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Abstract

Despite the structure and objectivity provided by the Gene Ontology (GO), the annotation of proteins is a complex task that
is subject to errors and inconsistencies. Electronically inferred annotations in particular are widely considered unreliable.
However, given that manual curation of all GO annotations is unfeasible, it is imperative to improve the quality of
electronically inferred annotations. In this work, we analyze the full GO molecular function annotation of UniProtKB proteins,
and discuss some of the issues that affect their quality, focusing particularly on the lack of annotation consistency. Based on
our analysis, we estimate that 64% of the UniProtKB proteins are incompletely annotated, and that inconsistent annotations
affect 83% of the protein functions and at least 23% of the proteins. Additionally, we present and evaluate a data mining
algorithm, based on the association rule learning methodology, for identifying implicit relationships between molecular
function terms. The goal of this algorithm is to assist GO curators in updating GO and correcting and preventing
inconsistent annotations. Our algorithm predicted 501 relationships with an estimated precision of 94%, whereas the basic
association rule learning methodology predicted 12,352 relationships with a precision below 9%.
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Introduction

The foundation of the Gene Ontology (GO) Consortium was a

critical step toward the adoption of formal and objective

knowledge representations in biological sciences and addressed

the need for knowledge sharing and functional comparisons in the

face of the rapid growth of genomic sequence data [1].

GO is currently the de facto standard for functional annotation of

gene products in the categories molecular function, biological

process, and cellular component. The ontology is under constant

development because both our knowledge of biological phenom-

ena and our ability to represent that knowledge are continuously

growing [2]. While the ontology development is carried out by

human curators, it can be assisted by computational approaches

that facilitate handling the increasing size and complexity. In this

context, the use of the association rule learning methodology has

been proposed to identify relationships between GO terms with

the goal of enriching the ontology [3,4]. More recently, Alterovitz

et al. proposed a novel method that uses information theory to

automatically organize the structure of GO and optimize the

distribution of its information [5]. Additionally, the ongoing

extension of GO with computable logical definitions will enable

the partial automation of the development of the ontology and

facilitate the identification of errors and missing relationships [6].

The annotation of UniProtKB [7] proteins with GO terms is

carried out by the Gene Ontology Annotation resource (GOA) [8].

Currently, over 98% of the annotations in GOA are inferred

electronically, typically from entries in external databases such as

InterPro [9]. These annotations are generally considered unreli-

able as most are based on sequence alignments, which are prone to

make and propagate annotation errors [10,11]. As a result, they

are discarded in many studies involving GO annotations.

However, it is clear that experimental determination of the

function of all proteins or manual curation of all annotations are

beyond present resources [8,10,12]. Given that electronically

inferred annotations play an essential role in providing annotation

coverage for an increasing fraction of proteins, it is imperative to

assess and improve their quality.
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We can consider three types of problems that affect annotation

quality: erroneous annotations, incomplete annotations and

inconsistent annotations. A protein is erroneously annotated if it

was predicted to perform a function that it does not actually

perform, and thus is annotated to terms that do not correspond to

its true function [10,11]. A protein is incompletely annotated if its

annotations do not describe all its functional aspects in full detail,

typically because those aspects have not been fully determined

[13]. Two or more proteins are inconsistently annotated if they

perform the exact same function but are not annotated to the same

terms, likely due to different annotation criteria [14,15]. In the

case of electronically inferred annotations, the fact that proteins

can receive annotations from multiple data sources may also lead

to inconsistent annotations if those sources are not well coordi-

nated.

In this work, we analyze the molecular function annotations of

UniProtKB proteins and estimate the fraction of incomplete and

inconsistent annotations, discussing possible strategies to prevent

the latter. Finally, we present a data mining algorithm, based on

association rule learning, for identifying relationships between

molecular function terms. This algorithm can both improve

annotation consistency and assist GO curators in developing the

ontology.

Materials and Methods

The Gene Ontology
The Gene Ontology (GO) is an ontology for describing the

function of gene products at the cellular level in three categories:

molecular function, biological process, and cellular component.

Each of these categories is organized as a directed acyclic graph,

with ‘is a’ and ‘part of’ relationships forming its basic structure.

A GO annotation is the association of a gene or protein with a

GO term describing one aspect of its function. Each protein may

be annotated to multiple terms within each GO category. Each

annotation is labeled with an evidence code which indicates the

type of evidence upon which the annotation is based (e.g.

electronically inferred annotations have the evidence code IEA).

Annotations obey the true path rule, meaning that if a protein is

annotated with a term, it is also annotated to all its ancestors in the

ontology by inheritance.

In this work, we focused only on the molecular function

category of GO.

Dataset
This work is based on release 4.2 of the FunSimMat database, a

comprehensive database of semantic and functional similarity

values [16]. It compiles protein and annotation data from the

UniProtKB [7], annotation data from GOA [8], and ontology

data from GO [1], as of the respective releases of October 2010.

The database comprises 7.3 million annotated UniProtKB

proteins, 21 million annotations, of which 99.4% are inferred

electronically, and 8,889 non-obsolete molecular function terms.

To account for small differences between the annotations in

GOA and UniProtKB, FunSimMat combines both sets of

annotations. However, there are only 24,000 annotations present

in UniProtKB that are not present in GOA, so this combination

does not have a significant statistical impact in our analysis.

Molecular Function Classes
A molecular function class (or MFclass) is a unique set of one or

more molecular function terms that is used to annotate one or

more proteins [16]. Each MFclass corresponds to a representation

of a protein function on the molecular function annotation space.

For instance, the function of hemoglobin can be described by the

MFclass {oxygen transporter activity; heme binding; oxygen binding}.

The concept of MFclass is extremely useful to reduce the

dimension of the annotation space because there are many

proteins with identical annotations, which are redundant from an

annotation perspective. Indeed, the 7.3 million annotated proteins

correspond to only 45,244 distinct MFclasses (not counting

differences due to redundant annotations).

Quantifying Redundant Annotations
An annotation is redundant if it is implied by another more

specific annotation of the same protein, by the true path rule. For

instance, the term iron ion binding is a parent of heme binding in the

molecular function graph. Thus, if a protein is annotated to both

heme binding and iron ion binding, the latter annotation is redundant

as it is already implied by the former annotation.

We quantified the fraction of redundant molecular function

annotations by computing all annotations that were implied by

other annotations. For each annotation {Pi,ti} where Pi is a protein

and ti a term, we checked whether there exists an annotation {Pi,tj}

such that tj is a descendent of ti in the molecular function graph

(and therefore implies ti).

Quantifying Incomplete Annotations
A protein is incompletely annotated if its annotations do not

fully describe its function.

Technically, almost any protein can be incompletely annotated,

as few proteins have been studied extensively enough to rule out

the possibility that they perform additional functions. In practice,

however, we can only distinguish between proteins that have

annotations to specific terms which describe detailed functional

aspects (e.g. cytochrome-c oxidase activity) and proteins that have

annotations to generic terms (e.g. catalytic activity). Thus, our

practical definition is that a protein is incompletely annotated if it

has at least one (non-redundant) annotation to a generic term.

In order to quantify incomplete annotations we must first define

what is a generic term. It is clear that leaf terms should not be

considered generic, since they correspond to the highest level of

specificity within the limits of the ontology. However, there are

cases of non-leaf terms which describe detailed functional aspects

and should also not be considered generic. For instance, the term

iron ion binding is the most specific term describing a direct

interaction with an iron ion, despite having the child term heme

binding. To account for these cases, we considered that only terms

with more than 10 descendents were generic, which correspond to

the 5% most generic terms of the molecular function ontology.

Quantifying Inconsistent Annotations
Inconsistent annotations are cases where proteins that perform

the same function are not annotated to the same set of molecular

function terms, and thus belong to different, but typically similar,

MFclasses. For instance, not all hemoglobins are annotated to

oxygen binding, which leads to two similar MFclasses: {oxygen

transporter activity; heme binding; oxygen binding} and {oxygen transporter

activity; heme binding}. It is evident that the two MFclasses describe

the same function since oxygen binding is implicitly implied by oxygen

transporter activity. This is a common form of inconsistent

annotations, with a primary (or function-defining) term which

implicitly implies a secondary term that is present in some proteins

and absent in others (e.g. ATPase activity) ATP binding). However,

not all cases of inconsistent annotations are as straightforward to

detect. For instance, some hemoglobins lack the term oxygen

transporter activity, and can only be identified as hemoglobins by the

presence of the biological process term oxygen transport.

Improving GO Annotation Consistency
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The fact that cases of similar functions abound in nature means

that identifying inconsistent annotations automatically is extremely

difficult. Without manual analysis, it is all but impossible to

determine if a pair of similar MFclasses correspond to similar but

distinct functions or inconsistent annotations of a single function.

For instance, hemerythrins are oxygen-transporting proteins

which lack the heme group but use iron as a cofactor, and so

their MFclass {oxygen transporter activity; iron ion binding; oxygen binding}

is very similar to the main hemoglobin MFclass (note that heme

binding is a direct child of iron ion binding). Thus, any similarity-based

criteria that would correctly identify the actual inconsistent

hemoglobins would also erroneously identify the hemerythrins as

inconsistent hemoglobins.

Unfortunately, the approach proposed by Dolan et al to estimate

annotation consistency by comparing the annotations of ortholo-

gous proteins [15] is not applicable to our dataset. Beyond the

daunting task of finding orthologs for all annotated UniProtKB

proteins is the problem of data circularity, since most electronic

annotations are based on sequence similarity in the first place.

Having tested several similarity-based algorithms for identifying

inconsistent annotations without obtaining a reasonable precision,

we opted for a manual analysis to estimate the fraction of

inconsistent annotations. We selected the 100 most popular

MFclasses that correspond to complete annotations and contain

at least two molecular function terms, which represent approxi-

mately 1 million annotated proteins. For each of these MFclasses,

we looked for cases of evident inconsistent annotations by

identifying the primary term (or terms) and searching the database

for other MFclasses that included that term but differed in

secondary terms. We searched for information about each term

and protein function in the GO definitions, in ENZYME [17] and

InterPro.

Association Rule Learning
Association rule learning (ARL) is a data mining methodology

for uncovering relations between variables in large databases based

on their co-occurrence [18]. Given a list of variables and a

database of occurrences, an association rule is defined as an

implication of the form A[B, where A and B are disjoint sets of

one or more variables. The support measures the prevalence of

each association and is defined as the fraction of occurrences in the

database that include both A and B. The confidence measures the

strength of each association and is defined as the fraction of the

occurrences including A that also include B (which is an estimation

of the conditional probability of B given A). ARL extracts from the

database all association rules that are above selected support and

confidence thresholds.

In this work, we employ ARL to find relationships between

molecular function terms. In particular, we are interested in

capturing implicit relationships between aspects of a single

function (e.g. ATPase activity[ATP binding). This is a simple ARL

problem in terms of solution space, since we are only interested in

rules between individual terms.

The main goal of the support threshold is to filter out fortuitous

associations and ensure statistical significance. Since annotations

are deliberate events, we do not need a high threshold for this

application of ARL. Therefore, we chose a support threshold of 10

co-annotations. The confidence threshold is more important since

it measures the strength of the relationship and we are interested in

capturing universal relationships. While this equates to a high

confidence threshold, the possibility of inconsistent annotations

means that we cannot expect related terms to always occur

together. Thus, we selected a confidence threshold of 80%.

GO Relationship Learning
Applying ARL to GO leads to two problems as the basic

methodology is unprepared to deal with structured data [19].

The first problem is the upward propagation of redundant

relationships due to the true path rule. If a given relationship t1[t2
is retrieved by ARL, then all relationships of the form t1[tA2,

where tA2 is an ancestor of t2, will also be retrieved. This happens

because each ancestor tA2 inherits all annotations of t2 and so will

have at least as many co-annotations with t1 as t2 does.

Consequently, all relationships t1[tA2 will have a support and

confidence equal to or greater than those of the relationship t1[t2.

Additionally, if tA1 is an ancestor of t1 which has few other

descendents and/or these have few annotations in comparison

with t1, then the relationship tA1[t2 will likely also be retrieved by

ARL. To circumvent this problem, we filtered out all redundant

relationships, selecting only the most specific. For each relationship

t1[t2, we excluded all relationships of the forms t1[tA2, tA1[t2
and tA1[tA2.

The second problem is the prediction of spurious relationships

due to the fact that two GO terms can have shared descendents. If

two terms t1 and t2 have a shared child t3 which is frequently

annotated, then ARL will likely retrieve a relationship between t1
and t2 in one direction or both. This happens because all

annotations of t3 correspond to co-annotations of t1 and t2. Thus,

any relationship between t1 and t2 is likely spurious, since the true

relationships are already represented in the ontology (t3[t1 and

t3[t2). To address this problem, we excluded relationships

between terms that have a descendent distance of 4 or less edges,

defining descendent distance as the minimum number of edges

that connects two terms passing by one of their shared

descendents.

We also made three additions to the ARL methodology to

improve the performance of our GO relationship learning (GRL)

algorithm, taking into account the nature of the data and the type

of relationship we are interested in capturing.

The first of these additions was the exclusion of relationships

that include generic terms (i.e. terms with more than 10

descendents). These relationships are common since a high

fraction of the electronically inferred annotations are generic,

but they are not very useful in the context of our work.

The second addition was the exclusion of relationships between

terms that have an ancestral distance of 4 or less edges, defining

ancestral distance as the minimum number of edges that connects

two terms passing by one of their common ancestors. We verified

that relationships between such closely related terms typically

correspond to cases of bifunctional proteins (e.g. asparagine-tRNA

ligase activity[aspartate-tRNA ligase activity) or less often to cases of

partially synonymous terms (e.g. proton-transporting ATPase activity,

rotational mechanism[hydrogen ion transporting ATP synthase activity,

rotational mechanism). Neither case corresponds to an implicit

relationship between aspects of a single function, which is the

type of relationship we are interested in capturing.

The third addition was the introduction of a novel parameter

called agreement, which is formally identical to the confidence, but

based on the number of MFclasses that support the relationship

rather than the number of individual proteins. We noted that

many of the false relationships predicted by ARL corresponded to

cases where a common combination of terms overshadows a less

common yet biologically meaningful exception. For instance, the

relationship oxygen transporter activity[heme binding has a high

confidence (83%) due to the prevalence of hemoglobin, but there

are oxygen transporters which do not have a heme cofactor, such

as hemerythrin and hemocyanin. The addition of the agreement

increases the sensitivity of ARL to such cases, since we are

Improving GO Annotation Consistency
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requiring relationships to not only be true for most known proteins

but also for most known functions. The underlying assumption is

that when there are few distinct exceptions to a relationship, these

are more likely to correspond to inconsistent annotations, whereas

when there are many distinct exceptions these are more likely to

be biologically meaningful. We selected an agreement threshold of

80% in conjunction with the confidence threshold of 80%.

We computed the support, confidence, agreement, descendent

distance, and ancestral distance parameters directly in SQL, from

the annotation table, the MFclass table and the GO ‘graph_path’

table. We selected the relationships that met the thresholds for all

parameters, then identified and excluded those that were

redundant.

We evaluated manually the top 100 GRL relationships ranked

by support. For each relationship, we searched for evidences

supporting or refuting it in GO, ENZYME, InterPro, Brenda [20],

and when necessary in the bibliography. Relationships were

classified as true if supporting evidence was found; as reverse if the

relationship was true in the reverse direction; as unknown if

evidence was inconclusive; and as false if at least one counterex-

ample is known or the relationship is logically impossible.

Results and Discussion

Redundant and Incomplete Annotations
The fraction of redundant molecular function annotations (i.e.

annotations implied by other annotations according to the true-

path rule) was 38% in the FunSimMat release used for our study.

While individually redundant annotations are a minor issue, this

high fraction has significant impact on the size of the database.

There are cases where the redundant annotation has a stronger

evidence code than the more specific annotation, and as such

cannot be discarded. However, there are few reasons to keep

redundant annotations that are inferred electronically, and

discarding these would reduce the fraction of redundant annota-

tions to less than 1%.

Based on the criterion that a protein is incompletely annotated if

it has any non-redundant annotation to a term with more than 10

descendents, we estimate that 64% of the proteins are incom-

pletely annotated and 68% of the MFclasses correspond to

incomplete protein functions. This high fraction is not unexpected,

as it reflects the fact that most electronically inferred annotations

are generic. However, it should be noted that electronically

inferred annotations account for over 1.5 million proteins

annotated in detail (i.e. exclusively to leaf terms) with most of

the detailed annotations coming from relatively reliable data

sources such as InterPro. It is also worth mentioning that 37% of

the molecular function leaf terms are currently not annotated to a

single protein, which suggests that there is a considerable lag

between updates to GO and annotation updates. Thus, some

annotations may be incomplete because they are outdated and

were based on a mapping to a less detailed version of the ontology.

Inconsistent annotations
Our manual MFclass analysis revealed that, for 83% of the

MFclasses, there was at least one similar MFclass describing the

same function. Thus, we estimate that 83% of the protein

functions have inconsistent annotations, and at least 23% of the

annotated proteins are inconsistently annotated, assuming that the

most popular MFclass is the correct representation of each

function. The results of the analysis are available in Table S1.

An example of the inconsistencies found is the cytochrome-c

oxidase complex, which is represented by at least the 4 MFclasses:

{cytochrome-c oxidase activity}, {cytochrome-c oxidase activity; electron carrier

activity}, {cytochrome-c oxidase activity; electron carrier activity; heme

binding} and {cytochrome-c oxidase activity; electron carrier activity; heme

binding; copper ion binding}. Note that the term cytochrome-c oxidase

activity ‘is a’ heme-copper terminal oxidase activity, and therefore logically

implies heme binding and copper ion binding. Since the cytochrome-c

oxidase complex is involved in electron transport, the term electron

carrier activity is also implied. Thus, in this case there are three

secondary terms implicitly implied by the primary term cytochrome-c

oxidase activity.

Our analysis focused precisely in finding inconsistent annota-

tions that followed this pattern, with a primary term that implicitly

implies one or more secondary terms which are present in some

proteins and absent in others. However, we also found cases of

major inconsistency which led to ambiguous functions, such as the

MFclass {two-component sensor activity; two-component response regulator

activity; ATP binding}. The terms two-component sensor activity and two-

component response regulator activity are supposedly incompatible, since

a two-component system is formed by a protein that acts as a

sensor and another protein that acts as a response regulator (as

detailed in the definitions for the corresponding GO terms). Thus,

it is unclear whether the MFclass corresponds to misannotated

sensors, response regulators, or both.

Cases like this are extreme, but even the more common minor

inconsistencies that were the focus of our analysis undermine the

very purpose for which GO was created. If proteins aren’t

annotated consistently, then we can’t compare their functions

accurately or find proteins with functions of interest reliably. For

instance, comparing the MFclasses {cytochrome-c oxidase activity} and

{cytochrome-c oxidase activity; electron carrier activity; heme binding; copper

ion binding} results in a low similarity value, even though they

correspond to the same function. Likewise, searching for proteins

involved in electron transport would fail to retrieve the 15,000

cytochrome-c oxidases which lack the term electron carrier activity.

Implicit binding terms
Our MFclass analysis revealed that in most cases of implicit

relationships, the secondary terms were binding terms describing

enzyme-substrate or enzyme-cofactor interactions implied by a

primary catalytic activity term. There was also an analogous case

where the secondary term was a binding term describing a

transporter-target interaction implied by a primary transporter

activity term. The fact that binding terms are involved in so many

implicit relationships is not surprising, since most molecular

functions involve interactions with some type of molecule.

However, the fact that so many inconsistent annotations arise

from these relationships merits further analysis.

The GO annotation conventions state that enzyme-substrate

and transporter-target interactions are an implicit part of the

catalytic or transporter activity, and therefore co-annotations with

the corresponding binding terms are redundant. Thus, we would

expect co-annotations of this type to be almost non-existent. The

problem is that information about substrates and targets is

available in GO only in human-readable definitions of the catalytic

activity and transporter activity terms. As such, binding co-annotations

are necessary to represent this information in a form amenable to

computation. For instance, co-annotating ATPases with ATP

binding is the only way to explicitly record that these are proteins

that interact with ATP so that, for example, a query searching for

ATP-binding proteins would retrieve them. Inconsistent annota-

tions arise from the fact that some annotation sources (namely

InterPro) opt for this type of co-annotation whereas others follow

the annotation conventions.

One solution to this problem would be to represent these

interactions explicitly in the ontology as relationships between the

Improving GO Annotation Consistency
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catalytic activity or transporter activity term and the binding term

corresponding to the substrate or target. This would make the co-

annotations with the binding terms actually redundant, and would

prevent inconsistent annotations, since the binding term would

always be present by the true-path rule. However, this solution

would change the scope of the molecular function ontology by

dividing functions into steps or parts and would require the

addition of a large number of binding terms.

An alternative solution may be provided by the ongoing

extension of GO with computable logical definitions [6]. If, as

planned, the definitions of catalytic activity terms include a list of

substrates, then co-annotation with the corresponding binding

terms would be unnecessary to capture this information in a form

amenable to computation. However, this does not make the binding

co-annotations actually redundant, so annotation sources would

have to adapt to the GO update and drop these co-annotations.

Thus, it may become necessary to enforce stricter annotation

guidelines to prevent inconsistent annotations.

Unlike enzyme-substrate and transporter-target interactions,

enzyme-cofactor interactions are not considered redundant by the

GO annotation conventions, likely because information about

cofactors is not available in GO in any form. However, the

distinction between substrates and cofactors is somewhat artificial,

considering that molecules such as NAD and FAD can be

considered cofactors in some reactions and substrates in others

Furthermore, information about cofactors is typically available in

the corresponding ENZYME entry for the EC family upon which

the GO term was based. Thus, for enzymatic reactions that have a

universal cofactor, there is no apparent reason why information

about the cofactors should not be available in GO. Nevertheless,

the fact that not all cofactors are universal means that inconsistent

annotations of this type should be corrected with care.

Finding implicit relationships between molecular
function terms

Given that many cases of inconsistent annotations are tied to

implicit relationships between terms, finding such relationships is

an important step toward correcting and/or preventing inconsis-

tent annotations. For instance, if we identify the relationship

ATPase activity[ATP binding as universal, then any two MFclasses

that include the former term and differ only in the presence of the

latter term can automatically be considered as representing the

same function. To correct the inconsistency, the co-annotation

with ATP binding can be removed from all proteins annotated with

ATPase activity because this co-annotation is redundant under the

current GO annotation conventions. Finally, the relationship can

be set as a negative annotation guideline in order to prevent future

inconsistent annotations.

We applied the association rule learning (ARL) methodology to

find these implicit relationships between molecular function terms,

with the goal of assisting GO curators in improving annotation

consistency and in updating the ontology. ARL has been

previously applied to GO with the goal of enriching the ontology

[3,4] or guiding the annotation process [21]. However, these

applications were based on relatively small annotation datasets and

thus were not significantly affected by the limitations of the ARL

methodology. Given that the same was not true for our dataset, we

introduced several additions to the ARL methodology in our GO

relationship learning (GRL) algorithm, both to address these

limitations and to improve its performance (as detailed in the

methods section).

Out of the 242,921 pairwise combinations of co-occurring

molecular function terms, the basic ARL methodology retrieves

12,352 relationships with a support of 10 co-annotations and a

confidence of 80%. However, the large majority of these

relationships are either false or uninteresting for our goal, as

77% include generic terms and an additional 5% are relationships

between closely related terms (with either close shared descendents

or close shared ancestors). Furthermore, half of the remaining

relationships are redundant, which is a hindrance since all

retrieved relationships must be manually reviewed. Thus, consid-

ering that all these relationships are not relevant, the precision of

the basic ARL methodology is at most 9% (the top 100 ARL

relationships ranked by support are shown in Table S2, to

illustrate their low usefulness).

Our GRL algorithm excludes all of these unwanted relation-

ships, which improves its precision and facilitates the task of the

GO curators it is meant to assist. Additionally, the introduction of

the agreement parameter enables the algorithm to select

relationships that are true for most functions in addition to being

true for most proteins. Thus, it can exclude false relationships

where a prevalent combination of terms overshadows a biologi-

cally meaningful exception. Using an agreement threshold of 80%

in addition to the confidence threshold of 80% and support

threshold of 10 co-annotations, the GRL algorithm retrieved 550

relationships.

We estimated the precision of the GRL algorithm by manually

analyzing the top 100 relationships ranked by support (the first 20

evaluation results are shown in Table 1, and the full evaluation is

available in Table S3). We found that 92 of these relationships

were true, 2 were true but in the reverse direction, 4 were

unknown, and 2 were false. Given that our methodology is

intended to assist GO curators, for whom it should be easy to

identify the correct direction of the relationship, we can consider

the reverse direction as true. Thus, if we assume that unknown

relationships are false, we obtain an estimated precision of 94%,

which indicates that our algorithm is sufficiently precise to be of

assistance to GO curators.

Since we do not know a priori how many implicit relationships

exist between molecular function terms, we cannot estimate the

recall of our algorithm. However, it should be noted that the

introduction of the agreement parameter leads to the exclusion of

some relationships of interest. This suggests that the agreement

threshold could be lowered to increase the number of relationships

captured while maintaining a reasonable precision.

It is notable that 51 of the true (and reverse) relationships

analyzed involved a catalytic activity term and a binding term

corresponding to a substrate of that activity, such as ATP or NAD.

In most of these cases, the GO definition for the catalytic term

consists of the chemical equation for the catalyzed reaction, which

includes the substrate indicated by the binding term. This

reinforces the fact that this information is available in GO, but

not in a machine-readable form.

In addition to the enzyme-substrate interactions, there were 36

associations where binding terms were used to describe enzyme-

cofactor interactions, with cofactors such as pyridoxal phosphate,

FAD or metal ions. Unlike substrates, cofactors cannot currently

be found in the GO definitions for catalytic activity, so our

algorithm could be useful to identify universal cofactors to be

included in logical definitions, particularly in cases where those

cofactors are not listed in ENZYME, which was the case in 14 of

the relationships analyzed. One curious observation we made

regarding cofactors is that although magnesium and manganese

ions can be used interchangeably as cofactors by many enzymes,

this is not usually reflected in their annotations. Most enzymes are

only annotated with the binding term for one of the metals but not

both, despite both being listed as possible cofactors in ENZYME
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or Brenda. Again, these are cases that would be corrected if

cofactor information was readily available in GO.

It is interesting to note that one of the false relationships

retrieved by our methodology is due to extensive inconsistent

annotations. This relationship is actually true for the proteins that

are annotated with the subject term, but those annotations are

inconsistent. On a first analysis it may seem true that molybdenum

ion transmembrane transporter activity is associated with ATP binding as

all known prokaryotic molybdenum transporters are ABC

transporters. However, we can verify in InterPro that prokaryotic

molybdenum ABC transporters have two subunits: an ABC

subunit, which binds (and hydrolyses) ATP, and a permease

subunit, which does not. Therefore, we would expect that only

50% of the proteins annotated with molybdenum ion transmembrane

transporter activity would be co-annotated with ATP binding. Instead,

we observe this for 100% of the proteins because only the ABC

subunits are annotated with molybdenum ion transmembrane transporter

activity. The permease subunits are annotated with molybdate ion

transmembrane transporter activity instead, which is probably more

accurate considering that molybdate is the only soluble molybde-

num ion. In any case, it seems evident that both subunits should be

annotated with the same transporter activity term to improve

annotation consistency. Additionally, it should be verified whether

it is necessary to maintain both transporter activity terms in GO.

Conclusions

Our analysis of the GOA molecular function annotations

revealed that 38% of the annotations are redundant and that the

large majority of these are electronically inferred. While redundant

annotations are not a major issue, the cost of maintaining such a

fraction of redundant information is not irrelevant. Since there are

few reasons for maintaining redundant electronically inferred

annotations, they could likely be discarded.

Our analysis also revealed that, as expected, the majority of the

electronically inferred annotations are relatively generic. However,

this may be partially due to a lag between GO updates and

annotation sources, since 37% of the molecular function leaf terms

are currently not in use for annotating proteins. In spite of this,

electronically inferred annotations still account for 1.5 million

proteins annotated in detail from relatively reliable data sources.

One issue that deeply affects the quality of electronically

inferred annotations is the lack of consistency, as we estimated that

there are inconsistencies for 83% of the protein functions and that

at least 23% of the proteins are inconsistently annotated. While

our analysis focused only on minor inconsistencies tied to implicit

relationships between terms, we also detected more severe cases

where the function of the proteins could not be clearly identified

from their annotations. Furthermore, even minor inconsistencies

hinder the usefulness of GO, since they make functional

comparisons inaccurate and functional queries unreliable.

We found that many inconsistent annotations corresponded to

cases where a binding term was used to describe a substrate or

cofactor implied by a catalytic activity term or a target implied by a

transporter activity term. The co-annotation with binding terms to

describe enzyme-substrate or transporter-target interactions is

discouraged by the GO annotation guidelines, since it is

considered an implicit aspect of the catalytic or transporter

Table 1. Manual evaluation of the 20 most supported rules selected by our GO relationship learning algorithm.

Subject Term Predicate Term Support Confidence Agreement Evaluation

GTPase activity GTP binding 62218 100% 95% True

ribonucleoside binding DNA-directed RNA polymerase activity 18893 100% 100% Reverse

DNA topoisomerase (ATP-hydrolyzing)
activity

ATP binding 18778 97% 82% True

phosphopantetheine binding acyl carrier activity 8433 100% 94% Reverse

1-aminocyclopropane-1-carboxylate synthase
activity

pyridoxal phosphate binding 7101 100% 97% True

adenylate kinase activity ATP binding 5514 99% 86% True

tRNA dihydrouridine synthase activity FAD binding 4559 100% 100% True

5-formyltetrahydrofolate cyclo-ligase activity ATP binding 4427 100% 94% True

glycine-tRNA ligase activity ATP binding 4073 99% 88% True

holo-[acyl-carrier-protein] synthase activity magnesium ion binding 4017 100% 89% True

arginine-tRNA ligase activity ATP binding 4005 99% 88% True

cysteine synthase activity pyridoxal phosphate binding 4001 100% 97% True

copper-exporting ATPase activity ATP binding 3993 99% 89% True

shikimate kinase activity ATP binding 3947 99% 91% True

histidine-tRNA ligase activity ATP binding 3692 99% 83% True

alanine-tRNA ligase activity ATP binding 3630 99% 82% True

tetrahydrofolylpolyglutamate synthase
activity

ATP binding 3585 100% 91% True

cysteine desulfurase activity pyridoxal phosphate binding 3512 98% 80% True

D-alanine-D-alanine ligase activity ATP binding 3477 99% 85% True

lysine-tRNA ligase activity ATP binding 3460 99% 82% True

Each association is classified as: true if evidence for a relationship between the terms was found; reverse if the reverse rule is true; unknown if no conclusive evidence
was found for or against the association; and false if a counterexample was found. The support is given in number of co-annotations.
doi:10.1371/journal.pone.0040519.t001
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activity. However, information about substrates and targets is not

available in GO in a computer-accessible form, so representing it

with binding co-annotations is a way to enable computation. Thus,

inconsistent annotations arise from the fact that some annotation

sources follow the GO annotation guidelines whereas others do

not. The ongoing extension of GO aims to address this issue by

representing information about substrates and targets explicitly in

the form of computable logical definitions [6]. Nevertheless, the

use of binding terms to capture this information will continue to be

an easy solution for annotation sources unless it is further

discouraged. Additionally, it is clear that information about

cofactors, which is currently not available in GO in any form,

should also be available in the form of computable logical

definitions, at least for the catalytic activities which have a

universal cofactor.

Given that many cases of inconsistent annotations are tied to

implicit relationships between molecular function terms, finding

these relationships could be useful both to assist GO curators in

updating the ontology and in correcting and preventing inconsis-

tent annotations. Our GO relationship learning (GRL) algorithm

was able to find 550 relationships with an estimated precision of

94%. In comparison, the basic association rule learning method-

ology found 12,352 relationships but with a precision below 9%.

Our manual evaluation of the retrieved relationships reinforces the

need to represent knowledge about substrates and cofactors

explicitly in GO as 51% of the relationships analyzed correspond-

ed to enzyme-substrate interactions and 36% to enzyme-cofactor

interactions. While some of these interactions are evident, our

algorithm can help identify those that are less evident such as

enzyme-cofactor interactions that are not currently listed in

ENZYME.
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