noticed, as
the measurements presented in the performance reports are
very heterogeneous.
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