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Abstract
The polyphosphatase PPN1 of Saccharomyces cerevisiae shows an exopolyphosphatase

activity splitting phosphate from chain end and an endopolyphosphatase activity fragment-

ing high molecular inorganic polyphosphates into shorter polymers. We revealed the com-

pounds switching these activities of PPN1. Phosphate release and fragmentation of high

molecular polyphosphate prevailed in the presence of Co2+ and Mg2+, respectively. Phos-

phate release and polyphosphate chain shortening in the presence of Co2+ were inhibited

by ADP but not affected by ATP and arginine. The polyphosphate chain shortening in the

presence of Mg2+ was activated by ADP and arginine but inhibited by ATP.

Introduction
Inorganic polyphosphate (PolyP), the linear polymer containing a few to several hundred
phosphate residues, performs many functions in living cells. PolyP participates in the regula-
tion of gene expression, stress response and virulence in bacterial cells [1–4]. In human organ-
ism, PolyP is involved in the regulation of Ca2+ uptake in mitochondria [5], bone tissue
development [6–8], blood coagulation [9], and brain functions [10].

Probably, there is a relationship between the multiple functions of PolyP and the ability of
enzymes of its metabolism to catalyze the conversion of other substrates. This ability is charac-
teristic of many PolyP-depending enzymes. Polyphosphate-glucose phosphotransferase uses
both PolyP and ATP as phosphoryl donors [11]. The gppA exopolyphosphatase splits Pi from
PolyP and bacterial second messengers: guanosine 5’-triphosphate, 3’-diphosphate and guano-
sine 5’-diphosphate, 3’-diphosphate [12]. Some bacterial exopolyphosphatases possess substan-
tial nucleoside triphosphatase activities [13]. The enzymes belonging to the polyphosphate
kinase 2 subfamily catalyze nucleoside monophosphate phosphorylation [14]. The yeast vacuo-
lar membrane chaperon Vtc4 is a polyphosphate synthetase [15]. The S. cerevisiae protein
DDP1 (a diadenosine and diphosphoinositol polyphosphate phosphohydrolase) catalyzes the
fragmentation of high molecular PolyP into shorter polymers [16]. The exopolyphosphatase
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PPX1 of S. cerevisiae hydrolyses adenosine tetraphosphate and guanosine tetraphosphate to
ATP and GTP, respectively [17].

The polyphosphatase PPN1 is an important enzyme of PolyP metabolism in yeasts (http://
www.uniprot.org/uniprot/Q04119). The increase in PolyP content and chain length in the cy-
toplasm and mitochondria is observed in the ΔPPN1mutant [18]. The data on the reactions
catalyzed by this enzyme are contradictory. Previously, PPN1 was defined as an endopolypho-
sphatase (polyphosphate depolymerase, EC 3.6.1.10) fragmenting the long chained PolyP into
shorter ones [19, 20]. The exopolyphosphatase (polyphosphate phosphohydrolase EC
3.6.1.11) activity of PPN1 splitting orthophosphate (Pi) from the polymer chain end was
shown later [20, 21].

The goal of this study was to reveal the effectors that can switch the exopolyphosphatase
and endopolyphosphatase activities of S. cerevisiae PPN1.

Materials and Methods

Chemicals
The reagents used in the work were Yeast Nitrogen Base (Difco, USA); GF-A filter (What-
mann, United Kingdom); Butyl-Toyopearl 650M (Toson, JP); PolyP208 (inorganic polypho-
sphate with the average chain length of 208 phosphate residues) (Monsanto, USA). All other
chemicals were obtained from Sigma–Aldrich.

Purification of polyphosphatase PPN1
The strain CRN/pMB1_PPN1 Sc of S. cerevisiae overexpressing the polyphosphatase PPN1
[22] was maintained on an agarized YNB medium. The strain was grown at 29°C in flasks with
200 mL of YNB at 120 rpm for 24 h to obtain biomass. The YNB medium contained (g/L):
Yeast Nitrogen Base, 1.7; glucose, 20; L-tryptophane, L-histidine, L-methionine, adenine, 0.02;
L-leucine, 0.06. The biomass was harvested by centrifugation at 3000 g and washed twice with
cold distilled water. Spheroplasts were obtained as described [22] and treated at 0°C in a glass
homogenizer with a Teflon pestle in 25 mM Tris-HCl (pH 7.2) containing 0.5 mM phenyl-
methylsulphonyl fluoride. The lysate was centrifuged at 5000 g 10 min. The precipitate was
treated again under the same conditions and centrifuged. The supernatants were combined,
centrifuged at 13000 g for 60 min, and used for enzyme purification. The purification proce-
dure was performed at 0°C. Ammonium sulfate was added to the cellular extract up to 50% sat-
uration, and the precipitate was obtained in 1 h by 20-min centrifugation at 12000 g. The
supernatant was filtered through a GF-A filter and put on Butyl-Toyopearl 650M resin equili-
brated with 50 mM Tris-HCl, pH 7.2, with 50% ammonium sulfate. In 45 min, the resin was
precipitated at 4000 g for 3 min and washed three times with 50 mM Tris-HCl, pH 7.2, con-
taining 50% ammonium sulfate. For polyphosphatase elution, the resin was washed four times
with 50 mM Tris-HCl, pH 7.2, containing 25% ammonium sulfate. Triton X-100 (0.05%) was
added to the resultant preparation. After ultrafiltration through an YM-10 membrane, the
preparation was applied to Heparin-agarose equilibrated with 25 mM Tris-HCl, pH 7.2, con-
taining 0.1% Triton X-100. In 2 h, the resin was precipitated and washed twice with 25 mM
Tris-HCl, pH 7.2, containing 0.1% Triton X-100; then it was washed seven times with the same
buffer containing 0.7 M KCl. The polyphosphatase was eluted with 25 mM Tris-HCl, pH 7.2,
containing 0.1% Triton X-100 and 1 M KCl.

The preparation was stored at-20°C. The purity of polyphosphatase was assayed by electro-
phoresis in 12.5% polyacrylamide gel in the presence of SDS.
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Enzyme activity assay
Exopolyphosphatase and endopolyphosphatase activities were assayed at 30°C. Exopolypho-
sphatase activity was assayed by the rate of Pi formation [22]. The amount of the enzyme form-
ing 1 μmole of Pi per 1 min was taken as a unit of enzyme activity (U). The incubation medium
contained: Tris-HCl, 50 mM (pH 7.2); NH4Cl, 200 mM; PolyP208 (as Pi), 2.5 mM. The medium
also contained CoSO4 (0.1 mM) or MgSO4 (0.25 mM) as indicated in the figure and table leg-
ends. In some cases, 9.2 mM PolyP208 was used.

Endopolyphosphatase activity was estimated by the chain length of hydrolysis products [19,
20] using PolyP208 as a substrate. The incubation medium (1 ml) contained Tris-HCl, 50 mM
(pH 7.2); NH4Cl, 200 mM; PolyP208, 9.2 mM; CoSO4, 0.1 mM, or MgSO4, 0.25 mM; and 23
mU of the enzyme (as exopolyphosphatase). The reaction was stopped by the addition of 5.8 μl
60% HClO4 to 0.1 ml samples, which were taken from the incubation medium. After 3-min
cooling, 6 M NaOH (8.3 μl) and an equal volume of glycerol were added to the samples. The
samples (20 μl) were subjected to PAGE in 24% polyacrylamide gel with 7 M urea [19, 20]. The
gels were stained with 0.05% toluidine blue in a water solution containing 25% methanol and
1% glycerol and then washed with distilled water [19]. Commercial PolyP with the average
chain lengths of 15, 25, 75 and 208 phosphate residues were used as markers.

The pyrophosphatase, ATPase and unspecific phosphatase activities were assayed as de-
scribed earlier [23]. Protein was assayed according to [24] with BSA as a standard.

Results
The purified recombinant PPN1 was obtained from the cells of the strain CRN/pMB1_PPN1
Sc (Table 1). PAGE showed one polypeptide band with a molecular mass of ~33 kDa (Fig. 1A).
The PPN1 gene encodes a polypeptide with the predicted molecular mass of 78 kDa, whereas
the monomer molecular mass of the mature PPN1 purified from wild yeast strains is about 33–
35 kDa [20–21]. PPN1 undergoes specific proteolytic maturation [19]. The tryptic digest pep-
tides of recombinant PPN1 preparations from the above strain were the same as the peptides of
the mature wild PPN1 [25]. The enzyme had no activity with pyrophosphate (PPi), ATP and
p-nitrophenylphosphate (data not shown). The specific exopolyphosphatase activity in the
presence of 0.1 mM CoSO4 was 290, 240, and 38 U/mg of protein with PolyP208, PolyP15, and
tripolyphosphate (PolyP3), respectively. Thus, the recombinant PPN1 was similar to the wild
type enzyme in molecular mass and substrate specificity [21].

The exopolyphosphatase activity of PPN1 is very low without bivalent cations [25, 26]. The
maximal exopolyphosphatase activity of recombinant PPN1 was observed in the presence of
0.1 mM Co2+ ions [25]. The optimal concentration of Mg2+ was 0.25 mM; however, the exopo-
lyphosphatase activity with this cation was several times lower than with Co2+ [25]. These

Table 1. Purification of recombinant PPN1 of S. cerevisiae.

Purification stage Protein, mg Total activity, U Specific activity, U/mg protein Yield, %

Cellular extract 101±7.2 408±4.0 4.2 100

Ammonium sulfate (50% of saturation), supernatant 37.5±5.0 300±3.5 8.0 74

Butyl-Toyopearl 650M 10±0.4 170±2.7 17 42

Heparin-agarose 0.14±0.05 40±0.5 290 9.8

The enzyme activity at each purification step was measured by Pi release in the medium containing 50 mM Tris-HCl, pH 7.2, 200 mM of NH4Cl, 2.5 mM

PolyP208 (as Pi), and 0.1 mM CoSO4. The activity and protein assays were repeated in triple and the average value with standard deviations are given.

doi:10.1371/journal.pone.0119594.t001
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Fig 1. The SDS-PAGE of purified protein (A) and time dependence of PolyP208 hydrolysis by the purified PPN1 (B-E). The protein markers (A) were
phosphorylase b (94 kD), albumin (67 kD), ovalbumin (43 kD), carbonic anhydrase (30 kD), trypsin inhibitor (20.1 kD), α-lactalbumin (14.4 kD). B, Pi release,
% of P in PolyP208 used as substrate; (�) in the presence of 0.1 mM CoSO4, (●) in the presence of 0.25 mM of MgSO4. C-E, PolyP PAGE was performed in
24% polyacrylamide gel with 7M urea; toluidine blue staining. C, PolyP markers, commercial PolyP with the average chain lengths of 15, 25, 45 and 65
phosphate residues from Sigma (USA) and PolyP with an average chain length of 208 phosphate residues fromMonsanto (USA). D, hydrolysis products of
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values are similar to the value for the wild type enzyme [26]. There are no data on the effects of
these cations on the endopolyphosphatase activity of PPN1. We have compared the time de-
pendence of Pi release (Fig. 1B) and PolyP chain shortening (Fig. 1C-E) in the presence of Co2+

or Mg2+. The enzyme effectively released Pi in the presence of Co2+ (Fig. 1B). Simultaneously,
the chain length of PolyP decreased from ~208 to ~15 phosphate residues (Fig. 1D). Pi release
was insignificant in the presence of Mg2+ (Fig. 1B), though the chain length of the substrate de-
creased from ~208 to ~45–60 phosphate residues already in the first 30 min of the reaction and
then remained the same (Fig. 1E). Probably, the PolyP45–60 is not a suitable substrate for PPN1
in the presence of Mg2+. Thus, the exopolyphosphatase activity of PPN1 prevailed in the pres-
ence of Co2+, while the endopolyphosphatase activity prevailed in the presence of Mg2+. The
endopolyphosphatase reaction was weak in the absence of bivalent cations (Fig. 2A).

We have studied the influence of some effectors on both activities in the presence of Mg2+

or Co2+ (Fig. 2). Pi, PPi and PolyP3 are the products of PolyP hydrolysis by PPN1 [19–21]. Pi
had no effect on exopolyphosphatase [26] and endopolyphosphatase (Fig. 2B, C) activities. PPi
and PolyP3 inhibited Pi release (Fig. 2A) and PolyP chain shortening (Fig. 2 B, C) in the pres-
ence of both cations. The slight inhibitory effect of Pi at the concentrations above 5 mM and
the inhibitory effect of PPi on depolymerase activity of PPN1 in the presence of Mg2+ have
been reported earlier [19, 20]. Heparin, an acid carbohydrate polymer, is a concurrent suppres-
sor of exopolyphosphatases [26]. It also inhibited the endopolyphosphatase activity irrespective
of the cation (Fig. 2B, C). Thus, there was no difference in the effects of the above compounds
on the exopolyphosphatase and endopolyphosphatase activities of PPN1.

However, we have revealed that ATP, ADP and arginine differently affect the exo- and
endopolyphosphatase activities of PPN1. Both Pi release and PolyP chain shortening in the
presence of Co2+ were inhibited by ADP but not affected by ATP and arginine (Fig. 2 A, B).
The Pi release in the presence of Mg2+ was not affected by ATP and arginine but slightly acti-
vated by ADP (Fig. 2A). The polyphosphate chain shortening in the presence of Mg2+ was acti-
vated by ADP and arginine but inhibited by ATP (Fig. 2C).

We have assessed the concentrations of ATP, ADP, arginine and amines, which influence
the endopolyphosphatase activity in the presence of Mg2+. An example of such PAGE experi-
ment is shown in Fig. 3: 0.5 mM ATP inhibited the endopolyphosphatase, while 0.1 mM was
not effective. ADP stimulated the endopolyphosphatase even at 0.1 mM. Arginine stimulated
the endopolyphosphatase activity at 50 mM but had no effect at 10 mM. In contrast to arginine,
spermidine and 1,3-diaminopropane inhibited the endopolyphosphatase activity at 50 mM but
were ineffective at 10 mM. At 50 mM, both polyamines inhibited the exopolyphosphatase ac-
tivity independently of the bivalent cation (Fig. 2A).

Discussion
We have revealed the conditions when PPN1 shows the prevalence of either exo- or endopoly-
phosphatase activity. The concentration of Mg2+ in yeast cytoplasm was reported to be
~1–5 mM [27]; the concentration of Co2+ was lower [28]. The Mg2+-dependent endopolypho-
sphatase activity of PPN1 seems to prevail in the cells of S. cerevisiae under common growth
conditions. Yeasts are able to accumulate cobalt under its excess in the medium [28, 29]. Co2+

is localized mainly in vacuoles [29]. PPN1 is also present in vacuoles [18, 19]. We speculate the
following way of Co2+ detoxification in vacuoles: PolyP degradation to Pi by PPN1 increases in
the cells accumulating Co2+ and insoluble cobalt phosphate is formed.

PolyP208 in the presence of 0.1 mM CoSO4. E, hydrolysis products of PolyP208 in the presence 0.25 mM of MgSO4. Control, PolyP208 was incubated without
the enzyme at 30°C for 120 min. The experiments were repeated in triple and the average values and typical photograph are shown.

doi:10.1371/journal.pone.0119594.g001
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Fig 2. The effects of some compounds on exopolyphosphatase (A) and endopolyphosphatase (B, C)
activities of purified PPN1 with PolyP208 in the presence of 0.1 mMCo2+ or 0.25 mMMg2+. The
concentrations of effectors are (mM): Pi, PPi, PolyP3, ATP and ADP, 2.0; arginine, 100; spermidin and 1,3-
diaminopropan, 50. The concentration of heparin was 0.01 mg/ml. Control, without effectors. A, white
columns – exopolyphosphatase activity in the presence of Co2+, 100% corresponds to 290 U/ mg protein;
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The activities of many enzymes are regulated by ATP/ADP [30]. The intracellular concentra-
tions of ATP and ADP in yeast depend on the growth stage and nutrient limitations [30–32].
ATP concentration varies from ~1 to 5 mM [30, 32]. ADP concentration was reported to be
lower than 0.05 mM [33]. Thus, the physiological changes in ATP/ADPmay be a factor of the
PPN1 exo-/endopolyphosphatase switching. Depolymerization of PolyP was observed under glu-
cose exhaustion during the growth of S. cerevisiae [34]. Probably, the decrease in ATP level and
the increase in ADP level under these conditions stimulate PolyP depolymerization by PPN1.

The switching of exopolyphosphatase/endopolyphosphatase activity of PPN1 may be neces-
sary for PolyP degradation depending on growth stage or under stress overcoming. PPN1 was
found to be localized mainly in vacuoles and mitochondrial membranes. At the early stage of
budding, the enzyme appears in the cytoplasm [26], where it seems to be responsible of PolyP
fragmentation observed at a high yeast growth rate [35]. Its activity in the cytoplasm may be
regulated by the ATP/ADP ratio.

PPN1 is present also in the vacuolar lumen [18, 36]. Under common growth conditions, pH
value of the vacuolar lumen is acidic [37] and the enzyme with the neutral pH optimum [36] is
inactive. Probably, the alkalization of vacuoles under stress caused by the excess of ammonium
ions or heavy metal cations leads to an increase in the exopolyphosphatase activity; the en-
hanced hydrolysis of vacuolar PolyP to orthophosphate restores the pH value of the vacuoles.
The degradation of NMR-visible, probably vacuolar, PolyP to short polymers in S. cerevisiae
was observed under the conditions when it was necessary to neutralize the alkalization of cyto-
plasm [38]. The NMR study showed that the addition of 20 mM of NH4

+ to S. cerevisiae cells
caused a rapid increase in the cytoplasmic and vacuolar Pi and a breakdown of long-chain
PolyP to short-chain PolyP and Pi [39]. Some part of the formed Pi is probably released from
the vacuoles together with the toxic cations.

Arginine and amines also accumulate in the vacuoles; they are in complex with PolyP [37],
and their ratio can also influence polyP degradation. The effective concentration of arginine in
this study and the concentrations that activated the vacuolar exopolyphosphatases of Neuros-
pora crassa [40] and S. cerevisiae [36] were similar. More detailed kinetic experiments are need-
ed to reveal the cause of difference between the effects of arginine and amines.

Endopolyphosphatase activity seems to be essential in the yeasts possessing several en-
zymes, which fragment long chained PolyP into shorter ones. The endopolyphosphatase not
encoded by the PPN1 gene was found in the double ΔPPX1/ΔPPN1 mutants [41]. In addition,
the DDP1 protein exhibits an endopolyphosphatase activity [16]. The comparative analysis of
the expression and regulation of these enzymes is of interest for understanding the role of
PolyP in a yeast cell.

Conclusions
The polyphosphatase PPN1 of S. cerevisiae possesses both endo- and exopolyphosphatase ac-
tivities. The conditions for switching these activities have been revealed for the first time. In the
presence of Mg2+, the enzyme shows a polyphosphate chain fragmentation activity, while Co2+

stimulates Pi release from the polyphosphate chain end. ATP inhibits while ADP activates
endopolyphosphatase activity in the presence of Mg2+.

black columns – exopolyphosphatase activity in the presence Mg2+, 100% corresponds to 22 U/mg protein.
B, the endopolyphosphatase activity in the presence of Co2+; C, the endopolyphosphatase activity in the
presence of Mg2+; - Me2+, without bivalent metal cation. The reaction time was 60 min. The PolyP PAGE was
performed in 24% polyacrylamide gel with 7M urea; toluidine blue staining. PolyP208, the substrate was
incubated without the enzyme for 60 min. The experiments were repeated in triple and the average values
and typical photographs are shown.

doi:10.1371/journal.pone.0119594.g002
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Fig 3. The effect of ATP on the endopolyphosphatase reaction of PPN1 in the presence of 0.25 mM
MgSO4. PolyP PAGEwas performed in 24% polyacrylamide gel with 7M urea; toluidine blue staining. PolyP208 -
PolyP208 was incubated without the enzyme at 30°C for 60 min. The numerals indicate ATP concentrations
(mM). The PAGE experiment was repeated in triple and the photograph of typical experiment is shown.

doi:10.1371/journal.pone.0119594.g003
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